
ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Mock Exam
Fall 2011

Mock Exam 1

ETH Zurich

November 7,8 2011

Name:

Group:

1 Terminology (10 points)

Solution

1. A command...

X a. call is an instruction.

X b. may modify an object.

c. may appear in the precondition and the postcondition of another command but not in the
precondition or the postcondition of a query.

d. may appear in the class invariant.

2. The syntax of a program...

a. is the set of properties of its potential executions.

b. can be derived from the set of its objects.

X c. is the structure and the form of its text.

d. may be violated at run-time.

3. A class...

X a. is the description of a set of possible run-time objects to which the same features are
applicable.

b. can only exist at runtime.

c. cannot be declared as expanded; only objects can be expanded.

X d. may have more than one creation procedure.

4. Immediately before a successful execution of a creation instruction with target x of type C...

a. x = Void must hold.

b. x /= Void must hold.

X c. the postcondition of the creation procedure may not hold.

X d. the precondition of the creation procedure must hold.

5. Void references...

1

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Mock Exam
Fall 2011

X a. cannot be the target of a successful call.

b. are not default values for any type.

c. indicate expanded objects.

X d. can be used to terminate linked structures (e.g. linked lists).

2 Design by Contract (10 Points)

Solution

class
2 CAR

4 create
make

6
feature {NONE} −− Creation

8
make

10 −− Creates a default car.
require

12 −− nothing
do

14 create {LINKED LIST [CAR DOOR]} doors.make
ensure

16 not is convertible
doors /= Void and then doors.count = 0

18 color = Void
end

20
feature {ANY} −− Access

22
is convertible : BOOLEAN

24 −− Is the car a convertible (cabriolet)? Default: no.

26 doors: LIST [CAR DOOR]
−− The doors of the car. Number of doors must be 0, 2 or 4. Default: 0.

28
color : COLOR

30 −− The color of the car. ‘Void’ if not specified . Default: ‘Void’.

32 feature {ANY} −− Element change

34 set convertible (a is convertible : BOOLEAN)
require

36 −− nothing
do

38 is convertible := a is convertible
ensure

40 is convertible = a is convertible
end

42
set doors (a doors: ARRAY [CAR DOOR])

44 require

2

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Mock Exam
Fall 2011

a doors /= Void implies (a doors.count = 0 or a doors.count = 2 or a doors.count = 4)
46 local

door index: INTEGER
48 do

doors.wipe out
50 if a doors /= Void then

from
52 door index := 1

invariant
54 doors.count + 1 = door index

door index >= 1 and door index <= a doors.count + 1
56 until

door index > a doors.count
58 loop

doors.extend (a doors [door index])
60 door index := door index + 1

variant
62 a doors.count + 1 − door index

end
64 end

ensure
66 (a doors = Void and doors.count = 0) or (a doors /= Void and then a doors.count =

doors.count)
end

68
set color (a color : COLOR)

70 require
−− nothing

72 do
color := a color

74 ensure
color = a color

76 end

78 invariant
doors /= Void

80 doors.count = 0 or doors.count = 2 or doors.count = 4

82 end

3 Inheritance: A Persistence Framework (12 Points)

Solution

1. manager 1: SERIALIZATION MANAGER
manager 2: BASIC SERIALIZATION MANAGER
an object : STRING
...
create manager 1.make
create manager 2.make
create an object.make from string (”test”)
manager 1 := manager 2
manager 1.store (an object)

3

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Mock Exam
Fall 2011

1. Suppose you want the framework to provide support for XML stored in a text file.
Which of the following solutions seems more appropriate to you?
a. Add one new class, namely XML FORMAT, and make it inherit from
PERSISTENCE FORMAT.

�

b. Add the necessary code to handle the XML format to class PERSISTENCE FORMAT.
In addition, add a new class named XML SERIALIZATION MANAGER and make it inherit
from SERIALIZATION MANAGER.

�

c. Add three new classes, namely XML FORMAT, TEXTUAL FORMAT and
XML SERIALIZATION MANAGER. The first of them, XML FORMAT, will inherit
from the second, TEXTUAL FORMAT. In addition, TEXTUAL FORMAT will inherit
from PERSISTENCE FORMAT and XML SERIALIZATION MANAGER will inherit from
SERIALIZATION MANAGER.

�

d. Add one new class, TEXTUAL FORMAT, including the necessary code to serialize data
in XML format, and make it inherit from PERSISTENCE FORMAT.

�

e. Add two new classes, XML FORMAT and XML SERIALIZATION MANAGER.
Make XML FORMAT inherit from PERSISTENCE FORMAT, and make
XML SERIALIZATION MANAGER inherit from SERIALIZATION MANAGER.

�

f. Add two new classes, XML FORMAT and XML SERIALIZATION MANAGER. Then
add to class SERIALIZATION MANAGER two attributes having types XML FORMAT
and XML SERIALIZATION MANAGER.

�

2. Suppose you have to write the code for feature store in a new
class ADVANCED SERIALIZATION MANAGER that inherits from
BASIC SERIALIZATION MANAGER. What do you have to do to be able to reuse
the same implementation of feature store in BASIC SERIALIZATION MANAGER,
but adding some code to it? The new code should be placed after the reused code.
a. In ADVANCED SERIALIZATION MANAGER, use the keyword redefine after the
clause inherit from BASIC SERIALIZATION MANAGER, and specify the new imple-
mentation in the body of feature store .

�

b. In BASIC SERIALIZATION MANAGER, specify the new implementation in the body
of feature store . Nothing else is necessary because feature store is not implemented in class
SERIALIZATION MANAGER.

�

c. In ADVANCED SERIALIZATION MANAGER, use the keyword undefine after the
clause inherit from BASIC SERIALIZATION MANAGER, and specify the new imple-
mentation in the body of feature store .

�

d. In BASIC SERIALIZATION MANAGER, use the keyword redefine after the clause
inherit from SERIALIZATION MANAGER, and specify the new implementation in the
body of feature store . In addition, use the keyword Precursor to reuse the implementation
from SERIALIZATION MANAGER.

�

e. In ADVANCED SERIALIZATION MANAGER, use the keyword redefine after the
clause inherit from BASIC SERIALIZATION MANAGER, and specify the new imple-
mentation in the body of feature store . In addition, use the keyword Precursor to reuse
the implementation from BASIC SERIALIZATION MANAGER.

�

f. In ADVANCED SERIALIZATION MANAGER, use the keyword undefine after the
clause inherit from BASIC SERIALIZATION MANAGER, and specify the new imple-
mentation in the body of feature store . In addition, use the keyword Precursor to reuse
the implementation from BASIC SERIALIZATION MANAGER.

�

It does not compile. You cannot create an object of class SERIALIZATION MANAGER as
it is a deferred class.

2. manager 1: SERIALIZATION MANAGER
an object : STRING
...

4

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Mock Exam
Fall 2011

create {BASIC SERIALIZATION MANAGER}manager 1.make
create an object.make from string (”test”)
manager 1.store (an object)

It does compile and prints: Creating a basic serialization manager.Serializing an object .

3. manager 1: SERIALIZATION MANAGER
manager 2: BASIC SERIALIZATION MANAGER
an object : STRING
...
create manager 2.make
create an object.make from string (”test”)
manager 1 := manager 2
manager 1.store (an object)

It does compile and prints: Creating a basic serialization manager.Serializing an object .

4. manager 1: SERIALIZATION MANAGER
manager 2: BASIC SERIALIZATION MANAGER
an object : STRING
...
create manager 2.make
create an object.make from string (”test”)
manager 2 := manager 1
manager 2.store (an object)

It does not compile. You cannot assign a reference of a ancestor type to a reference of a
descendant type.

4 Inversion of Linked List (10 Points)

Solution

invert
2 −− Invert the order of the elements of the list.

−− E.g. the list [6, 2, 8, 5] should be become [5, 8, 2, 6]
4 local

l old list, l old list first, l new list: like first
6 do

from
8 l old list := first

until
10 −− Until the old list (‘l old list’) is empty ...

l old list = Void
12 loop

−− ... remove the first element (‘l old list first’) from the old list and ...
14 l old list first := l old list

l old list := l old list.next
16

−− ... prepend it to the new list (‘l new list’).
18 l old list first.set next (l new list)

l new list := l old list first
20 end

5

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Mock Exam
Fall 2011

22 −− Replace the old list by the new one.
first := l new list

24 ensure
count remains the same: count = old count

26 end

6

	Terminology (10 points)
	Design by Contract (10 Points)
	Inheritance: A Persistence Framework (12 Points)
	Inversion of Linked List (10 Points)

