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Introduction

OO languages are popular and widely used

We need to reason about OO programs

Some (problematic) features of OO languages:Some (problematic) features of OO languages:

• Shared mutable state

• Inheritance (subtyping and overriding)
– Determining what a method call does is difficult!

Complicated method lookup scheme that relies on 
dynamic info. We are interested in static verification...
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Reasoning about OO programs

We can use separation logic to reason about shared 
mutable state

But it is not enough! We need to accommodate and 
control inheritancecontrol inheritance

(Many published OO proof systems cannot reason about 
simple programming patterns, or support them in a 
very complicated way)

We will look at a state of the art separation logic for OO 
by Parkinson and Bierman (“Separation Logic, 
Abstraction and Inheritance”, proceedings POPL 2008)
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Outline

1. Shared mutable state

1. Memory model

2. Simple statements & proof rules

2. Inheritance

1. Abstract predicate families

2. Method specification and verification
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1. Shared mutable state1. Shared mutable state
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1.1 OO memory model

State        =def    Stack x DType x Heap

Stack        =def    Var -> Value

Value       =def    Ref u Int u ...

DType =def    Ref  ->fin Type       (dynamic type info)

Heap        =def    Field  ->fin Value   (location granularity = field)Heap        =def    Field  ->fin Value   (location granularity = field)

Field         =def    Ref x Attributename

(S, D, H) ⊧ e.f ↦ e’   =def   H([e]S, f) = [e’]S (different!)

(S, D, H) ⊧ e : C         =def   D([e]S) = C

(S, D, H) ⊧ e = e’       =def   [e]S = [e’]S

(S, D, H) ⊧ P * Q       =def    $ H1, H2 .   H1 ⊥ H2,    H = H1 u H2,
(S, D, H1) ⊧ P,   (S, D, H2) ⊧ Q
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1.2 Simple instructions & proof rules

• Field mutation
{x.f ↦ _} x.f := y {x.f ↦ y}

• Field lookup
{x.f ↦ e} y := x.f {x.f ↦ e * y = e}, provided y is not the 
same as x, and y does not occur free in e

↦ ↦

same as x, and y does not occur free in e

Rules for variable assignment, sequential composition, 
conditional, loop, etc. are the familiar ones

Later: method calls (a bit complicated due to inheritance)
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Structural rules

• Frame:
{P} s {Q}     .

{P*R} s {Q*R}
provided modifies(s) … FV(R) = {}

Note: modifies(x.f := y) = {}Note: modifies(x.f := y) = {}

• Auxiliary Variable Elimination:
{P} s {Q}       .

{$v. P} s {$v. Q}
provided v does not occur free in s

• Consequence, ...
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2. Inheritance2. Inheritance
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2.1 Abstract predicate families (apfs)

OO programming is based on encapsulated 

data-centered abstractions

Parkinson and Bierman’s system embraces this, Parkinson and Bierman’s system embraces this, 

resulting in simple reasoning that 

accommodates OO (esp. inheritance) well

Apfs are heavily used in method specs
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Abstract predicates

Abstract predicate: name, definition and scope.

Within the scope, one can freely change between the name 
and definition. Outside the scope, one can use the name 
only atomically

Examples: list, tree, etc.

Since sep logic predicates describe data, abstract predicates 
are encapsulated data abstractions. Fit OO remarkably well!

For simplicity: single class as the scope. Think “interface” and 
“implementation” of a predicate. Clients use interfaces
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The abstraction boundary is a class, but the 
abstractions themselves are not dictated by 
classes

Examples:

An abstract predicate List can be implemented • An abstract predicate List can be implemented 
with Node objects

• class List can also implement a Stack abstract 
predicate

• class Student can implement a Person predicate
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The “family” part of apfs

Different classes (and in particular subclasses) can implement 
abstractions differently

They can provide different definitions, or entries, for the same 
predicate, hence predicate family.

The definition that applies is based on the dynamic type of The definition that applies is based on the dynamic type of 
the first predicate argument. Apfs as “dynamically 
dispatched predicates”

Example: class Cell defines x.ValCell(n) as x.val ↦ n.

• Val is an apf

• ValCell is class Cell’s entry of the apf Val
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class Cell {

// apf definitions

define x.ValCell(n) as x.val ↦ n

// field declarations

val: int

// methods   e.g. get, set

}

Within the scope of class Cell only, we can use the assumptions (in the 
rule of consequence when verifying the methods of Cell):

• FtoE:  "x,n . x : Cell  =>  [x.Val(n) <=> x.ValCell(n)]

• EtoD: "x,n . x.ValCell(n)  <=> x.val ↦ n

• Arity reduction: "x . x.Val()  <=>  x.Val(_)

Arity reduction allows subclasses to add arguments to apfs
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class Cell {

// apf definitions

define x.ValCell(n) as x.val ↦ n

// field declarations

val: int

// methods   e.g. get, set

}

class ReCell inherit Cell {

// apf definitions

define x.ValReCell(n, b) as x.ValCell(n) * x.bak ↦ b

// field declarations: a backup value

bak: int

// methods: new, overridden, ...

}

• ReCell does not know the definition of x.ValCell(n), yet it defines its entry of 

apf Val in terms of it

• ReCell adds an argument to the apf Val. In the scope of ReCell:

"x . x.Val()  <=>  x.Val(_)

"x,n . x.Val(n)  <=>  x.Val(n, _)

} }
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2.2 Method specification & verification
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Static & dynamic specs

Two types of method calls in OO languages:

• Statically dispatched/bound calls
Examples: super calls in Java, x.C::m(a) in C++

• Dynamically dispatched/bound calls
Example: x.m(a)

Specify each method with a static and a dynamic spec

• Use static spec to verify statically dispatched calls.
Static spec describes in detail what the body does

• Use dynamic spec to verify dynamically dispatched calls.
Dynamic spec is more abstract – it gives the idea behind 
the method that all subclasses must respect
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Example

class Cell {

// apf definitions

define x.ValCell(n) as x.val ↦ n

// field declarations

val: int

// methods// methods

introduce set(x: int)

dynamic {this.Val(_)}_{this.Val(x)}

static {this.ValCell(_)}_{this.ValCell(x)}

{ this.val := x }

introduce get(): int

dynamic {this.Val(v)}_{this.Val(v) * Res = v}

static {this.ValCell(v)}_{this.ValCell(v) * Res = v}

{ Res := this.val }

}
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Client reasoning

Assume the constructor Cell(x: int) 
has dynamic spec: 
{true}_{this.Val(x)}

{true}

x := new Cell(3)

class Cell {

// apf definitions

define x.ValCell(n) as x.val ↦ n

// field declarations

val: int

// methods x := new Cell(3)

{x.Val(3)}

y := new Cell(4)

{x.Val(3) * y.Val(4)}

x.set(5)

{x.Val(5) * y.Val(4)}

n := y.get()

{x.Val(5) * y.Val(4) * n=4}

m := x.val

{???}

// methods

introduce set(x: int)

dynamic {this.Val(_)}_{this.Val(x)}

static {this.ValCell(_)}_{this.ValCell(x)}

{ this.val := x }

introduce get(): int

dynamic {this.Val(v)}_{this.Val(v) * Res = v}

static {this.ValCell(v)}_{this.ValCell(v) * Res = v}

{ Res := this.val }

}
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Verifying a newly introduced method

Two proof obligations:

1. Body verification
Verify that the body satisfies the static spec, using the apf assumptions 
of the containing class and all method specs
{this.ValCell(_)}
{this.val ↦ _}

this.val := x
↦

define x.ValCell(n) as x.val ↦ n

// methods
{this.val ↦ _}

this.val := x
{this.val ↦ x}
{this.ValCell(x)}

2. Dynamic dispatch
Verify the consistency of the static and dynamic specs.
In particular, check under the apf assumptions that the dynamic spec 
with “this : Cell” added to the precondition follows from the static spec. 
{this.ValCell(_)}_{this.ValCell(x)}   ==> {this : Cell * this.Val(_)}_{this.Val(x)}

↦

// methods

introduce set(x: int)

dynamic {this.Val(_)}_{this.Val(x)}

static {this.ValCell(_)}_{this.ValCell(x)}

{ this.val := x }
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Specification refinement

{P}_{Q}   ==>   {P’}_{Q’} also means that:

• the specification {P}_{Q} is stronger than {P’}_{Q’}

• whenever a statement satisfies {P}_{Q}, it must also satisfy {P’}_{Q’}

A proof of {P}_{Q}   ==>   {P’}_{Q’} uses the structural rules of sep logic 
(Frame, AuxVarElim, Consequence, ...) to establish {P’}_{Q’} under the 
assumption {P}_{Q}assumption {P}_{Q}

For example,

{this.ValCell(_)}_{this.ValCell(x)}   ==> {this : Cell * this.Val(_)}_{this.Val(x)}

Proof:

Assumption                            {this.ValCell(_)}_{this.ValCell(x)}

Frame rule         {this : Cell * this.ValCell(_)}_{this : Cell * this.ValCell(x)}

Consequence         {this : Cell * this.Val(_)}_{this : Cell * this.Val(x)}

Consequence         {this : Cell * this.Val(_)}_{this.Val(x)}

Remember the apf assumption of class Cell:

"x,n . x : Cell  =>  [x.Val(n) <=> x.ValCell(n)]
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Subclassing

class ReCell inherit Cell {

// apf definitions

define x.ValReCell(n, b) as x.ValCell(n) * x.bak ↦ b

// field declarations: a backup value

bak: int

// methods

class Cell {

// apf definitions

define x.ValCell(n) as x.val ↦ n

// field declarations

val: int

// methods

introduce set(x: int)

dynamic {this.Val(_)}_{this.Val(x)} // methods

override set(x: int)

dynamic {this.Val(v, _)}_{this.Val(x, v)}

static {this.ValReCell(v, _)}_{this.ValReCell(x, v)}

{ local t: int

t := this.Cell::get();  this.Cell::set(x); this.bak := t }

inherit get(): int

dynamic {this.Val(v, b)}_{this.Val(v, b) * Res = v}

static {this.ValReCell(v, b)}_{this.ValReCell(v, b) * Res = v}

}

dynamic {this.Val(_)}_{this.Val(x)}

static {this.ValCell(_)}_{this.ValCell(x)}

{ this.val := x }

introduce get(): int

dynamic {this.Val(v)}_{this.Val(v) * Res = v}

static {this.ValCell(v)}_{this.ValCell(v) * Res = v}

{ Res := this.val }

}
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Verifying an overridden method

The three proof obligations use the apf assumptions of the child class:

1. Body verification

2. Dynamic dispatch

3. Behavioural subtyping

class ReCell inherit Cell {

...

override set(x: int)

dynamic {this.Val(v, _)}_{this.Val(x, v)}

static {this.ValReCell(v, _)}_{this.ValReCell(x, v)}

{ local t: int

t := this.Cell::get();  this.Cell::set(x); this.bak := t }

...

}
3. Behavioural subtyping

Verify that the dynamic spec of the method in the child class is stronger 
than the one in the parent class

Example: {this.Val(v, _)}_{this.Val(x, v)}   ==> {this.Val(_)}_{this.Val(x)}
Proof:
Assumption:             {this.Val(v, _)}_{this.Val(x, v)}
AuxVarElim:        {$v. this.Val(v, _)}_{$v. this.Val(x, v)}
Consequence:          {this.Val(_, _)}_{this.Val(x, _)}
Consequence:              {this.Val(_)}_{this.Val(x)}

Remember the apf assumption of class ReCell:

"x,n . x.Val(n)  <=>  x.Val(n, _)

}
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Verifying an inherited method

The three proof obligations use the apf assumptions of the child class:

1. Behavioural subtyping

2. Dynamic dispatch

3. Inheritance

class ReCell inherit Cell {

define x.ValReCell(n, b) as x.ValCell(n) * x.bak ↦ b

...

inherit get(): int

dynamic {this.Val(v, b)}_{this.Val(v, b) * Res = v}

static {this.ValReCell(v, b)}_{this.ValReCell(v, b) * Res = v}

}

3. Inheritance
Verify that the static specification of the method in the child class follows from 
the one in the parent class

Example:  {this.ValCell(v)}_{this.ValCell(v) * Res = v}   ==>
{this.ValReCell(v, b)}_{this.ValReCell(v, b) * Res = v}

Proof:
Assumption:                           {this.ValCell(v)}_{this.ValCell(v) * Res = v}
Frame:           {this.ValCell(v) * this.bak ↦ b}_{this.ValCell(v) * Res = v * this.bak ↦ b} 
Consequence:                 {this.ValReCell(v, b)}_{this.ValReCell(v, b) * Res = v}
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Static/dynamic specs - reflection

Only dynamic specs are involved in behavioural

subtyping

Apfs are a great enabler of behavioural subtypesApfs are a great enabler of behavioural subtypes

With static specs, child classes never need to see 

the code of parents. Good for modularity
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Copy-and-paste inheritance

class Cell {

// apf definitions

define x.ValCell(n) as x.val ↦ n

// field declarations

val: int

// methods

introduce set(x: int)

dynamic {this.Val(_)}_{this.Val(x)}

class DCell inherit Cell {

override set(x: int)

{ this.Cell::set(2*x) }

}

• Is this a “proper” use of 
inheritance?

• Can one ever hope to 
verify such code?

dynamic {this.Val(_)}_{this.Val(x)}

static {this.ValCell(_)}_{this.ValCell(x)}

{ this.val := x }

introduce get(): int

dynamic {this.Val(v)}_{this.Val(v) * Res = v}

static {this.ValCell(v)}_{this.ValCell(v) * Res = v}

{ Res := this.val }

}
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Surprise! No problem for verification

class DCell inherit Cell {

// apf definitions

define x.ValDCell(n) as false

define x.DValDCell(n) as x.ValCell(n)

// methods

override set(x: int)

class Cell {

// apf definitions

define x.ValCell(n) as x.val ↦ n

// field declarations

val: int

// methods

introduce set(x: int)

dynamic {this.Val(_)}_{this.Val(x)}
override set(x: int)

dynamic {this.Val(_)}_{this.Val(x)}

also {this.DVal(_)}_{this.DVal(2*x)}

static {this.DValDCell(_)}_{this.DValDCell(2*x)}

{ this.Cell::set(2*x) }

inherit get(): int

dynamic {this.Val(v)}_{this.Val(v) * Res = v} 

also {this.DVal(v)}_{this.DVal(v) * Res = v}

static {this.DValDCell(v)}_{this.DValDCell(v) * Res = v}

}

dynamic {this.Val(_)}_{this.Val(x)}

static {this.ValCell(_)}_{this.ValCell(x)}

{ this.val := x }

introduce get(): int

dynamic {this.Val(v)}_{this.Val(v) * Res = v}

static {this.ValCell(v)}_{this.ValCell(v) * Res = v}

{ Res := this.val }

}
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The key insight:      define x.ValDCell(n) as false

The proof obligations (e.g. behavioural subtyping) are 
trivialized

DCell ensures that no client will ever have a Val predicate 
for a Dcell object. Therefore, in the “Val-world”, DCell is 
not a subtype of Cell (that is, a variable of static type 
Cell that satisfies Val will not point to a DCell object)

Apfs specify logical inheritance
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Conclusion

Separation logic for reasoning about shared mutable state

Apfs and static/dynamic method specs allow flexible handling of 
inheritance

The combination (Parkinson & Bierman’s system) suits the OO The combination (Parkinson & Bierman’s system) suits the OO 
paradigm well. Modular and intuitive. Can verify common design 
patterns

Implemented in tools: jStar, VeriFast

This was just the basics – there is much more in the paper, and several 
extensions also exist
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