Tuples and Agents

Christian Estler
ETH Zurich
christian.estler@inf.ethz.ch

Distributed and Outsourced Software
Engineering - ETH course, Fall 2012

Motivation for Tuples “

Imagine the following scenario:

Need to store click-coordinates on a chess-board

letter: valueofa..h
number: valueofl1..8

\.

We want to store a coordinate as a
single object.

10/22/2012 2

Motivation for Tuples

Default approach to storing coordinates =2 write a small class

class
COORDINATE

create
make

feature {NONE} -- Initialization

make (a_letter: CHARACTER; a_number: INTEGER)
-- Creation procedure

do
letter := a letter
number := a_number
end

feature {ANY} -- Attributes

letter: CHARACTER
number: INTEGER

invariant
number_valid: number >= 1 and number <= 8
letter_valid: letter >= 'a' and letter <= 'h'

end

Tuples-Motivation

Weriting a full fledged class can feel “too heavy”

Eiffel offers an alternative with TUPLE

TUPLE is not a real class, but is a type that represents and infinite

number of classes

TUPLE can have an arbitrary number of generic arguments, e.g.

TUPLE

TUPLE [A]

TUPLE [A, B]
TUPLE [A, B, C]

10/22/2012

— A, B, C aresome types

Tuple Example “

Using a tuple to store chess-board coordinates

foo
local
coord: TUPLE [CHARACTER, INTEGER]
do
coord := ['a', 1] -- direct assignment

-- an assignment using create
create coonrd

coord.put ('a', 1) Type of value is checked at runtime,
coord.put (1, 2) not compile-time; could put anything

end O

value, index

10/22/2012 5

Tuples and Lables

A tuple can also have labels (easier to access that way)

TUPLE [author: STRING; year: INTEGER; title: STRING]

A labeled tuple type denotes the same type as its unlabeled form,
here

TUPLE [STRING, INTEGER, STRING]

but facilitates access to individual elements

Denoting a particular tuple (labeled or not) remains the same:
[’Tolstoi”, 1865, War and Peace”]

To access tuple elements: use e.g. t.year

10/22/2012

Tuples and Inheritance “

Inheritance structure

e Generictypes A, A’

must conform to each other,
otherwise no subtype
realtionship

|

TUPLE [A’, B]

Remember conforms:

Y conforms to X if
Y inherits from X

10/22/2012 7

Tuple Conformance “

tuple_conformance

local
t0: TUPLE
t2: TUPLE [INTEGER, INTEGER]
do [Not necessary in this
create t2 case
t2 :=[10, 20]

t0 := t2 \] Implicit creation I

print (t0.item (1).out + "%N")

print (t0.item (3).out) Runtime error, but
end Wl” Compl|€

10/22/2012 8

Agents

Motivation for Agents

Assignment in Eiffel (other languages)

X: MY _CLASS
-- declaration of x

X := create MY_CLASS.make
-- assigning a value to x

x is a reference to an object of type MY_CLASS

GO)—

(MY _CLASS)

10/22/2012

10

Motivation for Agents “

By default
« 0OO-design encapsulates data into objects
- Operations are not treated as objects

r := my_operation }notpossible
-- assigning an operation to p - Pydefault

But, sometimes we would like to represent operations as objects
« Could include operations in object structures (e.g. LIST)
- Traverse the structure a some later point
- Execute the operations

Concrete examples = next slide

10/22/2012 11

Motivation for Agents “

Examples where we could use operations as objects

* GUI programming
- Event occurs, e.g. a mouse click on some button

- Button holds a reference to an operation object that shall
be executed

* Iteration on data structures

- Introduce general-purpose routine do_all that applies
an arbitrary operation to all elements of the structure

- Can provide operation object to routine do_all

10/22/2012 12

Agents

Eiffel supports such operation objects, they are called

Agents

Same concept in other languages:
C and C++: “function pointers”
CH#: delegates
Functional languages: closures

10/22/2012

13

Creating an Agent “

Given a routine

my printer (i, j, k: INTEGER)
-- this is a printing routine
do
print("Value of i: " + i.out + "%N");
print("Value of j: " + j.out + "%N");
print("Value of k: " + k.out + "%N");
end

we can create an operation object for my_printer as follows

r := agent my printer(?,?,?

Routine expects 3
arguments which we

But what’s the don’t know yet

type of r???

agent keyword wraps
10/22/2012 operation into an objeczt y

An Agent’s Type “

An agent creates an object (that wraps an operation)

Official
terminology is
“agent definition”
but you can think
of it as a create

for operation
objects

r := agent my printer (?,?,? ° O Q

What is the type of that object?
- Either the object represents a PROCEDURE or
- The object represents a FUNCTION

Thus, the type of r would be PROCEDURE

r: PROCEDURE [ANY, TUPLE[INTEGER, INTEGER, INTEGER]]

e

Let’s have a closer look what those generic arguments are...

An Agent’s Type

Given an agent declaration for a procedure

r: PROCEDURE [ANY, TUPLE[INTEGER, INTEGER, INTEGER]]

15t argument represents the
class (type) to which r belong

In practice, we always put ANY,
as every class is of type ANY

2"d argument represents the
type of the arguments of r

10/22/2012

16

The Full Picture

class
AGENT_DEMO

feature

r: PROCEDURE [ANY, TUPLE[INTEGER, INTEGER, INTEGER]]
-- declaration of the agent

foo
-- some routine, where the agent is created
do
r := agent my printer (?,?,?)
end

my printer (i, j, k: INTEGER)

-- this is a printing routine

do
print("Value of i: " + i.out + "%N");
print("Value of j: " + j.out + "%N");
print("Value of k: " + k.out + "%N");

end

end

More on Agent Types “

How to declare an agent for a Function rather than a Procedure?

* Type of an agent for a procedure (we’ve already seen)
PROCEDURE [T, ARGS]

 Type of an agent for a function

FUNCTION [T, ARGS, RES]

AV

The type of the result of
the function

10/22/2012 18

Agent for a Function

class
AGENT_FUNCTION_DEMO

feature

f: FUNCTION [ANY, TUPLE[INTEGER], INTEGER]
-- declaration of the agent

foo
-- some routine, where the agent is created
do
f := agent square (?)
end

square (a_number: INTEGER): INTEGER
-- this returns the square of "a_number’
do
Result := a_number * a number
end
end

19

Executing an Agent “

So far, we’ve declared and created agents.

Notice the brackets;
How about running them? we provide a TUPLE

—

v If arepresents a procedure, a.call ([argument tuple])

calls the procedure

v If arepresents a function, a.item ([argument tuple])

calls the function and returns its result

10/22/2012 20

Executing an Agent (for a Procedure)

class
AGENT_DEMO

feature

r: PROCEDURE [ANY, TUPLE[INTEGER, INTEGER, INTEGER]]
-- declaration of the agent

foo
-- some routine, where the agent is created
do
r := agent my printer (?,?,?)
r.call ([1, 2, 3])
end

my printer (i, j, k: INTEGER)

-- this is a printing routine

do
print("Value of i: " + i.out + "%N");
print("Value of j: " + j.out + "%N");
print("Value of k: " + k.out + "%N");

end

end

Executing an Agent (for a Function)

©

class
AGENT_FUNCTION_DEMO

feature

f: FUNCTION [ANY, TUPLE[INTEGER], INTEGER]
-- declaration of the agent

foo
-- some routine, where the agent is created
do
f := agent square (?)
print ((f.item ([3])).out)
end

square (a_number: INTEGER): INTEGER
-- this returns the square of "a_number’
do
Result := a_number * a number
end
end

22

Classes representing agents

call

;@
ooz

last _result

item, we can use

call and get the
last result using

last result

Open and Closed Agent Arguments “

Up to now, we have provided all arguments once we call the agent

r := agent my printer (?,?,?)

r.call ([1: 2, 3]) ? are called open
arguments

What if we’'d like to fix the arguments at the time we create the

agent? We can do that: here we have closed

arguments

r := agent my printer (1,2,3)
r.call ([])

10/22/2012 24

Open and Closed Agent Arguments “

Closed arguments are set at agent definition time.

Open arguments are set at agent call time.

We can also mix open and closed arguments

:= agent ao0.f (al, a2, a3) -- All closed
:= agent ao0.f (al, a2, ?) i
agent ao.f (al, ?, a3)

:= agent ao@.f (al, ?, ?) o © O
:= agent ao.f (?, ?, ?) -- All open

arguments
affect the
type?

N< X £ ¢
Il

25

10/22/2012

Open and Closed Arguments “

The agent’s type must reflect the
number of open arguments

Example 1:
r: PROCEDURE [ANY, TUPLE[INTEGER, INTEGER, INTEGER]]
r := agent my printer (?,?,?)

r.call ([1, 2, 3])

Example 2:

r: PROCEDURE [ANY, TUPLE[INTEGER]]
r := agent my printer (1,2,?)
r.call ([3])

10/22/2012 26

Agents with open Target

©

All examples seen so far were based on routines of the enclosing
class. This is not required.

class
APPLICATION

feature

printer: AGENT_PROCEDURE -- class from previous slide
my_agent: PROCEDURE [ANY, TUPLE[INTEGER]]

foo
-- some routine, where the agent is created
do
create printer
my agent := agent printer.my printer (1, ?, 3)
my_agent.call ([2])

end
end

’ Calls my_printer of object printer

10/22/2012

27

Inline Agents

So far, we assumed that there already exists some routine that we
wish to represent with an agent.

Sometimes the only usage of such a routine could be as an agent.
We can use inline agents, i.e. write a routine in the agent
declaration:

demo_list.do all (agent (i: INTEGER)
do
print (“Value: ”" + i.out + "%N")

end)

10/22/2012 28

Doing something to a list

Given a simple ARRAY [G] class, with only the features
“count’ and " at’, implement a feature which will take an agent and
perform it on every element of the array.

do_all (do_this: PROCEDURE[ANY, TUPLE[G]])

local
/: INTEGER
do
from
/=1
until
/> count
loop

do_this.call ([at (i)])
=i+
end
end

For-all quantifiers over lists

for_all (pred:. PREDICATE [ANY, TUPLE[G]]): BOOLEAN

local
7/ INTEGER

do
Result := True

from
/=1

until
/> count or not Result

loop
Result := pred.item ([at (1)])
=i+

end

end

