

Tuples and Agents

Christian Estler

ETH Zurich

christian.estler@inf.ethz.ch

Distributed and Outsourced Software

Engineering - ETH course, Fall 2012

Motivation for Tuples

Imagine the following scenario:

We want to store a coordinate as a
single object.

10/22/2012 2

Need to store click-coordinates on a chess-board

letter: value of a .. h
number: value of 1 .. 8

Motivation for Tuples

Default approach to storing coordinates  write a small class

3

class
 COORDINATE

create
 make

feature {NONE} -- Initialization

 make (a_letter: CHARACTER; a_number: INTEGER)
 -- Creation procedure
 do
 letter := a_letter
 number := a_number
 end

feature {ANY} -- Attributes

 letter: CHARACTER
 number: INTEGER

invariant
 number_valid: number >= 1 and number <= 8
 letter_valid: letter >= 'a' and letter <= 'h'

end

Tuples-Motivation

Writing a full fledged class can feel “too heavy”

Eiffel offers an alternative with TUPLE

TUPLE is not a real class, but is a type that represents and infinite
number of classes

TUPLE can have an arbitrary number of generic arguments, e.g.

 TUPLE

 TUPLE [A]

 TUPLE [A, B]

 TUPLE [A, B, C]

 ...

10/22/2012 4

A, B, C are some types

Tuple Example

Using a tuple to store chess-board coordinates

foo

 local

 coord: TUPLE [CHARACTER, INTEGER]

 do

 coord := ['a', 1] -- direct assignment

 -- an assignment using create

 create coord

 coord.put ('a', 1)

 coord.put (1, 2)

 end

10/22/2012 5

value, index

Type of value is checked at runtime,
not compile-time; could put anything

Tuples and Lables

A tuple can also have labels (easier to access that way)

TUPLE [author: STRING; year: INTEGER; title: STRING]

A labeled tuple type denotes the same type as its unlabeled form,
here

TUPLE [STRING, INTEGER, STRING]

but facilitates access to individual elements

Denoting a particular tuple (labeled or not) remains the same:
[”Tolstoi”, 1865, ”War and Peace”]

To access tuple elements: use e.g. t.year

10/22/2012 6

Tuples and Inheritance

Inheritance structure

• Generic types A, A’
must conform to each other,
otherwise no subtype
realtionship

• Remember conforms:

10/22/2012 7

…

TUPLE

TUPLE [A]

TUPLE [A’, B]

Y conforms to X if
Y inherits from X

Tuple Conformance

10/22/2012 8

tuple_conformance

 local

 t0: TUPLE

 t2: TUPLE [INTEGER, INTEGER]

 do

 create t2

 t2 := [10, 20]

 t0 := t2

 print (t0.item (1).out + "%N")

 print (t0.item (3).out)

 end

Not necessary in this
case

Runtime error, but
will compile

Implicit creation

Agents

Motivation for Agents

Assignment in Eiffel (other languages)

 x: MY_CLASS

 -- declaration of x
 …
 x := create MY_CLASS.make
 -- assigning a value to x

x is a reference to an object of type MY_CLASS

10/22/2012 10

x

(MY_CLASS)

Motivation for Agents

By default

• OO-design encapsulates data into objects

• Operations are not treated as objects

r := my_operation
 -- assigning an operation to r

But, sometimes we would like to represent operations as objects

• Could include operations in object structures (e.g. LIST)

• Traverse the structure a some later point

• Execute the operations

Concrete examples  next slide

 10/22/2012 11

not possible
by default

Motivation for Agents

Examples where we could use operations as objects

• GUI programming

• Event occurs, e.g. a mouse click on some button

• Button holds a reference to an operation object that shall
be executed

• Iteration on data structures

• Introduce general-purpose routine do_all that applies
an arbitrary operation to all elements of the structure

• Can provide operation object to routine do_all

10/22/2012 12

Agents

Eiffel supports such operation objects, they are called

 Agents

Same concept in other languages:

 C and C++: “function pointers”

 C#: delegates

 Functional languages: closures

10/22/2012 13

Creating an Agent

Given a routine

we can create an operation object for my_printer as follows

10/22/2012 14

my_printer (i, j, k: INTEGER)
 -- this is a printing routine
do
 print("Value of i: " + i.out + "%N");
 print("Value of j: " + j.out + "%N");
 print("Value of k: " + k.out + "%N");
end

r := agent my_printer(?,?,?)

Routine expects 3
arguments which we

don’t know yet

agent keyword wraps
operation into an objeczt

But what’s the
type of r???

An Agent’s Type

An agent creates an object (that wraps an operation)

What is the type of that object?

• Either the object represents a PROCEDURE or

• The object represents a FUNCTION

Thus, the type of r would be PROCEDURE

r := agent my_printer (?,?,?)

r: PROCEDURE [ANY, TUPLE[INTEGER, INTEGER, INTEGER]]

Let’s have a closer look what those generic arguments are…

Official
terminology is

“agent definition”
but you can think
of it as a create

for operation
objects

An Agent’s Type

Given an agent declaration for a procedure

10/22/2012 16

r: PROCEDURE [ANY, TUPLE[INTEGER, INTEGER, INTEGER]]

1st argument represents the
class (type) to which r belong

In practice, we always put ANY,

as every class is of type ANY

2nd argument represents the
type of the arguments of r

The Full Picture

17

class
 AGENT_DEMO

feature

 r: PROCEDURE [ANY, TUPLE[INTEGER, INTEGER, INTEGER]]
 -- declaration of the agent

 foo
 -- some routine, where the agent is created
 do
 r := agent my_printer (?,?,?)
 end

 my_printer (i, j, k: INTEGER)
 -- this is a printing routine
 do
 print("Value of i: " + i.out + "%N");
 print("Value of j: " + j.out + "%N");
 print("Value of k: " + k.out + "%N");
 end
end

More on Agent Types

How to declare an agent for a Function rather than a Procedure?

• Type of an agent for a procedure (we’ve already seen)

• Type of an agent for a function

10/22/2012 18

PROCEDURE [T, ARGS]

FUNCTION [T, ARGS, RES]

The type of the result of
the function

Agent for a Function

19

class
 AGENT_FUNCTION_DEMO

feature

 f: FUNCTION [ANY, TUPLE[INTEGER], INTEGER]
 -- declaration of the agent

 foo
 -- some routine, where the agent is created
 do
 f := agent square (?)
 end

 square (a_number: INTEGER): INTEGER
 -- this returns the square of `a_number’
 do
 Result := a_number * a_number
 end
end

Executing an Agent

So far, we’ve declared and created agents.

How about running them?

 If a represents a procedure, a.call ([argument_tuple])

calls the procedure

 If a represents a function, a.item ([argument_tuple])

calls the function and returns its result

10/22/2012 20

Notice the brackets;
we provide a TUPLE

Executing an Agent (for a Procedure)

21

class
 AGENT_DEMO

feature

 r: PROCEDURE [ANY, TUPLE[INTEGER, INTEGER, INTEGER]]
 -- declaration of the agent

 foo
 -- some routine, where the agent is created
 do
 r := agent my_printer (?,?,?)
 r.call ([1, 2, 3])
 end

 my_printer (i, j, k: INTEGER)
 -- this is a printing routine
 do
 print("Value of i: " + i.out + "%N");
 print("Value of j: " + j.out + "%N");
 print("Value of k: " + k.out + "%N");
 end
end

Executing an Agent (for a Function)

22

class
 AGENT_FUNCTION_DEMO

feature

 f: FUNCTION [ANY, TUPLE[INTEGER], INTEGER]
 -- declaration of the agent

 foo
 -- some routine, where the agent is created
 do
 f := agent square (?)
 print ((f.item ([3])).out)
 end

 square (a_number: INTEGER): INTEGER
 -- this returns the square of `a_number’
 do
 Result := a_number * a_number
 end
end

Classes representing agents

call

last_result

item

*
ROUTINE

PROCEDURE
+

FUNCTION
+

PREDICATE
+

Instead of using
item, we can use
call and get the
last result using
last_result

Open and Closed Agent Arguments

Up to now, we have provided all arguments once we call the agent

What if we’d like to fix the arguments at the time we create the
agent? We can do that:

10/22/2012 24

r := agent my_printer (?,?,?)
r.call ([1, 2, 3])

r := agent my_printer (1,2,3)
r.call ([])

? are called open
arguments

here we have closed
arguments

Open and Closed Agent Arguments

We can also mix open and closed arguments

10/22/2012 25

Closed arguments are set at agent definition time.

Open arguments are set at agent call time.

w := agent a0.f (a1, a2, ?)
x := agent a0.f (a1, ?, a3)
y := agent a0.f (a1, ?, ?)
z := agent a0.f (?, ?, ?) -- All open

u := agent a0.f (a1, a2, a3) -- All closed

Do closed
arguments
affect the

type?

Open and Closed Arguments

Example 1:

Example 2:

10/22/2012 26

The agent’s type must reflect the
number of open arguments

r: PROCEDURE [ANY, TUPLE[INTEGER, INTEGER, INTEGER]]
r := agent my_printer (?,?,?)
r.call ([1, 2, 3])

r: PROCEDURE [ANY, TUPLE[INTEGER]]
r := agent my_printer (1,2,?)
r.call ([3])

Agents with open Target

All examples seen so far were based on routines of the enclosing
class. This is not required.

10/22/2012 27

class
 APPLICATION

feature

 printer: AGENT_PROCEDURE -- class from previous slide
 my_agent: PROCEDURE [ANY, TUPLE[INTEGER]]

 foo
 -- some routine, where the agent is created
 do
 create printer
 my_agent := agent printer.my_printer (1, ?, 3)
 my_agent.call ([2])
 end
end Calls my_printer of object printer

Inline Agents

So far, we assumed that there already exists some routine that we
wish to represent with an agent.

Sometimes the only usage of such a routine could be as an agent.
We can use inline agents, i.e. write a routine in the agent
declaration:

10/22/2012 28

demo_list.do_all (agent (i: INTEGER)

 do

 print (“Value: ”" + i.out + "%N")

 end)

Doing something to a list

do_all (do_this : PROCEDURE[ANY, TUPLE[G]])
 local
 i : INTEGER
 do
 from

 until

 loop

 end

 end

i := 1

i > count

Given a simple ARRAY [G] class, with only the features

`count’ and `at’, implement a feature which will take an agent and

perform it on every element of the array.

do_this.call ([at (i)])
i := i + 1

For-all quantifiers over lists

for_all (pred : PREDICATE [ANY, TUPLE[G]]): BOOLEAN
 local
 i : INTEGER
 do

 from

 until

 loop

 end
 end

i := 1

i > count or not Result

Result := True

Result := pred.item ([at (i)])
i := i + 1

