Distributed & Outsourced

Software Engineering

Bertrand Meyer, Martin Nordio
ETH Zurich

Peter Kolb
Red Expel

Christian Estler (ETH, assistant)

ETH course, Fall 2012
Course page

http://se.inf.ethz.ch/courses/2012b_fall/dose/

Also see project description:
http://se.inf.ethz.ch/research/dose/
Our goal in this course

We want you to:

- Understand the fundamental issues and techniques of software engineering
- Understand the specificities and technical challenges of distributed software development, including in an outsourcing context
- Know how to organize, participate in and manage a distributed project
- Understand the effect of the outsourcing phenomenon on the industry and manage your own career accordingly
Topics (partial)

- Challenges of distributed software development
- The outsourcing phenomenon and its evolution
- Organizing a distributed project
- Requirements
- Process models
- Negotiating with suppliers: Service Level Agreements
- Quality assurance & testing
A profound transformation

Massive transfer of development towards specialized suppliers, largely in low-wage countries

Outsourcing is not new; offshore development is a major new trend, affecting everyone in the information technology
A profound transformation

Started with manufacturing

Then electronic design

Then low-level service jobs

Then call centers, customer support...

Then implementation-level programming

Then...
Why we are doing this

Distributed Software Engineering raises new challenges

Techniques exist, but the skills must be taught

You should understand the issues quickly and find solutions

This is also a great way to learn by example the benefits of software engineering principles, e.g. abstraction, API design, documentation, requirements...
Project principles and roles

Emulate industrial setting, but only where it makes sense
- A university is not a company (e.g. money not a factor)
- Benefits of a controlled setting
- Goal #1 is to learn

All groups created equal
- We do not want e.g. one university to specify & another implement

Clear management structure
- Central management role, currently at ETH
- Technology choices imposed; currently Eiffel (as a language and method), Web tools, any others that may be necessary
- Universities invited to contribute, e.g. broadcast own lectures
Evolution of this course

- Since 2004 and until 2007: “Software Engineering for Outsourced and Offshore Development”
- First of its kind (as far as we know)
- Since 2007 year: project participation from other universities
- Since 2008 year: Distributed and Outsourced Software Engineering
- Project in cooperation with several universities
The DOSE Course

1. ETH Zurich 2007
2. University of Zurich
3. Odessa National Polytechnic (Ukraine)
4. University of Nizhny Novgorod (Russia)
5. Politecnico di Milano (Italy) 2008
6. University of Debrecen (Hungary)
7. Hanoi University of Technology (Vietnam) 2009
8. University of Rio Cuarto (Argentina)
9. KAIST (Korea)
10. Wuhan University (China) 2010
11. University of Delhi (India)
Teams and groups

University A
- Team A1
- Team A2
- Team A3
- Team A4

University B
- Team B1
- Team B2
- Team B3

University C
- Team C1
- Team C2
- Team C3

University D
- Team D1
- Team D2

University E
- Team E1
- Team E2
- Team E3
- Team E4
DOSE 2007-2011
Groups’ presentation

Shenji Schäppi
Computer Science MSc Student at ETH Zurich
- Effel Exp.: good
- SRS Exp.: good
- Work Exp: Internship at Accenture India (Bangalore)
- O-O languages: Good Knowledge of Java, basic knowledge of C#, C++, C
- Languages spoken: English, German, French

Minh Le Do
Computer Science BSc Student at HUT
- Effel Exp.: none
- SRS Exp.: basic
- Work Exp: Internship at LINC - HUT (Hanoi, Vietnam)
- Biggest project: 1’000 lines of code
- O-O languages: Basic Knowledge of Java, basic knowledge of C#
- Languages spoken: English, Vietnamese, German

Conrado Plano
Computer Science MSc Student at ETH Zurich
- Effel Exp.: good
- SRS Exp.: good
- Work Exp: Assistant for lecture Introduction to Programming, Internship at Accenture India (Bangalore) and Lotus Notes Consultant at ATEGRA AG
- O-O languages: Good Knowledge of Java, basic knowledge of C#
- Languages spoken: Spanish, English, German, Italian

Duc Hoang Bui
Computer Science MSc Student at HUT
- Effel Exp.: basic
- SRS Exp.: good
- Work Exp: Internship at ATNAVN (Hanoi)
- Biggest project: 12’000 lines of code (a web application on Struts2)
- O-O languages: Good Knowledge of Java, basic knowledge of C#
- Languages spoken: English, Vietnamese, French
Project presentation (2007)

Attended by students from all universities involved (through Skype)
Demos

DOSE 2009:

http://youtu.be/ajAAdeJInk8
http://youtu.be/10XWBFtQFh8

DOSE 2011:

http://youtu.be/UOLq77YykyA
http://youtu.be/ta70IKm9GY
http://youtu.be/cWtVvOe2OBM
http://youtu.be/SfIYBv9j78M
http://youtu.be/JJdwYP58hgI
This year project: DOSE 2012

1. ETH Zurich, Switzerland
2. Cairo University, Egypt
3. Hanoi University of Science and Technology, Vietnam
4. ITMO, Russia
5. Odessa Polytechnic National University, Ukraine
6. Politecnico di Milano, Italy
7. Pontificia Universidade Catolica do Rio Grande do Sul (PUCRS), Brazil
8. State University of Nizhny Novgorod, Russia
9. University of Crete, Greece
10. University of Debrecen, Hungary
11. University of Rio Cuarto, Argentina
12. University of Zurich
13. Universidad Politecnica de Madrid, Spain
ETH: Grading

Project (due 17 December, presentation 18 December): 100%
Deadlines

Assignment 0: Set up
 Deadline: October 2nd
Assignment 1: Scope Management Plan
 Deadline: October 16th
Assignment 2: Requirements Document
 Deadline: October 30th
Assignment 3: API with Design by Contract
 Deadline: November 13th
Assignment 4: Test-Driven Development (TDD)
 Deadline: November 20th
Assignment 5: Implementation in Eiffel
 Deadlines: December 17th
Theme: *Games*

The goal of the DOSE project is to implement complex games (card games or board games).

A list of games will be published. You can propose other games, but the complexity should be similar.

Done in Eiffel
Organization

Cluster-based, not process-based

- A team includes a few students (2 or 3) from one university
- A group is a collection of three teams, each from a different university
- Each group does the full subsystem
- Each team does a part of the subsystem
Project Overview

Each Game:

GUI (team A) Logic (team B) AI (team C)
ETH course

Exercise sessions
 Tuesday 9am-10am

Project presentation, December 18, 2010

Assignment 0: Set up
 Deadline: Tuesday, October 2th

http://se.inf.ethz.ch/courses/2012b_fall/dose/assignments/Assignment0.pdf
Four key elements

Strategy
Process
Technology
Communication
Today

Challenges of distributed development: an industrial experience

The outsourcing proposition (part 1)
Reference for this first lecture

The context

Gone are the days of one-company, one-team, one-location projects

Today’s ecosystems are multipolar!

- Distributed team
- Flexible assignment of tasks
- Outsourcing, insourcing, backsourcing
- Flexibility is key: the world belongs to the nimble
- Lots of ideas, proven and unproven, e.g. agile methods
- What happens in the absence of direct contact?
- Universities do not prepare for this!
An industrial experience

Lessons and challenges from experience with the ecosystems of a distributed development at Eiffel Software
Eiffel Software

Technology company

Focused on O-O tools, Eiffel approach, Design by Contract
Serving the needs of very demanding customers in finance, defense, aerospace, health care, education...
Actively involved in standardization (ECMA, ISO)
“Eiffel ecosystem”
EiffelStudio development

Eiffel Software, in Santa Barbara (Calif.), since 1985
Two-million line code base (almost all Eiffel, a bit of C)
Major industry customers, mission-critical applications
Open-source license, same code, vigilant user community
6-month release schedule since 2006
My role: more active in past two years

Developer group ecosystem:
- Small group (core is about 10 people)
- Most young (25-35)
- Highly skilled
- Know Eiffel, O-O, Design by Contract
- Strong company culture, shared values
- Know environment, can work on many aspects
- Distributed
- Mostly, we live in a glass house
Rule 1

The first principle of distributed development:

I would not try unless people have previously worked together in a common location.
Rule 2

Email is great, but every team needs contact

Our solution: the weekly one-hour meeting

Replaced a SB-only meeting (every Friday, until 2005)
How do we organize a meeting?

Santa Barbara: 8 AM

Zurich: 17:00

France: 17:00

Moscow: 19:00

Shanghai: 12:00 AM
Meeting properties

Top goal: ensure that we meet the release deadline
Tasks: check progress, identify problem, discuss questions of general interest
Not a substitute for other forms of communication

Time is strictly limited: one hour come rain or shine

(The meeting challenge: see E. Northcote Parkinson)
Meeting tools: originally

Skype (conference call, limited to 9 people)

Skype chat window

Google docs
Lessons

Basically it works, but still far from perfect

Still too many non-semantic communication (see Roman Jakobson)

Audio communication heightens problems, e.g. accents

Ability to edit a common document in real time is a critical advantage

Need to work after the meeting

Documents are key: mix of verbal and written word
Rule 3

Infrastructure matters

Connection problems are not fun after the third time
Meeting tools: now

Webex for conference call management

X-Lite as a replacement for Skype

Google Docs

Wiki site (http://dev.eiffel.com)

Skype: chat window only
Can the speed be improved by caching the required information in advance?

says: 26-Feb-08 17:52:04
To Manu: We can ask the end user during installation, maybe a popup dialog say “Do you want change the Desktop heap value? Yes or No”.

that doesn’t sound too good in my opinion

storke_bm says: 26-Feb-08 17:53:59
I reconnected to the ETH VPN and maybe this confused X-ile

Can you hear me

? 26-Feb-08 17:54:01

I meant I almost achieved without “is”, but the only case is when people move the composing feature around. I didn’t find a solution.

ok 26-Feb-08 17:54:29

We lost Bertrand again

he is not online anymore

anything else you want to add?

He is back

Bertrand can you call back?

Yes, sorry for the trouble

Personally I would continue Internationalization.

storke_bm says: 26-Feb-08 18:00:27
OK
Scripta manent

(Or: talk is cheap) (Not a Skype advertising slogan)
Recent addition

Code review
Traditional: time-consuming, tedious, value often questioned as compared to e.g. static analysis tools

With the Web it becomes much more interesting!

- Classes circulated three weeks in advance
- Comment categories: choice of abstractions, other aspects of API design, architecture choices, algorithms & data structures, implementation, programming style, comments & documentation
- Comments in writing on Google Doc page, starting one week ahead
- Author of code responds on same page
- Meeting is devoted to unresolved issues
implementing. If a default icon was provided it would be easy to forget about requesting a icon for the dialog.

(Larry.2.1) ES_DIALOG have a covert feature `dialog: {EV_DIALOG}`, maybe we should add similar features to ES_WINDOW_FOUNDATIONS and ES_WIDGET? It's consistent.

Agreed.

(Larry.2.2) Why all buttons indicated by INTEGER in ES_DIALOG? The advantage of this is? We can use EV_BUTTON directly. This is simple and intuitive.

You can access the buttons directly. IDs are used because of things like a dialog result, which you need to test against when using dialogs as a client. Also, adding actions directly to a button is not recommended. ES_DIALOG is not a dialog but a dialog facade. This way we can safely add actions to the buttons, prevent users from removing actions. There are many, many reasons why you have to use IDs. The EV_INFORMATION_DIALOG, etc. interface design is terrible, having to compare button labels to determine which button was pressed.

(Larry.2.3) In `dialog border width` from ES_DIALOG, use value `default border size` from {EV_LAYOUT_CONSTANTS} is enough. Or {ES_UI_CONSTANTS} should try to use the values from {EV_LAYOUT_CONSTANTS}.

Yes, this is the plan to have the ES constants use EV constants. However, the EV constants should not be used directly in EiffelStudio. It's the same reason to use CSS in HTML instead of using the platform defaults. When it comes to change the look, a change in one place will change all of the site. If we want ES to look different in the future when we can change it through the ES constants.

3. Other aspects of architecture, e.g. choice of client links, inheritance hierarchies
Lessons

The world has gone global, so has the software world

Many difficult issues, failure always possible

Solutions exist

Many software engineering lessons apply, made even more relevant

Communication is the core issue

Infrastructure (network, tools...) is critical
The software engineering ecosystem

The human factor is at the center of it all

Infrastructure is the enabler
Overview

Worldwide IT services revenue (Gartner, billions $):

- 2005: 625
- 2006: 672
- 2007: 730 (projected)
- 2008: 779 (projected)

Outsourcing “primary source of growth”

“Replaces internal IT spending and is often funded outside of IT budgets, so growth in outsourcing is possible even in the face of flat IT budgets”
IT outsourcing

2002: $162 billion

2007 (expected): $236 billion

(Source: Gartner, 2004)
US imports of software and services

US Commerce department figures:

$77.4 billion in 2003
Up $7.9 billion from 2002

Exports during same period: $131 billion, up $8.4 billion
Percentage of offshoring in IT budgets (Forrester):

2000: 12%

2003: 28%
When they say it’s not about the money…

… then it is about the money.
It’s about the money

In the better economic times, companies outsourced IT to get access to scarce IT talent. But in today’s down economy, saving money has bubbled to the top as one of the primary reasons for making outsourcing deals.

Computerworld, March 18, 2002

Right now, in this economy, cost savings is No. 1 criterion.

Tim Barry, Senior VP of Application Outsourcing, Keane, 2002

Because of the recent global economic downturn, cost reduction has been the primary driver for outsourcing over the past several years and continues as a strong driver even as economic growth returns.

Gartner, 2004
The offshoring proposition

Low salaries
Skilled workforce
Good university system
Good communication infrastructure
Stable political structure
Efficient business conditions
Entrepreneurial culture (greed?)
No insurmountable cultural barrier
Language skills
(Often) exile community in the client country
Culture of quality and qualification (*CMM, ISO...*)
The role of qualification

CMM (the Capability Maturity Model) and its derivatives, such as CMMI, as well as other standards such as ISO 900X, have been a key enabler to the takeoff of offshore development.
Other relevant aspects

Work ethics

Language skills

Time zones
For comparison: US developer salaries

(Source: PayScale, 16 September 2007)
India

Official policy to support outsourcing, IT ministry
University infrastructure, Indian Institutes of Technology; 75,000 IT graduates a year
English widely known
Technical salaries: $10,000 to $25,000 (average 15,600 in 2007, up 18.6%)
IT parks (Bangalore...) have excellent infrastructure
Key role of Indian technical diaspora in the US
Strong emphasis on qualification (CMMI, ISO)
The reference success story for outsourcing

Software/services exports: $31 billion in 2006-2007, up 32% (industry: $40 billion); targeted to $50 billion by 2008 (NASSCOM), 5.2% of GDP
India

Large software companies: Tata Consulting Services (95,000 employees, $4 billion revenue), Infosys (76,000, $3.1 billion), Wipro (68,000, $3.4 billion), HCL Technologies, Patni

Numerous Western companies have established subsidiaries

Increased competition for talent
China

50,000 technical graduates per year

Technical salaries: $5,000 to $20,000

Intellectual property issues remain

Infrastructure good in major cities

Strengths so far: high tech, consumer electronics, telecom, finance

IT outsourcing revenue: $5 billion in 2005, $10 billion in 2006 (50% growth), $27 billion in 2007 (Gartner)
Russia

Good university system, strong on mathematics and basic science. 3rd largest population of scientists and engineers per capita

Technical salaries: $15,000 to $30,000

Business climate volatile, bureaucracy

Infrastructure: OK in Moscow and Petersburg. Telecoms still expensive. Excellent education system

Strengths so far: advanced software development, Web development, research

Significant operations of Western firms: Sun, Intel, Motorola, Alcatel, Siemens

IT outsourcing revenue: $1 billion in 2005, growing 50% a year
Ireland

Technical salaries: $25,000 to $35,000

Favorable tax structure, $330 million technology-education fund

English language

Strengths so far: service centers, call centers (Dell, HP, Microsoft...)

An example of a successful outsourcing infrastructure in a developed country

IT outsourcing revenue from US: $8.3 billion
Challengers

Eastern Europe: Poland, Rumania, Bulgaria, Czech Republic, Hungary, Baltic countries ("nearshore" development)
Vietnam
Thailand
Philippines
 15,000 tech graduates/year, labor slightly higher than India, government support
Ghana
Government support, English official language, 10,000 IT grads/yr
Mexico
 Close to US, NAFTA
Brazil
Israel
South Africa
Egypt
Siemens-Nachrichten
Für die Beschäftigten des Siemens-Konzerns

Siemens-Globalisierungsstrategie gefährdet Standort Deutschland

Wir fordern deshalb vom Siemens-Zentralvorstand:

- Eine konzernweite Vereinbarung für die Sicherung der Arbeitsplätze und der Zukunft der Standorte
- Keine betriebsbedingten Kündigungen im Zusammenhang mit Verlagerungen
- Ausnutzung der Flexibilisierungsmöglichkeiten im Tarif statt längerer Arbeitszeiten, was nur weitere Arbeitsplätze kostet
- Hände weg von den Einkommen - statt dessen Optimierung der Prozesse und Nutzung aller sonstigen Einsparmöglichkeiten
- Keine Inansprüchnahme öffentlicher Förderung bei Arbeitsplatzverlagerungen
- Ein Konzern-Programm für mehr Kundennähe und für mehr Innovationen in Deutschland

Ich unterstütze diese Forderungen durch meine Unterschrift!
Effect on US jobs (Forrester)

315,000 service jobs shifted offshore by end of 2003 (less than 1% of affected categories)

Projected: 3.4 million by 2015
US state adopts anti-BPO bill

The state of Kansas has adopted a bill seeking to bar outsourcing telephone enquiries about its food stamp program to India and other countries.

The Department of Social and Rehabilitation Services signed a contract with eFunds Corp in September 2002 to handle food stamp benefits and take clients' calls. In its 2003 annual report, eFunds said it has two customer call centers in India and that about 3,100 of its 5,400 employees are outside the United States. Outsourcing became an issue in the legislature when it was revealed that Kansas' calls about food stamps were answered by workers not in Kansas but in India.

The measure would require SRS to renegotiate its $1.7 million-a-year contract with the Arizona-based eFunds Corp. The agency said it does not know whether contract costs will increase if calls are answered in Kansas.

In March, Senator Mark Taddiken (Republican) persuaded fellow Senators to add a ban on outsourcing of food stamps work to a bill on next fiscal year's budget. Under his proposal, the ban would have taken effect on July 1. But SRS secretary Janet Schalansky told legislators that the ban would raise the cost of eFunds contract by about $640,000 as a centre will have to be set up in Kansas.
Forms of outsourcing

Internal (to lower-cost divisions) External

Same country group Offshore

Specific Business process (BPO)

Operation (e.g. computer facilities) Transfer

Selective Total

Tactical vs Strategic

Transitional Permanent

Client-supplier Partnership (joint venture)

Maintenance New product

Development/operation Research
Arguments for outsourcing

Cost

Access to expertise

Focus on core business

Speed

Business process reengineering (aka change)

Control

Quality improvement
Arguments against outsourcing

Loss of control, dependency on supplier

Loss of expertise

Loss of flexibility

Loss of jobs, effect on motivation
Outsourcing risks

Loss of personnel and expertise
Loss of user input and business-related information
Leaks of intellectual property
Failure of third party
Disappearance of third party
Changes in business climate not addressed by contract
Insurmountable cultural differences, language problems
Communication costs, time difference, ...
Insufficiently precise contract
Contract not covering evolution
Rising costs out of modifications
Insufficient quality, detected late
Privacy issues
Security issues
Plan

1. The outsourcing proposition (part 2: Exercise)

2. The technical issues

3. Management and validation techniques

4. Putting everything in place for successful outsourcing

Plus: an exercise