
Distributed and Outsourced
Software Engineering

Peter Kolb, Bertrand Meyer, Martin Nordio

Chair of Software Engineering

Lectures 3/4: Requirements Analysis

2

Statements about requirements: Brooks

The hardest single part of building a software system is
deciding precisely what to build. No other part of the
conceptual work is as difficult as establishing the
detailed technical requirements, including all the
interfaces to people, to machines, and to other software
systems. No other part of the work so cripples the
resulting system if done wrong. No other part is more
difficult to rectify later.

Source*: Brooks 87

*For sources cited, see bibliography

3

Statements about requirements: Boehm

Source: Boehm, Barry W. Software Engineering Economics. Englewood Cliffs, NJ: Prentice-Hall, 1981

0

10

20

30

40

50

60

70

Requirements Design Code Development

Testing

Acceptance

Testing

Operation

Relative cost to correct a defect

Source*: Boehm 81

4

When not done right

80% of interface fault and 20% of implementation faults
due to requirements (Perry & Stieg, 1993)

48% to 67% of safety-related faults in NASA software
systems due to misunderstood hardware interface
specifications, of which 2/3rds are due to requirements
(Lutz, 1993)

85% of defects due to requirements, of which: incorrect
assumptions 49%, omitted requirements 29%, inconsistent
requirements 13% (Young, 2001).

Numerous software bugs due to poor requirements, e.g.
Mars Climate Orbiter

5

A small case study

Consider a small library database
with the following transactions:

1. Check out a copy of a book.
Return a copy of a book.

2. Add a copy of a book to the
library. Remove a copy of a
book from the library.

3. Get the list of books by a
particular author or in a
particular subject area.

4. Find out the list of books
currently checked out by a
particular borrower.

5. Find out what borrower last
checked out a particular copy
of a book.

There are two types of users: staff
users and ordinary borrowers.

Transactions 1, 2, 4, and 5 are
restricted to staff users, except
that ordinary borrowers can
perform transaction 4 to find
out the list of books currently
borrowed by themselves. The
database must also satisfy the
following constraints:

All copies in the library must
be available for checkout or
be checked out.

No copy of the book may be
both available and checked
out at the same time.

A borrower may not have
more than a predefined
number of books checked out
at one time.

Source*: Wing 88

Overview of
the requirements task

7

Definition

“A requirement” is a statement of desired behavior for a
system

“The requirements” for a system are the collection of all
such individual requirements

8

Goals of performing requirements

 Understand the problem or problems that the eventual
software system, if any, should solve

 Prompt relevant questions about the problem & system

 Provide basis for answering questions about specific
properties of the problem & system

 Decide what the system should do

 Decide what the system should not do

 Ascertain that the system will satisfy the needs of its
stakeholders

 Provide basis for development of the system

 Provide basis for V & V* of the system

Source: OOSC

*Validation & Verification, especially testing

9

Products of requirements

 Requirements document

 Development plan

 V&V plan (especially test plan)

10

Practical advice

 Don’t forget that the requirements
also determine the test plan

11

Possible requirements stakeholders

 Clients (tailor-made

system)

 Customers (product for

general sale)

 Clients’ and customers’

customers

 Users

 Domain experts

 Market analysts

 Unions?

 Legal experts

 Purchasing agents

 Software developers

 Software project
managers

 Software documenters

 Software testers

 Trainers

 Consultants

12

Your turn! Who are the stakeholders?

Consider a small library database
with the following transactions:

1. Check out a copy of a book.
Return a copy of a book.

2. Add a copy of a book to the
library. Remove a copy of a
book from the library.

3. Get the list of books by a
particular author or in a
particular subject area.

4. Find out the list of books
currently checked out by a
particular borrower.

5. Find out what borrower last
checked out a particular copy
of a book.

There are two types of users: staff
users and ordinary borrowers.

Transactions 1, 2, 4, and 5 are
restricted to staff users, except
that ordinary borrowers can
perform transaction 4 to find
out the list of books currently
borrowed by themselves. The
database must also satisfy the
following constraints:

All copies in the library must
be available for checkout or
be checked out.

No copy of the book may be
both available and checked
out at the same time.

A borrower may not have
more than a predefined
number of books checked out
at one time.

13

Practical advice

 Identify all relevant stakeholders
early on

14

Requirements categories

Functional

vs

Non-functional

Full system Software only

Procedural Object-oriented

Informal Formal

Textual Graphical

Executable Non-executable

15

Components of requirements

 Domain properties

 Functional requirements

 Non-functional requirements (reliability, security,
accuracy of results, time and space performance,
portability...)

 Requirements on process and evolution

16

15 quality goals for requirements

 Justified

 Correct

 Complete

 Consistent

 Unambiguous

 Feasible

 Abstract

 Traceable

 Delimited

 Interfaced

 Readable

 Modifiable

 Verifiable

 Prioritized*

 Endorsed

Marked attributes are part of IEEE 830, see below
* “Ranked for importance and/or stability”

17

Difficulties of requirements

 Natural language and its imprecision

 Formal techniques and their abstraction

 Users and their vagueness

 Customers and their demands

 The rest of the world and its complexity

18

Bad requirements

The Background Task Manager shall provide status
messages at regular intervals not less than 60 seconds.

Source: Wiegers

The Background Task Manager (BTM) shall display status
messages in a designated area of the user interface

1. The messages shall be updated every 60 plus or minus
10 seconds after background task processing begins.

2. The messages shall remain visible continuously.

3. Whenever communication with the background task
process is possible, the BTM shall display the percent
completed of the backround task.

Better:

19

Bad requirements

The XML Editor shall switch between displaying and hiding
non-printing characters instantaneously.

Source: Wiegers

The user shall be able to toggle between displaying and
hiding all XML tags in the document being edited with the
activation of a specific triggering mechanism. The display
shall change in 0.1 second or less.

Better:

20

Bad requirements

The XML parser shall produce a markup error report that
allows quick resolution of errors when used by XML novices.

Source: Wiegers

1. After the XML Parser has completely parsed a file, it
shall produce an error report that contains the line
number and text of any XML errors found in the
parsed file and a description of each error found.

2. If no parsing errors are found, the parser shall not
produce an error report.

Better:

21

The two constant pitfalls

 Committing too early to an implementation

 Overspecification!

 Missing parts of the problem

 Underspecification!

22

A simple problem

Given a text consisting of words separated by BLANKS or
by NL (new line) characters, convert it to a line-by-line
form in accordance with the following rules:

1. Line breaks must be made only where the given
text has BLANK or NL;

2. Each line is filled as far as possible as long as:

3. No line will contain more than MAXPOS characters

Source: Naur

See discussion at se.ethz.ch/~meyer/publications/ieee/formalism.pdf

http://se.ethz.ch/~meyer/publications/ieee/formalism.pdf

23

“Improved”

The program's input is a stream of
characters whose end is signaled
with a special end-of-text
character, ET. There is exactly one
ET character in each input stream.
Characters are classified as:

Break characters — BL (blank)
and NL (new line);

Nonbreak characters — all
others except ET;

The end-of-text indicator — ET.

A word is a nonempty sequence of
nonbreak characters. A break is a
sequence of one or more break
characters. Thus, the input can be
viewed as a sequence of words
separated by breaks, with possibly
leading and trailing breaks, and
ending with ET.

The program's output should be the same
sequence of words as in the input, with
the exception that an oversize word (i.e. a
word containing more than MAXPOS
characters, where MAXPOS is a positive
integer) should cause an error exit from
the program (i.e. a variable, Alarm, should
have the value TRUE). Up to the point of
an error, the program's output should
have the following properties:

1. A new line should start only between
words and at the beginning of the output
text, if any.

2. A break in the input is reduced to a
single break character in the output.

3. As many words as possible should be
placed on each line (i.e., between
successive NL characters).

4. No line may contain more than MAXPOS
characters (words and BLs).

Source: Goodenough & Gerhart

24

“Improved”

The program's input is a stream of
characters whose end is signaled
with a special end-of-text
character, ET. There is exactly one
ET character in each input stream.
Characters are classified as:

Break characters — BL (blank)
and NL (new line);

Nonbreak characters — all
others except ET;

The end-of-text indicator — ET.

A word is a nonempty sequence of
nonbreak characters. A break is a
sequence of one or more break
characters. Thus, the input can be
viewed as a sequence of words
separated by breaks, with possibly
leading and trailing breaks, and
ending with ET.

The program's output should be the same
sequence of words as in the input, with
the exception that an oversize word (i.e. a
word containing more than MAXPOS
characters, where MAXPOS is a positive
integer) should cause an error exit from
the program (i.e. a variable, Alarm, should
have the value TRUE). Up to the point of
an error, the program's output should
have the following properties:

1. A new line should start only between
words and at the beginning of the output
text, if any.

2. A break in the input is reduced to a
single break character in the output.

3. As many words as possible should be
placed on each line (i.e., between
successive NL characters).

4. No line may contain more than MAXPOS
characters (words and BLs).

Contradiction Noise Ambiguity

Overspecification Remorse Forward reference

Source: Meyer 85

25

The formal specification

26

“My” spec, informal from formal

Given are a non-negative integer MAXPOS and a character set
including two "break characters“ blank and new_line.

The program shall accept as input a finite sequence of characters and
produce as output a sequence of characters satisfying the following
conditions:

 It only differs from the input by having a single break character
wherever the input has one or more break characters.

 Any MAXPOS +1 consecutive characters include a new_line.

 The number of new_line characters is minimal.

 If (and only if) an input sequence contains a group of MAXPOS +1
consecutive non-break characters, there exists no such output. In
this case, the program shall produce the output associated with
the initial part of the sequence up to and including the MAXPOS-
th character of the first such group, and report the error.

27

Practical advice

 Don’t underestimate the potential for
help from mathematics

28

15 quality goals for requirements

 Justified

 Correct

 Complete

 Consistent

 Unambiguous

 Feasible

 Abstract

 Traceable

 Delimited

 Interfaced

 Readable

 Modifiable

 Verifiable

 Prioritized

 Endorsed

29

Verifiable requirements

Non-verifiable :
 The system shall work satisfactorily
 The interface shall be user-friendly
 The system shall respond in real time

Verifiable:
 The output shall in all cases be produced within 30

seconds of the corresponding input event. It shall be
produced within 10 seconds for at least 80% of input
events.

 Professional train drivers will reach level 1 of
proficiency (defined in requirements) in two days of
training.

Adapted from: IEEE

30

Practical advice

 Favor precise, falsifiable language
over pleasant generalities

31

Complete requirements

Complete with respect to what?

Definition from IEEE standard (see next) :

 An SRS is complete if, and only if, it includes the following elements:
 All significant requirements, whether relating to functionality,

performance, design constraints, attributes, or external
interfaces. In particular any external requirements imposed by
a system specification should be acknowledged and treated.

 Definition of the responses of the software to all realizable
classes of input data in all realizable classes of situations. Note
that it is important to specify the responses to both valid and
invalid input values.

 Full labels and references to all figures, tables, and diagrams in
the SRS and definition of all terms and units of measure.

32

Completeness

Completeness cannot be “completely” defined

But (taking advantage of the notion of sufficient
completeness for abstract data types) we can cross-check:

 Commands x Queries

to verify that every effect is defined

33

Practical advice

 Think
negatively

34

The two parts of requirements

Purpose: to capture the user needs for
a “machine” to be built

Jackson’s view: define success as

 machine specification domain properties requirements

• Domain properties: outside constraints (e.g. can only

modify account as a result of withdrawal or deposit)

• Requirement: desired system behavior (e.g. withdrawal of n
francs decreases balance by n)

• Machine specification: desired properties of the machine
(e.g. request for withdrawal will, if accepted, lead to update
of the balance)

35

Domain requirements

Domain assumption: trains & cars
travel at certain max speeds

Requirement: no collision in
railroad crossing

http://fr.wikipedia.org/wiki/Image:Passage_a_niveau_garde.jpeg

36

Your turn! Separate machine & domain

Consider a small library database
with the following transactions:

1. Check out a copy of a book.
Return a copy of a book.

2. Add a copy of a book to the
library. Remove a copy of a
book from the library.

3. Get the list of books by a
particular author or in a
particular subject area.

4. Find out the list of books
currently checked out by a
particular borrower.

5. Find out what borrower last
checked out a particular copy
of a book.

There are two types of users: staff
users and ordinary borrowers.

Transactions 1, 2, 4, and 5 are
restricted to staff users, except
that ordinary borrowers can
perform transaction 4 to find
out the list of books currently
borrowed by themselves. The
database must also satisfy the
following constraints:

All copies in the library must
be available for checkout or
be checked out.

No copy of the book may be
both available and checked
out at the same time.

A borrower may not have
more than a predefined
number of books checked out
at one time.

37

Practical advice

 Distinguish machine specification
 from domain properties

Standards and Methods

39

The purpose of standards

Software engineering standards:

 Define common practice.

 Guide new engineers.

 Make software engineering processes comparable.

 Enable certification.

40

IEEE 830-1998

”IEEE Recommended Practice for Software Requirements
Specifications”

Approved 25 June 1998 (revision of earlier standard)

Descriptions of the content and the qualities of a good
software requirements specification (SRS).

Goal: “The SRS should be correct, unambiguous, complete,
consistent, ranked for importance and/or stability,
verifiable, modifiable, traceable.”

41

15 quality goals for requirements

 Justified

 Correct

 Complete

 Consistent

 Unambiguous

 Feasible

 Abstract

 Traceable

 Delimited

 Interfaced

 Readable

 Modifiable

 Testable

 Prioritized

 Endorsed

42

IEEE Standard: definitions

Contract:
A legally binding document agreed upon by the customer and supplier. This
includes the technical and organizational requirements, cost, and schedule for a
product. A contract may also contain informal but useful information such as the
commitments or expectations of the parties involved.
Customer:
The person, or persons, who pay for the product and usually (but not necessarily)
decide the requirements. In the context of this recommended practice the
customer and the supplier may be members of the same organization.
Supplier:
The person, or persons, who produce a product for a customer. In the context of
this recommended practice, the customer and the supplier may be members of
the same organization.
User:
The person, or persons, who operate or interact directly with the product. The
user(s) and the customer(s) are often not the same person(s).

43

IEEE Standard

Basic issues to be addressed by an SRS:

 Functionality

 External interfaces

 Performance

 Attributes

 Design constraints imposed on an implementation

44

IEEE Standard

Recommended document structure:
1. Introduction

1.1 Purpose

1.2 Scope

1.3 Definitions, acronyms, and abbreviations Glossary!

1.4 References

1.5 Overview

2. Overall description

2.1 Product perspective

2.2 Product functions

2.3 User characteristics

2.4 Constraints

2.5 Assumptions and dependencies

3. Specific requirements

Appendixes

Index

45

Practical advice

 Use the recommended IEEE structure

46

Practical advice

 Write a glossary

47

Recommended document structure

1. Introduction

1.1 Purpose

1.2 Scope

1.3 Definitions, acronyms, and abbreviations

1.4 References

1.5 Overview

2. Overall description

2.1 Product perspective

2.2 Product functions

2.3 User characteristics

2.4 Constraints

2.5 Assumptions and dependencies

3. Specific requirements

Appendixes

Index

48

Example section: scope

 Identify software product to be produced by name
(e.g., Host DBMS, Report Generator, etc.)

 Explain what the product will and will not do

 Describe application of the software: goals and
benefits

 Establish relation with higher-level system
requirements if any

49

Example section: product perspective

Describe relation with other products if any.

Examples:

 System interfaces

 User interfaces

 Hardware interfaces

 Software interfaces

 Communications interfaces

 Memory

 Operations

 Site adaptation requirements

50

Example section: constraints

Describe any properties that will limit the developers’ options

Examples:

 Regulatory policies

 Hardware limitations (e.g., signal timing requirements)

 Interfaces to other applications

 Parallel operation

 Audit functions

 Control functions

 Higher-order language requirements

 Reliability requirements

 Criticality of the application

 Safety and security considerations

51

Recommended document structure

1. Introduction

1.1 Purpose

1.2 Scope

1.3 Definitions, acronyms, and abbreviations

1.4 References

1.5 Overview

2. Overall description

2.1 Product perspective

2.2 Product functions

2.3 User characteristics

2.4 Constraints

2.5 Assumptions and dependencies

3. Specific requirements

Appendixes

Index

52

Specific requirements (section 3)

This section brings requirements to a level of detail
making them usable by designers and testers.

Examples:

 Details on external interfaces

 Precise specification of each function

 Responses to abnormal situations

 Detailed performance requirements

 Database requirements

 Design constraints

 Specific attributes such as reliability, availability,
security, portability

53

Possible section 3 structure

3. Specific requirements

3.1 External interfaces

 3.1.1 User interfaces

 3.1.2 Hardware interfaces

 3.1.3 Software interfaces

 3.1.4 Communication interfaces

3.2 Functional requirements

 …

3.3 Performance requirements

 …

3.4 Design constraints

 …

3.5 Quality requirements

 …

3.6 Other requirements

 …

54

Requirements under agile methods

Under XP: requirements are taken into account as defined
at the particular time considered

Requirements are largely embedded in test cases

Benefits:

 Test plan will be directly available

 Customer involvement

Risks:

 Change may be difficult (refactoring)

 Structure may not be right

 Test only cover the foreseen cases

55

Practical advice

 Retain the best agile practices, in particular
frequent iterations, customer involvement,
centrality of code and testing.

 Disregard those that contradict proven
software engineering principles.

Requirements elicitation

57

Some recipes for good requirements

Managerial aspects:

 Involve all stakeholders

 Establish procedures for controlled change

 Establish mechanisms for traceability

 Treat requirements document as one of the major
assets of the project; focus on clarity, precision,
completeness

Technical aspects: how to be precise?

 Formal methods?

 Design by Contract

58

Checklist

Premature design?

Combined requirements?

Unnecessary requirements?

Conformance with business goals

Ambiguity

Realism

Testability

After: Kotonya &
Sommerville 98

59

Using natural language for requirements

Keys are:

 Structure

 Precision (including precise definition of all terms)

 Consistency

 Minimizing forward and outward references

 Clarity

 Conciseness

60

Advice on natural language

Apply the general rules of “good writing” (e.g. Strunk & White)

Use active form

(Counter-example: “the message will be transmitted…”)

This forces you to state who does what

Use prescriptive language (“shall…”)

Separate domain properties and machine requirements

Take advantage of text processing capabilities, within reason

Identify every element of the requirement, down to paragraph or
sentence

For delicate or complex issues, use complementary formalisms:

 Illustrations (with precise semantics)

 Formal descriptions, with explanations in English

Even for natural language specs, a mathematical detour may be useful

61

Advice on natural language

 When using numbers, identify the units

 When introducing a list, describe all the elements

 Use illustrations to clarify

 Define all project terms in a glossary

 Consider placing individual requirements in a separate
paragraph, individually numbered

 Define generic verbs (“transmitted”, “sent”,
“downloaded”, “processed”…) precisely

After Mannion & Keepence, 95

62

Case study questions

 Define stakeholders

 Discuss quality of statements -- too specific, not
specific enough, properly scoped

 Discuss completeness of information: what is missing?

 Any contradictions that need to be resolved between
stakeholders?

 Identify domain and machine requirements

 Identify functional and non-functional requirements

 Plan for future elicitation tasks

63

The need for an iterative approach

The requirements definition activity cannot be defined by
a simple progression through, or relationship between,
acquisition, expression, analysis, and specification.

Requirements evolve at an uneven pace and tend to
generate further requirements from the definition
processes.

The construction of the requirements specification is
inevitably an iterative process which is not, in general,
self-terminating. Thus, at each iteration it is necessary to
consider whether the current version of the requirements
specification adequately defines the purchaser’s
requirement, and, if not, how it must be changed or
expanded further.

Source: Southwell 87

64

Before elicitation

At a minimum:

 Overall project description

 Draft glossary

65

Requirements elicitation: overall scheme

 Identify stakeholders

 Gather wish list of each category

 Document and refine wish lists

 Integrate, reconcile and verify wish lists

 Define priorities

 Add any missing elements and nonfunctional
requirements

66

The four forces at work
After: Kotonya &
Sommerville 98

Requirements

Problem to be
solved

Business context

Domain
constraints

Stakeholder
constraints

67

The customer perspective

“The primary interest of customers is not in a computer
system, but rather in some overall positive effects
resulting from the introduction of a computer system in
their environment”

Source: Dubois 88

68

Stereotypes

How developers see users
 Don't know what they want
 Can't articulate what they

want
 Have too many needs that are

politically motivated
 Want everything right now.
 Can't prioritize needs
 “Me first”, not company first
 Refuse to take responsibility

for the system
 Unable to provide a usable

statement of needs
 Not committed to system

development projects
 Unwilling to compromise
 Can't remain on schedule

How users see developers
Don't understand operational needs.

Too much emphasis on technicalities.

Try to tell us how to do our jobs.

Can't translate clearly stated needs
into a successful system.

Say no all the time.

Always over budget.

 Always late.

Ask users for time and effort, even to
the detriment of their primary duties.

Set unrealistic standards for
requirements definition.

Unable to respond quickly to
legitimately changing needs.

Source: Scharer 81

69

Requirements elicitation: who?

Users/customers

Software developers

Other stakeholders

Requirements engineers (analysts)

70

Requirements elicitation: what?

Example questions:

 What will the system do?

 What must happen if…?

 What resources are available for…?

 What kind of documentation is required?

 What is the maximum response time for…?

 What kind of training will be needed?

 What precision is requested for…?

 What are the security/privacy implications of …?

 Is … an error?

 What should the consequence be for a … error?

 What is a criterion for success of a … operation?

71

Requirements elicitation: how?

 Contract

 Study of existing non-computer processes

 Study of existing computer systems

 Study of comparable systems elsewhere

 Stakeholder interviews

 Stakeholder workshops

72

Building stakeholders’ trust

Future users may be jaded by previous attempts where the
deliveries did not match the promises

Need to build trust progressively:

 Provide feedback, don’t just listen

 Justify restrictions

 Reinforce trust through evidence, e.g. earlier
systems, partial prototypes

 Emphasize the feasible over the ideal

73

Study of existing systems

Non-computerized processes

 Not necessarily to be replicated by software system

 Understand why things are done the way they are

Existing IT systems

 Commercial products (buy vs build)

 Previous systems

 Systems developed by other companies, including
competitors

74

Stakeholder interviews

Good questions:
 Are egoless
 Seek useful answers
 Make no assumptions

“Context-free” questions:
 “Where do you expect this to be used?”
 “What is it worth to you to solve this problem?”
 “When do you do this?”
 “Whom should I talk to?” “Who doesn’t need to be

involved?”
 “How does this work?” “How might it be different?”

Also: meta-questions: “Are my questions relevant?”

After: Winant 02

75

Probe further

What else?
Can you show me?
Can you give me an example?
How did that happen?
What happens next?
What’s behind that?
Are there any other reasons?

“How” rather than “why”:
 What was the thinking behind that decision?

After: Derby 04

76

Uncovering the implicit

One analyst didn’t include in his requirements document
the database that fed his system. I asked him why. He
said, “Everyone knows it’s there. It’s obvious.” Words
to be wary of! It turned out that the database was
scheduled for redesign. [Winant]

Implicit assumptions are one of the biggest obstacles to a
successful requirements process.

77

Requirements workshops

Often less costly than multiple interviews

Help structure requirements capture and analysis process

Dynamic, interactive, cooperative

Involve users, cut across organizational boundaries

Help identify and prioritize needs, resolve contentious
issues; help promote cooperation between stakeholders

Help manage users’ expectations and attitude toward
change

After: Young 01

78

Knowing when to stop elicitation

Keep the focus on scope

Keep a list of open issues

Define criteria for completeness

79

After elicitation

Examine resulting requirements from the viewpoint of
requirements quality factors, especially consistency and
completeness

Make decisions on contentious issues

Finalize scope of project

Go back to stakeholders and negotiate

80

15 quality goals for requirements

 Justified

 Correct

 Complete

 Consistent

 Unambiguous

 Feasible

 Abstract

 Traceable

 Delimited

 Interfaced

 Readable

 Modifiable

 Testable

 Prioritized

 Endorsed

81

Practical advice

 Treat requirement elicitation as a mini-
project of its own

Object-Oriented
Requirements Analysis

&

Abstract Data Types

83

Use Cases (scenarios)

One of the UML diagram types

A use case describes how to achieve a single business goal
or task through the interactions between external actors
and the system

A good use case must:

 Describe a business task

 Not be implementation-specific

 Provide appropriate level of detail

 Be short enough to implement by one developer in one
release

84

Use case example

Place an order:
Browse catalog & select items

Call sales representative

Supply shipping information

Supply payment information

Receive conformation number
from salesperson

May have precondition,
postcondition, invariant

85

Your turn! Devise use cases

Consider a small library database
with the following transactions:

1. Check out a copy of a book.
Return a copy of a book.

2. Add a copy of a book to the
library. Remove a copy of a
book from the library.

3. Get the list of books by a
particular author or in a
particular subject area.

4. Find out the list of books
currently checked out by a
particular borrower.

5. Find out what borrower last
checked out a particular copy
of a book.

There are two types of users: staff
users and ordinary borrowers.

Transactions 1, 2, 4, and 5 are
restricted to staff users, except
that ordinary borrowers can
perform transaction 4 to find
out the list of books currently
borrowed by themselves. The
database must also satisfy the
following constraints:

All copies in the library must
be available for checkout or
be checked out.

No copy of the book may be
both available and checked
out at the same time.

A borrower may not have
more than a predefined
number of books checked out
at one time.

86

My view

Use cases are a minor tool for requirement elicitation but
not really a requirement technique. They cannot define the
requirements:

 Not abstract enough

 Too specific

 Describe current processes

 Do not support evolution

Use cases are to requirements what tests are to software
specification and design

Major application: for testing

87

Practical advice

 Apply use cases for deriving the test
plan, not the requirements

88

deferred class
 VAT

inherit

 TANK

feature

 in_valve, out_valve: VALVE

 fill is
 -- Fill the vat.

 require
 in_valve.open

 out_valve.closed
 deferred

 ensure
 in_valve.closed

 out_valve.closed
 is_full
 end

 empty, is_full, is_empty, gauge, maximum, ... [Other features] ...

invariant

 is_full = (gauge >= 0.97 * maximum) and (gauge <= 1.03 * maximum)

end

Analysis classes

89

What is object-oriented analysis?

 Classes around object types (not just physical objects
but also important concepts of the application domain)

 Abstract Data Types approach

 Deferred classes and features

 Inter-component relations: “client” and inheritance

 Distinction between reference and expanded clients

 Inheritance — single, multiple and repeated for
classification.

 Contracts to capture the semantics of systems:
properties other than structural.

 Libraries of reusable classes

90

Why O-O analysis?

Same benefits as O-O programming, in particular
extendibility and reusability

Direct modeling of the problem domain

Seamlessness and reversibility with the continuation of
the project (design, implementation, maintenance)

91

What O-O requirements analysis is not

Use cases

(Not appropriate as requirements statement mechanism)

Use cases are to requirements what tests are to
specification and design

92

Television station example

class SCHEDULE feature

 segments: LIST [SEGMENT]

end

Source: OOSC

93

Schedules

note

 description :
 “ 24-hour TV schedules”

deferred class SCHEDULE feature

 segments: LIST [SEGMENT]
 -- Successive segments

 deferred
 end

 air_time : DATE is
 -- 24-hour period
 -- for this schedule
 deferred
 end

 set_air_time (t: DATE)
 -- Assign schedule to

 -- be broadcast at time t.

 require

 t.in_future

 deferred
 ensure

 air_time = t

 end

 print

 -- Produce paper version.
 deferred

 end

end

94

Contracts

Feature precondition: condition imposed on the rest of the
world

Feature postcondition: condition guaranteed to the rest of
the world

Class invariant: Consistency constraint maintained
throughout on all instances of the class

95

Why contracts

Specify semantics, but abstractly!

(Remember basic dilemma of requirements:

 Committing too early to an implementation
 Overspecification!

 Missing parts of the problem
 Underspecification!

)

96

Segment

note

 description :
 "Individual fragments of a schedule "

deferred class SEGMENT feature

 schedule : SCHEDULE deferred end
 -- Schedule to which
 -- segment belongs

 index : INTEGER deferred end
 -- Position of segment in
 -- its schedule

 starting_time, ending_time :

 INTEGER deferred end
 -- Beginning and end of
 -- scheduled air time

 next: SEGMENT deferred end
 -- Segment to be played
 -- next, if any

sponsor : COMPANY deferred end
 -- Segment’s principal sponsor

rating : INTEGER deferred end
 -- Segment’s rating (for
 -- children’s viewing etc.)

 Commands such as change_next,
set_sponsor, set_rating omitted

Minimum_duration : INTEGER = 30
-- Minimum length of segments,
-- in seconds

Maximum_interval : INTEGER = 2
-- Maximum time between two
-- successive segments, in seconds

97

Segment (continued)

invariant

 in_list: (1 <= index) and (index <= schedule.segments.count)

 in_schedule: schedule.segments.item (index) = Current

 next_in_list: (next /= Void) implies

 (schedule.segments.item (index + 1) = next)

 no_next_iff_last: (next = Void) = (index = schedule.segments.count)

 non_negative_rating: rating >= 0

 positive_times: (starting_time > 0) and (ending_time > 0)

 sufficient_duration:
 ending_time – starting_time >= Minimum_duration

 decent_interval :
 (next.starting_time) - ending_time <= Maximum_interval

end

98

Commercial

note

 description: "Advertizing segment "
deferred class COMMERCIAL inherit
 SEGMENT
 rename sponsor as advertizer end
feature

 primary: PROGRAM deferred
 -- Program to which this
 -- commercial is attached

 primary_index: INTEGER deferred
 -- Index of primary

set_primary (p: PROGRAM)

 -- Attach commercial to p.

 require

 program_exists: p /= Void

 same_schedule: p,schedule = schedule

 before:
 p.starting_time <= starting_time

 deferred

 ensure

 index_updated:
 primary_index = p.index

 primary_updated: primary = p
 end

invariant

 meaningful_primary_index: primary_index = primary.index

 primary_before: primary.starting_time <= starting_time

 acceptable_sponsor: advertizer.compatible (primary.sponsor)

 acceptable_rating: rating <= primary.rating

end

99

Diagrams: UML, BON

Text-Graphics
Equivalence

100

O-O analysis process

Identify abstractions

 New

 Reused

Describe abstractions through interfaces, with contracts

Look for more specific cases: use inheritance

Look for more general cases: use inheritance, simplify

Iterate on suppliers

At all stages keep structure simple and look for applicable
contracts

101

Your turn! Describe this in an O-O way

Consider a small library database
with the following transactions:

1. Check out a copy of a book.
Return a copy of a book.

2. Add a copy of a book to the
library. Remove a copy of a
book from the library.

3. Get the list of books by a
particular author or in a
particular subject area.

4. Find out the list of books
currently checked out by a
particular borrower.

5. Find out what borrower last
checked out a particular copy
of a book.

There are two types of users: staff
users and ordinary borrowers.

Transactions 1, 2, 4, and 5 are
restricted to staff users, except
that ordinary borrowers can
perform transaction 4 to find
out the list of books currently
borrowed by themselves. The
database must also satisfy the
following constraints:

All copies in the library must
be available for checkout or
be checked out.

No copy of the book may be
both available and checked
out at the same time.

A borrower may not have
more than a predefined
number of books checked out
at one time.

102

Practical advice

 Take advantage of O-O techniques
from the requirements stage on

 Use contracts to express semantic

properties

103

Practical advice

 Write ADT specifications for
delicate parts of the system
requirements

Conclusion

105

Key lessons

Requirements are software

 Subject to software engineering tools

 Subject to standards

 Subject to measurement

 Part of quality enforcement

Requirements is both a lifecycle phase and a lifecycle-long
activity

Since requirements will change, seamless approach is
desirable

Distinguish domain properties from machine properties

 Domain requirements should never refer to machine
requirements!

106

Key lessons

Identify & involve all stakeholders

Requirements determine not just development but tests

Use cases are good for test planning

Requirements should be abstract

Requirements should be traceable

Requirements should be verifiable (otherwise they are
wishful thinking)

Object technology helps

 Modularization

 Classifications

 Contracts

 Seamless transition to rest of lifecycle

107

Key lessons

Formal methods have an important contribution to make:

 Culture to be mastered by requirements engineers

 Necessary for critical parts of application

 Lead to ask the right questions

 Proofs & model checking uncover errors

 Lead to better informal requirements

 Study abstract data types

 Nothing to be scared of

108

Bibliography (1/4)

Barry W. Boehm: Software Engineering Economics, Prentice Hall, 1981.

Fred Brooks: No Silver Bullet - Essence and Accident in Software Engineering, in
Computer (IEEE), vol. 20, no. 4, pages 10-19, April 1987.

John B. Goodenough and Susan Gerhart: Towards a Theory of Test: Data
Selection Criteria, in Current Trends in Programming Methodology, ed. Raymond
T. Yeh, pages 44-79, Prentice Hall, 1977.

Esther Derby: Building a Requirements Foundation through Customer Interviews,
www.estherderby.com/articles/buildingarequirementsfoundation.htm.

Éric Dubois, J. Hagelstein and A. Rifaut: Formal Requirements Engineering with
ERAE, in Philips Journal of Research, vol. 43, no. ¾, pages 393-414,1988.

Ellen Gottesdiener: Requirements Workshops: Collaborating to Explore User
Requirements, in Software Management 2002, available at
www.ebgconsulting.com/pubs/Articles/ReqtsWorkshopsCollabToExplore-
Gottesdiener.pdf

http://www.estherderby.com/articles/buildingarequirementsfoundation.htm
http://www.ebgconsulting.com/pubs/Articles/ReqtsWorkshopsCollabToExplore-Gottesdiener.pdf
http://www.ebgconsulting.com/pubs/Articles/ReqtsWorkshopsCollabToExplore-Gottesdiener.pdf
http://www.ebgconsulting.com/pubs/Articles/ReqtsWorkshopsCollabToExplore-Gottesdiener.pdf

109

Bibliography (2/4)

Gerald Kotonya & Ian Sommerville: Requirements Engineering: Processes and
Techniques, Wiley, 1998.

IEEE: IEEE Recommended Practice for Software Requirements Specifiations,
IEEE Std 830-1998 (revision of IEEE Std 830-1988), available at
ieeexplore.ieee.org/iel4/5841/15571/00720574.pdf?arnumber=720574.

Michael Jackson: Software Requirements and Specifications, Addison-Wesley,
1996.

Mike Mannion and Barry Keepence: SMART Requirements, in ACM SIGSOFT
Software Engineering Notes, vol. 20, no. 2, pages 42-47, April 1995.

Bertrand Meyer: On Formalism in Specifications, in Software (IEEE), pages 6-
26, January 1985, also at se.ethz.ch/~meyer/publications/ieee/formalism.pdf.

[OOSC] Bertrand Meyer: Object-Oriented Software Construction, 2nd edition,
Prentice Hall, 1997.

Peter Naur: Programming with Action Clusters, in BIT, vol. 3, no. 9, pages 250-
258, 1969.

http://ieeexplore.ieee.org/iel4/5841/15571/00720574.pdf?arnumber=720574

110

Bibliography (3/4)

Shari Lawrence Pfleeger and Joanne M Atlee: Software Engineering, 3rd
edition, Prentice Hall, 2005.

Laura Scharer: Pinpointing Requirements, in Datamation, April 1981. Also
available at media.wiley.com/product_data/excerpt/84/08186773/
0818677384-2.pdf.

SEI (Software Engineering Institute): CMMISM for Software Engineering,
Version 1.1, Staged Representation (CMMI-SW, V1.1, Staged), 2005, available
at www.sei.cmu.edu/publications/documents/02.reports/02tr029.html.

Southwell et al., cited in Michael G. Christel and Kyo C. Kang, Issues in
Requirements Elicitation, Software Engineering Institute, CMU/SEI-92-TR-
012 and ESC-TR-92-012, September 1992, available at www.sei.cmu.edu/pub/
documents/92.reports/pdf/tr12.92.pdf.

Becky Winant: Requirement #1: Ask Honest Questions, www.stickyminds.com/
sitewide.asp?Function=edetail&ObjectType=COL&ObjectId=3264.

http://media.wiley.com/product_data/excerpt/84/08186773/0818677384-2.pdf
http://media.wiley.com/product_data/excerpt/84/08186773/0818677384-2.pdf
http://media.wiley.com/product_data/excerpt/84/08186773/0818677384-2.pdf
http://media.wiley.com/product_data/excerpt/84/08186773/0818677384-2.pdf
http://media.wiley.com/product_data/excerpt/84/08186773/0818677384-2.pdf
http://www.sei.cmu.edu/publications/documents/02.reports/02tr029.html
http://www.sei.cmu.edu/pub/documents/92.reports/pdf/tr12.92.pdf
http://www.sei.cmu.edu/pub/documents/92.reports/pdf/tr12.92.pdf
http://www.sei.cmu.edu/pub/documents/92.reports/pdf/tr12.92.pdf
http://www.stickyminds.com/sitewide.asp?Function=edetail&ObjectType=COL&ObjectId=3264
http://www.stickyminds.com/sitewide.asp?Function=edetail&ObjectType=COL&ObjectId=3264
http://www.stickyminds.com/sitewide.asp?Function=edetail&ObjectType=COL&ObjectId=3264

111

Bibliography (4/4)

Jeannette M. Wing: A Study of 12 Specifications of the Library Problem, in
Software (IEEE), vol. 5, no. 4, pages 66-76, July 1988.

Ralph Young: Recommended Requirements Gathering Practices, in CrossTalk,
the Journal of Defense Software Engineering, April 2002, available at
www.stsc.hill.af.mil/crosstalk/2002/04/young.html.

http://www.stsc.hill.af.mil/crosstalk/2002/04/young.html

