
1

Advanced Material

The following slides contain advanced
material and are optional.

2

Outline

 Invariants

 Violating the invariant

 Marriage problem

3

Invariants explained in 60 seconds

Consistency requirements for a class

Established after object creation

Hold, when an object is visible

 Entry of a routine

 Exit of a routine

class
 ACCOUNT
feature
 balance: INTEGER
invariant
 balance >= 0
end

4

Temporary violation

Invariants can be violated temporarily

 e.g. on object creation

In Eiffel, invariants are checked on entry and exit of

a qualified feature call

One exception: for calls to creation procedures,

 invariants are not checked on entry to routine

 e.g create cell.set_item (1)

 But checked for normal call: cell.set_item (1)

See demo.

5

Public interface of person (without contracts)

class
 PERSON
feature
 spouse: PERSON
 -- Spouse of Current.

 marry (a_other: PERSON)
 -- Marry `a_other’.
 do
 …
 end

end

class
 MARRIAGE
feature
 make
 local
 alice: PERSON
 bob: PERSON
 do
 create alice
 create bob
 bob.marry (alice)
 end

end

6

Write the contracts

class PERSON
feature
 spouse: PERSON

 marry (a_other: PERSON)
 require
 ??
 ensure
 ??

invariant
 ??
end

7

A possible solution

class PERSON
feature
 spouse: PERSON

 marry (a_other: PERSON)
 require
 a_other /= Void
 a_other /= Current
 a_other.spouse = Void
 spouse = Void
 ensure
 spouse = a_other
 a_other.spouse = Current
 end

invariant
 spouse /= Void implies spouse.spouse = Current
 spouse /= Current
end

8

Implementing marry

class PERSON
feature
 spouse: PERSON

 marry (a_other: PERSON)
 require
 a_other /= Void
 a_other /= Current
 a_other.spouse = Void
 spouse = Void
 do
 ??
 ensure
 spouse = a_other
 a_other.spouse = Current
 end

invariant
 spouse /= Void implies spouse.spouse = Current
 spouse /= Current
end

9

Implementing marry I

class PERSON
feature
 spouse: PERSON

 marry (a_other: PERSON)
 require
 a_other /= Void
 a_other /= Current
 a_other.spouse = Void
 spouse = Void
 do
 a_other.spouse := Current
 spouse := a_other
 ensure
 spouse = a_other
 a_other.spouse = Current
 end

invariant
 spouse /= Void implies spouse.spouse = Current
 spouse /= Current
end

Compiler Error:

No assigner
command for

a_other

10

class PERSON
feature
 spouse: PERSON

 marry (a_other: PERSON)
 require
 a_other /= Void and a_other /= Current
 a_other.spouse = Void
 spouse = Void
 do
 a_other.set_spouse (Current)
 spouse := a_other
 ensure
 spouse = a_other
 a_other.spouse = Current
 end

 set_spouse (a_person: PERSON)
 do
 spouse := a_person
 end

invariant
 spouse /= Void implies spouse.spouse = Current
 spouse /= Current
end

Implementing marry II

local

 bob, alice: PERSON

do

 create bob; create alice

 bob.marry (alice)

 bob.set_spouse (Void)

-- What about the
invariants

-- of bob and alice?

end

11

Implementing marry III

class PERSON
feature
 spouse: PERSON

 marry (a_other: PERSON)
 require
 a_other /= Void and a_other /= Current
 a_other.spouse = Void
 spouse = Void
 do
 a_other.set_spouse (Current)
 spouse := a_other
 ensure
 spouse = a_other
 a_other.spouse = Current
 end

feature {PERSON}
 set_spouse (a_person: PERSON)
 do
 spouse := a_person
 end

invariant
 spouse /= Void implies spouse.spouse = Current
 spouse /= Current
end

What about the
invariant of a_other
in feature marry?

12

Implementing marry : final version

class PERSON
feature
 spouse: PERSON

 marry (a_other: PERSON)
 require
 a_other /= Void
 a_other.spouse = Void
 spouse = Void
 do
 spouse := a_other
 a_other.set_spouse (Current)
 ensure
 spouse = a_other
 a_other.spouse = Current
 end

feature {PERSON}
 set_spouse (a_person: PERSON)
 do
 spouse := a_person
 end

invariant
 spouse /= Void implies spouse.spouse = Current
 spouse /= Current
end

13

Ending the marriage

class PERSON
feature
 spouse: PERSON

 divorce
 require
 spouse /= Void
 do
 spouse.set_spouse (Void)
 spouse := Void
 ensure
 spouse = Void
 (old spouse).spouse = Void
 end

invariant
 spouse /= Void implies spouse.spouse = Current
 spouse /= Current
end

Is the order of
instructions in

divorce important
for the invariant?

14

What we have seen

Invariant should only depend on Current object

If invariant depends on other objects

 Take care who can change state

 Take care in which order you change state

Invariant can be temporarily violated

 You can still call features on Current object

 Take care in calling other objects, they might call
back

Although writing invariants is not that easy, they are
necessary to do formal proofs. This is also the case for
loop invariants (which will come later).

