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Today 

Ø  We will revisit classes, features and objects. 
Ø  We will see how program execution starts. 
Ø  We will play a role game. 



3 

Static view 

Ø  A program consists of a set of classes. 

Ø  Features are declared in classes. They define 
operations on objects created from classes. 

Ø  Queries answer questions. The answer is 
provided in a variable called Result. 

Ø  Commands execute actions. They do not provide 
any result, so there is no a variable called Result 
that we can use. 

Ø Another name for a  class is also type. 
Ø  Class and Type are not exactly the same, but they are 

close enough for now, and we will learn the difference 
later on.  
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Declaring the type of an object 

Ø  We are working with a strongly typed language: the 
type of any object you use in your program must be 
declared somewhere. 

Ø  Where can such declarations appear in a program? 
Ø  in feature declarations 

•  formal argument types 
•  return type for queries 

§  functions 
§  attributes 

Ø  in the local clauses of routines 

 
Here is where you 

declare objects that only 
the routine needs and 

knows about. 
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Declaring the type of an object 

class DEMO  
feature 

 procedure_name (a1: T1; a2, a3: T2) 
    -- Comment 
   local 
    l1: T3 
   do 
    … 
   end 
  
 function_name (a1: T1; a2, a3: T2): T3 
    -- Comment 
   do 
    … 
   end 

 
 attribute_name: T3 
    -- Comment 

end 
 

formal argument type 

local variable type 

return type 

return type 
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Exercise: Find the classes / objects 

class 
 game 

 
feature 

 map_name: string 
  -- Name of the map to be loaded for the game 

 
 last_player: player  
  -- Last player that moved 

 
 players: player_list 
  -- List of players in this game. 

 
... 
 

Hands-On 
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Exercise: Find the classes / objects 

feature  
 is_occupied (a_location: traffic_place): boolean 
   -- Check if `a_location' is occupied. 
  require 
   a_location_exists: a_location /= Void 
  local 
   old_cursor: cursor     
  do 
   Result := False 
    
   -- Remember old cursor position. 
   old_cursor := players.cursor   
  

                 ...   
 

Hands-On 
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Exercise: Find the classes / objects 

   -- Loop over all players to check if one occupies `a_location'. 
   from 
    players.start 
    -- do not consider estate agent, hence skip the first  
    -- entry in `players'. 
    players.forth  
   until 
    players.after or Result 
   loop 
    if players.item.location = a_location then 
     Result := True 
    end 
    players.forth 
   end 

 
   -- Restore old cursor position. 
   players.go_to(old_cursor)        
  end 

Hands-On 
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Dynamic view 

Ø  When the program is being executed (at “runtime”) we 
have a set of objects (instances) created from the 
classes (types). 

Ø  The creation of an object implies that a piece of 
memory is allocated in the computer to represent the 
object itself. 

Ø  Objects interact with each other by calling features on 
each other. 
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Who are Adam and Eve? 

Ø  Who creates the first object?  
Ø  The runtime creates a so-called root object. 
Ø  The root object creates other objects, which in 

turn create other objects, etc. 
Ø  You define the type of the root object in the 

project settings. 
Ø  How is the root object created? 

Ø  The runtime calls a creation procedure of the 
root object. 

Ø  You define this creation procedure in the project 
settings. 

Ø  The application exits at the end of this creation 
procedure. 
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Changing the root class 
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Static view vs. dynamic view 

Ø  Queries (attributes and functions) have a result type. 
When executing the query, you get an object of that 
type. 

Ø  Routines have formal arguments of certain types. 
During the execution you pass objects of the same (or 
compatible) type as actual arguments to a routine call. 

Ø  During the execution, local variables declared in a 
routine are objects. They all have certain types. 
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Acrobat game 

Ø  We will play a little game now. 
Ø  Some of you will act as objects. 

Ø  When you get created, please stand up and stay 
standing during the game 

Ø  There will be different roles 
Ø  Acrobat 
Ø  Acrobat with Buddy 
Ø  Author 
Ø  Curmudgeon 
Ø  Director 

Hands-On 
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You are an acrobat 

Ø  When you are asked to Clap, you will be given a number. 
Clap your hands that many times.  

Ø  When you are asked to Twirl, you will be given a 
number. Turn completely around that many times.  

Ø  When you are asked for Count, announce how many 
actions you have performed. This is the sum of the 
numbers you have been given to date.  
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You are an ACROBAT 

class 
 ACROBAT 

 
feature 

 clap (n: INTEGER) 
  do 
   -- Clap `n’ times and adjust `count’. 
  end 

 
 twirl (n: INTEGER) 
  do 
   -- Twirl `n’ times and adjust `count’. 
  end 

 
 count: INTEGER 

end 
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You are an acrobat with a buddy 

Ø  You will get someone else as your Buddy. 
Ø  When you are asked to Clap, you will be given a number. 

Clap your hands that many times. Pass the same 
instruction to your Buddy. 

Ø  When you are asked to Twirl, you will be given a 
number. Turn completely around that many times. Pass 
the same instruction to your Buddy. 

Ø  If you are asked for Count, ask your Buddy and answer 
with the number he tells you.   
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You are an ACROBAT_WITH_BUDDY 

class 
 ACROBAT_WITH_BUDDY  

 
inherit 

 ACROBAT  
  redefine 
   twirl, clap, count  
  end 

 
create 

 make 
 
feature  

 make (p: ACROBAT) 
  do 
   -- Remember `p’ being  
   -- the buddy. 
  end 
  
  

 

 clap (n: INTEGER) 
  do 
   -- Clap `n’ times and  
   -- forward to buddy. 
  end 

 
 twirl (n: INTEGER) 
  do 
   -- Twirl `n’ times and  
   -- forward to buddy. 
  end 

 
 count: INTEGER 
  do 
   -- Ask buddy and return his  
   -- answer. 
  end 

 
 buddy: ACROBAT 

end 
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You are an author 

Ø  When you are asked to Clap, you will be given a number. 
Clap your hands that many times. Say “Thank You.”  
Then take a bow (as dramatically as you like).  

Ø  When you are asked to Twirl, you will be given a 
number. Turn completely around that many times. Say 
“Thank You.” Then take a bow (as dramatically as you 
like).  

Ø  When you are asked for Count, announce how many 
actions you have performed. This is the sum of the 
numbers you have been given to date.  
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You are an AUTHOR  

class 
 AUTHOR  

 
inherit 

 ACROBAT 
  redefine clap, twirl  end 

 
feature   

 clap (n: INTEGER) 
  do 
   -- Clap `n’ times say thanks and bow. 
  end 

 
 twirl (n: INTEGER) 
  do 
   -- Twirl `n’ times say thanks and bow. 
  end 

end 
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You are a curmudgeon 

Ø  When given any instruction (Twirl or Clap), ignore it, 
stand up and say (as dramatically as you can) “I 
REFUSE”. 

Ø  If you are asked for Count, always answer with 0. 
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You are a CURMUDGEON 

class 
 CURMUDGEON  

 
inherit 

 ACROBAT 
  redefine clap, twirl  end 

 
feature 

 clap (n: INTEGER) 
  do 
   -- Say “I refuse”. 
  end 

 
 twirl (n: INTEGER) 
  do 
   -- Say “I refuse”. 
  end 

end 



22 

I am the root object 

Ø  I got created by the runtime 
Ø  by executing my creation feature. 
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I am a DIRECTOR 

class 
 DIRECTOR 

 
create 

  prepare_and_play 
 
feature 

  prepare_and_play 
   do 
    -- See following slides. 
   end 
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Let’s play 
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I am the root object 

prepare_and_play 
  local 
   acrobat1, acrobat2, acrobat3 : ACROBAT 
   partner1, partner2: ACROBAT_WITH_BUDDY 
   author1: AUTHOR 
   curmudgeon1: CURMUDGEON 
  do 
   create acrobat1 
   create acrobat2 
   create acrobat3 
   create partner1.make (acrobat1)‏ 
   create partner2.make (partner1)‏ 
   create author1 
   create curmudgeon1 
   author1.clap (4)‏ 
   partner1.twirl (2)‏ 
   curmudgeon1.clap (7)‏ 
   acrobat2.clap (curmudgeon1.count)‏ 
   acrobat3.twirl (partner2.count)‏ 
   partner1.buddy.clap (partner1.count)‏ 
   partner2.clap (2) 
  end 
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Concepts seen 

Eiffel Game 
Classes with 
features 

Telling person to behave according to a 
specification 

Inheritance All people were some kind of ACROBAT 
Interface Queries and commands that are applicable 
Objects People 
Creation People stand up 
Entities Names for the people 
Polymorphism A name can refer to different kind of ACROBATs 
Dynamic 
binding 

Telling people by name to do the same has 
different outcome 
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Concepts seen 

Eiffel Game 
Command call Telling people to do something 
Query call Asking a question to a person 
Arguments E.g.  

how many times to clap 
Return value E.g.  

count in ACROBAT_WITH_BUDDY 
Chains of feature calls E.g. 

partner1.buddy.clap (2) 


