
Chair of Software Engineering

Einführung in die Programmierung
Introduction to Programming

Prof. Dr. Bertrand Meyer	

Exercise Session 3

2

Today

Ø  We will revisit classes, features and objects.
Ø  We will see how program execution starts.
Ø  We will play a role game.

3

Static view

Ø  A program consists of a set of classes.

Ø  Features are declared in classes. They define
operations on objects created from classes.

Ø  Queries answer questions. The answer is
provided in a variable called Result.

Ø  Commands execute actions. They do not provide
any result, so there is no a variable called Result
that we can use.

Ø Another name for a class is also type.
Ø  Class and Type are not exactly the same, but they are

close enough for now, and we will learn the difference
later on.

4

Declaring the type of an object

Ø  We are working with a strongly typed language: the
type of any object you use in your program must be
declared somewhere.

Ø  Where can such declarations appear in a program?
Ø  in feature declarations

•  formal argument types
•  return type for queries

§  functions
§  attributes

Ø  in the local clauses of routines

Here is where you

declare objects that only
the routine needs and

knows about.

5

Declaring the type of an object

class DEMO
feature

 procedure_name (a1: T1; a2, a3: T2)
 -- Comment
 local
 l1: T3
 do
 …
 end

 function_name (a1: T1; a2, a3: T2): T3
 -- Comment
 do
 …
 end

 attribute_name: T3
 -- Comment

end

formal argument type

local variable type

return type

return type

6

Exercise: Find the classes / objects

class
 game

feature

 map_name: string
 -- Name of the map to be loaded for the game

 last_player: player
 -- Last player that moved

 players: player_list
 -- List of players in this game.

...

Hands-On

7

Exercise: Find the classes / objects

feature
 is_occupied (a_location: traffic_place): boolean
 -- Check if `a_location' is occupied.
 require
 a_location_exists: a_location /= Void
 local
 old_cursor: cursor
 do
 Result := False

 -- Remember old cursor position.
 old_cursor := players.cursor

 ...

Hands-On

8

Exercise: Find the classes / objects

 -- Loop over all players to check if one occupies `a_location'.
 from
 players.start
 -- do not consider estate agent, hence skip the first
 -- entry in `players'.
 players.forth
 until
 players.after or Result
 loop
 if players.item.location = a_location then
 Result := True
 end
 players.forth
 end

 -- Restore old cursor position.
 players.go_to(old_cursor)
 end

Hands-On

9

Dynamic view

Ø  When the program is being executed (at “runtime”) we
have a set of objects (instances) created from the
classes (types).

Ø  The creation of an object implies that a piece of
memory is allocated in the computer to represent the
object itself.

Ø  Objects interact with each other by calling features on
each other.

10

Who are Adam and Eve?

Ø  Who creates the first object?
Ø  The runtime creates a so-called root object.
Ø  The root object creates other objects, which in

turn create other objects, etc.
Ø  You define the type of the root object in the

project settings.
Ø  How is the root object created?

Ø  The runtime calls a creation procedure of the
root object.

Ø  You define this creation procedure in the project
settings.

Ø  The application exits at the end of this creation
procedure.

11

Changing the root class

12

Static view vs. dynamic view

Ø  Queries (attributes and functions) have a result type.
When executing the query, you get an object of that
type.

Ø  Routines have formal arguments of certain types.
During the execution you pass objects of the same (or
compatible) type as actual arguments to a routine call.

Ø  During the execution, local variables declared in a
routine are objects. They all have certain types.

13

Acrobat game

Ø  We will play a little game now.
Ø  Some of you will act as objects.

Ø  When you get created, please stand up and stay
standing during the game

Ø  There will be different roles
Ø  Acrobat
Ø  Acrobat with Buddy
Ø  Author
Ø  Curmudgeon
Ø  Director

Hands-On

14

You are an acrobat

Ø  When you are asked to Clap, you will be given a number.
Clap your hands that many times.

Ø  When you are asked to Twirl, you will be given a
number. Turn completely around that many times.

Ø  When you are asked for Count, announce how many
actions you have performed. This is the sum of the
numbers you have been given to date.

15

You are an ACROBAT

class
 ACROBAT

feature

 clap (n: INTEGER)
 do
 -- Clap `n’ times and adjust `count’.
 end

 twirl (n: INTEGER)
 do
 -- Twirl `n’ times and adjust `count’.
 end

 count: INTEGER

end

16

You are an acrobat with a buddy

Ø  You will get someone else as your Buddy.
Ø  When you are asked to Clap, you will be given a number.

Clap your hands that many times. Pass the same
instruction to your Buddy.

Ø  When you are asked to Twirl, you will be given a
number. Turn completely around that many times. Pass
the same instruction to your Buddy.

Ø  If you are asked for Count, ask your Buddy and answer
with the number he tells you.

17

You are an ACROBAT_WITH_BUDDY

class
 ACROBAT_WITH_BUDDY

inherit

 ACROBAT
 redefine
 twirl, clap, count
 end

create

 make

feature

 make (p: ACROBAT)
 do
 -- Remember `p’ being
 -- the buddy.
 end

 clap (n: INTEGER)
 do
 -- Clap `n’ times and
 -- forward to buddy.
 end

 twirl (n: INTEGER)
 do
 -- Twirl `n’ times and
 -- forward to buddy.
 end

 count: INTEGER
 do
 -- Ask buddy and return his
 -- answer.
 end

 buddy: ACROBAT

end

18

You are an author

Ø  When you are asked to Clap, you will be given a number.
Clap your hands that many times. Say “Thank You.”
Then take a bow (as dramatically as you like).

Ø  When you are asked to Twirl, you will be given a
number. Turn completely around that many times. Say
“Thank You.” Then take a bow (as dramatically as you
like).

Ø  When you are asked for Count, announce how many
actions you have performed. This is the sum of the
numbers you have been given to date.

19

You are an AUTHOR

class
 AUTHOR

inherit

 ACROBAT
 redefine clap, twirl end

feature

 clap (n: INTEGER)
 do
 -- Clap `n’ times say thanks and bow.
 end

 twirl (n: INTEGER)
 do
 -- Twirl `n’ times say thanks and bow.
 end

end

20

You are a curmudgeon

Ø  When given any instruction (Twirl or Clap), ignore it,
stand up and say (as dramatically as you can) “I
REFUSE”.

Ø  If you are asked for Count, always answer with 0.

21

You are a CURMUDGEON

class
 CURMUDGEON

inherit

 ACROBAT
 redefine clap, twirl end

feature

 clap (n: INTEGER)
 do
 -- Say “I refuse”.
 end

 twirl (n: INTEGER)
 do
 -- Say “I refuse”.
 end

end

22

I am the root object

Ø  I got created by the runtime
Ø  by executing my creation feature.

23

I am a DIRECTOR

class
 DIRECTOR

create

 prepare_and_play

feature

 prepare_and_play
 do
 -- See following slides.
 end

24

Let’s play

25

I am the root object

prepare_and_play
 local
 acrobat1, acrobat2, acrobat3 : ACROBAT
 partner1, partner2: ACROBAT_WITH_BUDDY
 author1: AUTHOR
 curmudgeon1: CURMUDGEON
 do
 create acrobat1
 create acrobat2
 create acrobat3
 create partner1.make (acrobat1)‏
 create partner2.make (partner1)‏
 create author1
 create curmudgeon1
 author1.clap (4)‏
 partner1.twirl (2)‏
 curmudgeon1.clap (7)‏
 acrobat2.clap (curmudgeon1.count)‏
 acrobat3.twirl (partner2.count)‏
 partner1.buddy.clap (partner1.count)‏
 partner2.clap (2)
 end

26

Concepts seen

Eiffel Game
Classes with
features

Telling person to behave according to a
specification

Inheritance All people were some kind of ACROBAT
Interface Queries and commands that are applicable
Objects People
Creation People stand up
Entities Names for the people
Polymorphism A name can refer to different kind of ACROBATs
Dynamic
binding

Telling people by name to do the same has
different outcome

27

Concepts seen

Eiffel Game
Command call Telling people to do something
Query call Asking a question to a person
Arguments E.g.

how many times to clap
Return value E.g.

count in ACROBAT_WITH_BUDDY
Chains of feature calls E.g.

partner1.buddy.clap (2)

