
Chair of Software Engineering 

Einführung in die Programmierung 
Introduction to Programming 

 
Prof. Dr. Bertrand Meyer 

 

Exercise Session 5 

 



2 

Today 

 Attributes, formal arguments, and local variables 

 Control structures 



3 

Declared anywhere inside a feature clause, but outside other 
features 
 
class C 
feature 
 attr1 : CA1 
   
 f  (arg1 : A …) 
  do 
   … 
  end  
… 
end 
 
Visible anywhere inside the class 
visible outside the class (depending on their visibility) 

Attributes 

 

 



4 

Declared after the feature name, in parenthesis: 

feature 

 f  (arg1 : C1 ; …; argn : CN ) 
  require ... 

  local 

   … 
  do 

   … 

  ensure ... 

  end  

only visible inside the feature body and its contracts 

Formal arguments 

 

 



5 

Some variables are only used by a certain routine. 
 Declare them as local: 
feature 
 f  (arg1 : A …) 
  require ... 
  local 
   x, y : B 
   z : C 
  do 
   … 
  ensure ... 
  end  
only visible inside the feature body 

Local variables 

 

 



6 

Summary: the scope of names 

Attributes: 

 declared anywhere inside a feature clause, but 
outside other features 

 visible anywhere inside the class 

 visible outside the class (depending on their visibility) 

Formal arguments: 

 declared after the feature name, in parenthesis 

 only visible inside the feature body and its contracts 

Local variables: 

 declared in a local clause inside the feature 
declaration 

 only visible inside the feature body 

 

 



7 

Compilation error? (1) 

class PERSON 
feature 
 name : STRING 
 
 set_name (a_name : STRING)  
  do  
   name := a_name  
  end 
 
 exchange_names (other : PERSON) 
  local 
   s : STRING 
  do  
   s := other.name 
   other.set_name (name) 
   set_name (s) 
  end 
 
 print_with_semicolon 
  do 
   create s.make_from_string (name)  
   s.append (“;”)  
   print (s) 
  end 
end 

 

 

Error: this variable 
was not declared 



8 

Compilation error? (2) 

 

 

class PERSON 
feature 
 … -- name and set_name as before 
 
 exchange_names (other : PERSON) 
  local 
   s : STRING 
  do  
   s := other.name 
   other.set_name (name) 
   set_name (s) 
  end 
 
 print_with_semicolon 
  local 
   s : STRING 
  do 
   create s.make_from_string (name)  
   s.append (“;”)  
   print (s) 
  end 
end 

OK: two different local 
variables in two routines 



9 

An example of side effects 

 

 

class PERSON 
 
feature 
 … 
 name : STRING  
  
 print_with_semicolon 
  local 
   s : STRING 
  do 
   create s.make_from_string (name)  
   s.append (“;”)  
   print (s) 
  end 
 
 print_with_sticky_semicolon 
  do 
   name.append (“;”)  
   print (name) 
  end 
end 

Now the semicolon sticks 
to the attribute.  

This is called side effect 



10 

Compilation error? (3) 

 

 

class PERSON 
feature 
 … -- name and set_name as before 
 
 s : STRING 
 
 exchange_names (other : PERSON) 
  do  
   s := other.name 
   other.set_name (name) 
   set_name (s) 
  end 
 
 s : STRING 
 
 print_with_semicolon 
  do 
   create s.make_from_string (name)  
   s.append (“;”)  
   print (s) 
  end 
end 

Error: an attribute 
with the same name 
was already defined 



11 

Compilation error? (4) 

 

 

class PERSON 
feature 
 … -- name and set_name as before 
 
 exchange_names (other : PERSON) 
  do  
   s := other.name 
   other.set_name (name) 
   set_name (s) 
  end 
 
 print_with_semicolon 
  do 
   create s.make_from_string (name)  
   s.append (‘;’)  
   print (s) 
  end 
 
  s : STRING 
end 

OK: a single attribute 
used in both routines 



12 

Local variables vs. attributes 

 

 Which one of the two correct versions 
(2 and 4) do you like more? Why? 

 

  Describe the conditions under which it is better to use 
a local variable instead of an attribute and vice versa   

 

 



13 

Result 

 Inside every function you can use the predefined local 
variable Result (you needn’t and shouldn’t declare it) 

 The return value of a function is whatever value the 
Result variable has at the end of the function execution 

 At the beginning of routine’s body Result (as well as 
regular local variables) is initialized with the default 
value of its type  

 Every regular local variable is declared with some type; 
and what is the type of Result?    

 

 

 It’s the function return type!    



14 

Compilation error? (5) 

 

 

class PERSON 

feature 

 … -- name and set_name as before 

 exchange_names (other : PERSON) 

  do  

   Result := other.name 

   other.set_name (name) 

   set_name (Result) 

  end 

 

 name_with_semicolon : STRING 

  do 

   create Result.make_from_string (name)  

   Result.append (‘;’)  

   print (Result) 

  end 

end 

Error: Result can 
not be used in a 

procedure 



18 

Assignment to attributes 

 Direct assignment to an attribute is only allowed if an 
attribute is called in an unqualified way: 

 y := 5 

 x.y := 5 

 Current.y := 5 

 

 

 

 

 There are two main reasons for this rule: 

1. A client may not be aware of the restrictions on 
the attribute value and interdependencies with 
other attributes => class invariant violation 
(Example?) 

2. Guess! (Hint: uniform access principle) 

 

OK 

Error 

? Error 



19 

Entity: the final definition 

 

 

 variable attribute 

 constant attribute 

Only a variable can be used in a creation instruction and in 
the left part of an assignment   

An entity in program text is a “name” that directly 
denotes an object. More precisely: it is one of 

 attribute name 

 

 

 formal argument name 

 local variable name 

 Result 

 Current 

Read-write entities / variables 

Read-only entities 



20 

Find 5 errors 

class VECTOR 
feature 
 x, y : REAL 
 
 copy_from (other : VECTOR) 
  do  
   Current := other  
  end 
 
 copy_to (other : VECTOR) 
  do 
   create other 
   other.x := x 
   other.y := y 
  end 
 
 reset 
  do 
   create Current 
  end 
end 

 

 

Current is not a variable and 
can not be assigned to 

other is a formal  argument 
(not a variable) and thus can 

not be used in creation 

other.x is a qualified attribute 
call (not a variable) and thus 

can not be assigned to 

the same reason for other.y 

Current is not a variable and 
thus can not be used in 

creation 



21 

Structured programming 

  In structured programming instructions can be combined 
only in three ways (constructs): 

 

 

s_1 c 

s_2 
s_1 s_2 

c 

s 

sequential 
composition 

conditional loop 

True False 
False 

True 

 Each of these blocks has a single entry and exit and is 
itself a (possibly empty) compound 

Compound 

Condition 



22 

Conditional 

 Basic syntax: 
 if c then 

  s_1 
 else 

  s_2 
 end 

 Could c be an integral expressions? 

 No. c is a boolean expression (e.g., entity, query 
call of type BOOLEAN) 

 Are these valid conditionals? 

Condition 

Compound 

Compound 

if c then 
  s_1 
end 

if c then 
  
end 

if c then 
else  
end 

Yes, else is optional Yes, s_1 could be 
empty. 

Yes, s_1 and s_2 
could be both empty. 



23 

Calculating function’s value 

f (max : INTEGER ; s : STRING): STRING 

    do 

        if s.is_equal (“Java”) then 

            Result := “J**a” 

        else 

            if s.count > max then 

                Result := “<an unreadable German word>” 

            end 

        end 

    end 

 

Calculate the value of:  
 f (3, “Java”) 

 f (20, “Immatrikulationsbestätigung”) 

 f (6, “Eiffel”)  

→ “J**a”  
→ “<an unreadable 
German word>”  

→ Void 



24 

Write a routine... 

 ... that computes the maximum of two 

integers 

  max (a, b : INTEGER) : INTEGER 

 

 ... that increases time by one second inside class TIME 
 

class TIME 
 hour, minute, second : INTEGER 
 

 second_forth 
  do ... end 

 ... 

end 



25 

Comb-like conditional 

If there are more than two alternatives, you can use the 
syntax: 
 
if c_1 then 

 s_1 
elseif c_2 then 

 s_2 
... 

elseif c_n then 

 s_n  
else 

 s_e 
end 

instead of: 
 
if c_1 then 
 s_1 
else 
 if c_2 then 
  s_2 
 else 
  ... 
  if c_n then 
   s_n 
  else 
   s_e 
  end 
  ... 
 end  
end 

Condition 

Compound 



26 

Multiple choice 

If all the conditions have a specific structure, you can 
use the syntax: 

 
  inspect expression 
  when const_1 then 
   s_1 
  when const_2 then 
   s_2 
  ... 
  when const_n1 .. const_n2 then 
   s_n 
  else 
   s_e 
  end 

Integer or character 
expression 

Integer or character 
constant 

Compound 

Interval 



27 

Lost in conditions 

Rewrite the following multiple choice: 

 using a comb-like conditional 

 using nested conditionals 

inspect user_choice 
when 0 then 
    print (“Hamburger”) 
when 1 then 
    print (“Coke”) 
else 
    print (“Not on the menu!”) 
end 

if user_choice = 0 then 
    print (“Hamburger”) 
elseif user_choice = 1 then 
    print (“Coke”) 
else 
    print (“Not on the menu !”) 
end 

if user_choice = 0 then 
    print (“Hamburger”) 
else 
    if user_choice = 1 then 
        print (“Coke”) 
    else 
        print (“Not on the menu!”) 
    end 
end 



28 

Loop: Basic form 

Compound 

Boolean expression 

Compound 

Syntax: 
  from 

   initialization 
 

 

  until 

   exit_condition 
  loop 

   body 
 

 

  end 



29 

Compilation error? Runtime error?  

f (x, y : INTEGER): INTEGER 
 do 

  from 

  until (x // y) 

  loop 

   "Print me!" 
  end 

 end 

Compilation error: 
integer expression 
instead of boolean 

Compilation error: 
expression instead 

of instruction 

Correct 

f (x, y : INTEGER) : INTEGER 
 local 

  i : INTEGER 
 do 

  from i := 1 until (True) 

  loop 

   i := i * x * y 
  end 

 end 

Correct, but 
non-terminating 

f 
 do 
  from  
  until False 
  loop 
 
  end 
 end 



30 

Simple loop 

How many times will the body of the following  

loop be executed? 

In Eiffel we usually start counting from 1 

10 

i : INTEGER 
... 
from 
 i := 1 
until 
 i > 10 
loop 
 print (“ I will not say bad things about assistants”) 
 i := i + 1 
end 
… 
from 
 i := 10 
until 
 i < 1 
loop 
 print (“ I will not say bad things about assistants”) 
end 

Caution! Loops can be infinite! 

∞ 



31 

What does this function do? 

    (n : INTEGER) : INTEGER 
  require 
   n >= 0 
  local 
   i : INTEGER 
  do 
   from 
    i := 2 
    Result := 1 
   until 
    i > n 
   loop 
    Result := Result * i 
    i := i + 1 
   end 
  end 

f factorial 



32 

invariant 

 inv 

Loop: More general form 

Compound 

Optional 

Boolean expression 

Boolean expression 

Compound 

variant 

 var 

Syntax: 
  from 

   initialization 
 

 

  until 

   exit_condition 
  loop 

   body 
 

 

  end Integer expression 

Optional 



33 

Invariant and variant 

Loop invariant (do not confuse with class invariant) 

  holds before and after the execution of loop body 

 captures how the loop iteratively solves the 
problem: e.g. “to calculate the sum of all n elements 
in a list, on each iteration i (i = 1..n) the sum of 
first i elements is obtained” 

Loop variant 

 integer expression that is nonnegative after 
execution of from clause and after each execution 
of loop clause and strictly decreases with each 
iteration 

 a loop with a correct variant can not be infinite 
(why?) 



34 

What are the invariant and variant of  

the “factorial” loop? 
 from 

  i := 2 

  Result := 1 

 invariant 

  ? 

 until 

  i > n 

 loop 

  Result := Result * i 
  i := i + 1 

 variant 

  ? 

 end 

 

i = 2;    Result = 1 = 1! i = 3;    Result = 2 = 2! i = 4;    Result = 6 = 3! 

Invariant and variant 

Result = factorial (i - 1) 

n – i + 2 



35 

Writing loops 

Implement a function that calculates 

Fibonacci numbers, using a loop 

 

fibonacci (n : INTEGER) : INTEGER 

  -- n-th Fibonacci number 

 require 

  n_non_negative : n >= 0 

 ensure 

  first_is_zero : n = 0 implies Result = 0 

  second_is_one : n = 1 implies Result = 1 

  other_correct : n > 1 implies Result = fibonacci (n - 1) + fibonacci (n - 2) 

 end 

 

 



36 

Writing loops (solution) 

fibonacci (n : INTEGER) : INTEGER 
 local 
  a, b, i : INTEGER 
 do 
  if n <= 1 then 
   Result := n 
  else      
   from 
    a := 0 
    b := 1 
    i := 1 
 
 
 
   until 
    i = n 
   loop 
    Result := a + b 
    a := b 
    b := Result 
    i := i + 1 
 
 
   end 
   end 
 end 

 

 

   invariant 

   variant 

    a = fibonacci (i - 1) 
    b = fibonacci (i ) 

    n - i 



37 

Summary 

 Attributes, formal arguments, and local variables 

 Scope 

 Control structures 


