E,H Ziirich

Chair of Software Engineering

Einfihrung in die Programmierung
Introduction to Programming

Prof. Dr. Bertrand Meyer

Exercise Session b

Today

»Attributes, formal arguments, and local variables
> Control structures

Attributes ©

Declared anywhere inside a feature clause, but outside other
features

class C

feature
lattrl : CAL)

f (argl: A..)
do

end

;nd

Visible anywhere inside the class
visible outside the class (depending on their visibility)

Formal arguments

Declared after the feature name, in parenthesis:
feature

f (argl: 1, .. argn . CN)

require ..
local

do

ensure ...
end
only visible inside the feature body and its contracts

Local variables

Some variables are only used by a certain routine.
Declare them as local:
feature
f (argl: A.)
require ...
local

do

ensure ...
end
only visible inside the feature body

Summary: the scope of names ©

Attributes:

> declared anywhere inside a feature clause, but
outside other features

> visible anywhere inside the class

> visible outside the class (depending on their visibility)
Formal arguments:

> declared after the feature name, in parenthesis

> only visible inside the feature body and its contracts
Local variables:

> declared in a local clause inside the feature
declaration

> only visible inside the feature body

Compilation error? (1)

class PERSON
feature
name : STRING

sefaname (a_name : STRING)
)
name = a_name
end

exc/?anfe_ names (other . PERSON)
loca
5. STRING
do
s .= other.name
other.set_name (name)
set_name (s)
end

p/"/'/zjf_ with_semicolon
o
create s.make_from_string (name)
s.append (*.")

on c{o/"/m‘ ()

end

Compilation error? (2)

class PERSON
feature
-- name and set_name as before

exchange_names (other . PERSON)

local
s STRING
do
5= other.name
other.set_name (name)
set_name (5)
end
, , , OK: two different local
p/"/m‘_W/lﬂ‘/_slem/ca/aﬂ variables in two routines
oca
s STRING
do
create s.make_from_string (name)
s.append (*;")
print (s)
end

end

An example of side effects

class PERSON

feature
;7.ame : STRING

print_with_semicolon

create s.make_from_string (name)

local
s STRING
do
s.append (*;")
print (s)
end

print_with_sticky _semicolon
do
name.append (*;")
print (name)
end
end

e ~
Now the semicolon sticks
to the attribute.

This is called side effect

~

Compilation error? (3)

class PERSON

feature
-- name and set_name as before

s STRING

exchange_names (other . PERSON)

do
5= other.name
other.set_name (name)
set_name (5)
end
s: STRING

print_ W/’Qh_sem/co/on
)
create s.make_from_string (name)
s.append (*;")
print (s)
end
end

10

Compilation error? (4)

class PERSON
feature
-- name and set_name as before

exchange_names (other . PERSON)

do
5= other.name
other.set_name (name)
set_name (5)

end

OK: a single attribute

used in both routines

print_with_semicolon

do
create s.make_from_string (name)
s.append (}')
print (s)
end
s: STRING

end

11

Local variables vs. attributes

> Which one of the two correct versions
(2 and 4) do you like more? Why?

> Describe the conditions under which it is better to use
a local variable instead of an attribute and vice versa

12

Result

»Inside every function you can use the predefined local
variable Result (you needn't and shouldn't declare it)

> The return value of a function is whatever value the
Result variable has at the end of the function execution

» At the beginning of routine's body Result (as well as
regular local variables) is initialized with the default

value of its type

»Every regular local variable is declared with some type;

and what is the type of Result?

I't's the function return typel

13

Compilation error? (5)

class PERSON
feature

-- name and set_name as before
exchange names (other : PERSON)

do
Result := other.name
other.set_name (name)

set_name (Result)

end

name_with_semicolon : STRING

do
create Result.make_from_string (name)
Result.append ;")
print (Result)

end

end

14

Assignment to attributes

»Direct assignment to an attribute is only allowed if an
attribute is called in an unqualified way:

y = B ‘ OK \
XY= L & |
Current.y:= 5 w

> There are two main reasons for this rule:

1. A client may not be aware of the restrictions on
the attribute value and interdependencies with
other attributes => class invariant violation
(Example?)

2. Guess! (Hint: uniform access principle)

18

Entity: the final definition ©

An entity in program text is a "name" that directly
denotes an object. More precisely: it is one of

» attribute name
>@ar'iable attribute](Read-write entities / var'iables]
>tonstant attribute
formal argument name
:Iocal variable name
Result
Current

Read-only entities]

YV V V V

Only a variable can be used in a creation instruction and in
the left part of an assignment

19

Find 5 errors

class VECTOR
feature
X,y REAL

copy._from (other :

do
Current := other
end
copy._to (other: VECTOR) / ’
do =
create other
otherx:= x
other.y =y

end
reset
do

create Current
end
end

20

Structured programming ©

» In structured programming instructions can be combined
only in three ways (constructs):

Condi‘r&

‘1' True
s 1 >< % S—
/ True ‘ i ‘False

Compound l ¢False
s 1 s 2 S
s 2
sequen.’ri.al conditional loop
composition

> Each of these blocks has a single entry and exit and is
itself a (possibly empty) compound

21

Conditional

> Basic syntax: Condition
if c’rﬁen%

5 1 — Compound
else
s 2 Compound
T——
end

» Could ¢ be an integral expressions?

> No. cis a boolean expression (e.g., entity, query
call of type BOOLEAN)

> Are these valid conditionals?

if c then if cthen if c then
s 1 else
end end end
Yes, else is optional Yes, s _1could be Yes, s /land s 2

empty. could be both empty.

22

Calculating function’s value

f(max: INTEGER ; s: STRING): STRING
do

if s./s_eqgual ("Java") then
Result := "J**a"

else
if s.count> maxthen

Result := "<an unreadable German word>"

end

end

end

Calculate the value of:
> £(3,"Java") Ly N Jr*g"
> £ (20, "Immatrikulationsbestdtigung”)
> (6, "Eiffel") — Void

— “<an unreadable
German word>"

23

Write a routine...

> ... that computes the maximum of two
Integers
max (a, b: INTEGER) : INTEGER

> ... that increases time by one second inside class TIME

class TIME
hour, minute, second : INTEGER

second _forth
do ... end

end

24

Comb-like conditional

If there are more than two alternatives, you can use the

syntax:

Condition
if ¢_7then

s 1 % Compound

elseif ¢_2then
s 2

elseif ¢_nthen
s.n

else
s e

end

instead of:

if ¢_7then
s 1
else
if ¢ 2then

Nltql
N

0,

25

Multiple choice ©

If all the conditions have a specific structure, you can
inspect expression

use the syntax:
Integer or character
A expression |
when const _1then

s 1 — Integer or character
when const_2 then | constant
2
5_ w

when const_nl .. const_n2 then
5N «
else
s e
end

 Interval

26

Lost in conditions

Rewrite the following multiple choice:
> using a comb-like conditional
> using nested conditionals

inspect user_choice
when O then
print ("Hamburger")
when 1 then
print ("Coke")
else
print ("Not on the menu!")
end

if user _choice = O then
print ("Hamburger")
elseif user _choice = 1 then
print ("Coke")
else
print ("Not on the menu ")
end

if user _choice = O then
print ("Hamburger")
else
if user _choice =1 then
print ("Coke")
else
print ("Not on the menu!")
end
end

27

Loop: Basic form

Syntax:
from

until

loop

end

initialization —==— Compound I

exit_condition “i Boolean expression |
body ——————1__ Compound_|

28

Compilation error? Runtime error?

f(x, y: INTEGER): INTEGER £

do Compilation error: do

from intfeger expression from

until (x // y) 4 instead of boolean :.ln'l'll False

loop Compilation er'r'or'(;I oopP

"Print me!* exggei?\sé"?rnulcqsi;re\a end Co[r'r'ec‘r., b&rljr

end end non-terminating

end

f(x, y: INTEGER) : INTEGER
local

/i INTEGER o p’
do ,] Correct

from /:= 7until (True)

loop

end

end 29

Simple loop

How many times will the body of the following
loop be executed?

/. INTEGER
from ;o= J% In Eiffel we usually start counting from 1 |
until
loop
print (;I will not say bad things about assistants “)
/] = /| +
end
from
[:= 10
until : ——
/<1 | Cautionl Loops can be infinite! l
loop

end

print ("I will not say bad things about assistants”)

30

What does this function do?

factorial (n: INTEGER) : INTEGER
require
n>=0
local
/. INTEGER
do
from
/=2
Result = 1
until
/I>n
loop
Result := Result * /
fi=7+1
end
end

31

Loop: More general form ©

Syntax:

from

Compound

invariant _/_I Optional
nv

until S*_J Boolean expression |
exit_condition “i Boolean expression |

body —————1__ Compeund_|
variant 4 Optional |
var

end ﬁ Integer expression l

loop

32

Invariant and variant O,

Loop invariant (do not confuse with class invariant)
> holds before and after the execution of loop body

> captures how the loop iteratively solves the
problem: e.g. "to calculate the sum of all #elements
in a list, on each iteration 7 (/= 1..n) the sum of
first /elements is obtained"

Loop variant

> integer expression that is nonnegative after
execution of from clause and after each execution
of loop clause and strictly decreases with each

/teration

> a loop with a correct variant can not be infinite
(why?)

33

Invariant and variant

What are the invariant and variant of
the "factorial” loop?

from
/=2
Result := 1
invariant
Result = factorial (/- 1) Result = 6 = 3
until
/>N
loop
Result := Result * /
fi=r+1
variant
n-r+2

end

34

Writing loops

Implement a function that calculates
Fibonacci numbers, using a loop

fibonacci (n: INTEGER) : INTEGER
-- n-th Fibonacci number
require
n_non_negative:. n>= 0
ensure
first_is_zero: n= 0 implies Result = O
second _is_one: n=1implies Result = 1
other_correct: n> 1 implies Result = fibonacci (n - 1) + fibonacci(n - 2)
end

35

Writing loops (solution)

f/blomclc/ (n: INTEGER) : INTEGER
oca
4 a b, i INTEGER
0
if n<= 1 then
Result := n
else
from
a:=0
bi=1
/=1
invariant
a= fibonaccr %/’ -1)
b = fibonacci(r)
until
r=n
loop
Result = a+ b
a:=b
b = Result
fi=7+1
variant
n-i
end
end
end

36

Summary

»Attributes, formal arguments, and local variables
> Scope
> Control structures

37

