
Chair of Software Engineering

Einführung in die Programmierung
Introduction to Programming

Prof. Dr. Bertrand Meyer

Exercise Session 5

2

Today

 Attributes, formal arguments, and local variables

 Control structures

3

Declared anywhere inside a feature clause, but outside other
features

class C
feature
 attr1 : CA1

 f (arg1 : A …)
 do
 …
 end
…
end

Visible anywhere inside the class
visible outside the class (depending on their visibility)

Attributes

4

Declared after the feature name, in parenthesis:

feature

 f (arg1 : C1 ; …; argn : CN)
 require ...

 local

 …
 do

 …

 ensure ...

 end

only visible inside the feature body and its contracts

Formal arguments

5

Some variables are only used by a certain routine.
 Declare them as local:
feature
 f (arg1 : A …)
 require ...
 local
 x, y : B
 z : C
 do
 …
 ensure ...
 end
only visible inside the feature body

Local variables

6

Summary: the scope of names

Attributes:

 declared anywhere inside a feature clause, but
outside other features

 visible anywhere inside the class

 visible outside the class (depending on their visibility)

Formal arguments:

 declared after the feature name, in parenthesis

 only visible inside the feature body and its contracts

Local variables:

 declared in a local clause inside the feature
declaration

 only visible inside the feature body

7

Compilation error? (1)

class PERSON
feature
 name : STRING

 set_name (a_name : STRING)
 do
 name := a_name
 end

 exchange_names (other : PERSON)
 local
 s : STRING
 do
 s := other.name
 other.set_name (name)
 set_name (s)
 end

 print_with_semicolon
 do
 create s.make_from_string (name)
 s.append (“;”)
 print (s)
 end
end

Error: this variable
was not declared

8

Compilation error? (2)

class PERSON
feature
 … -- name and set_name as before

 exchange_names (other : PERSON)
 local
 s : STRING
 do
 s := other.name
 other.set_name (name)
 set_name (s)
 end

 print_with_semicolon
 local
 s : STRING
 do
 create s.make_from_string (name)
 s.append (“;”)
 print (s)
 end
end

OK: two different local
variables in two routines

9

An example of side effects

class PERSON

feature
 …
 name : STRING

 print_with_semicolon
 local
 s : STRING
 do
 create s.make_from_string (name)
 s.append (“;”)
 print (s)
 end

 print_with_sticky_semicolon
 do
 name.append (“;”)
 print (name)
 end
end

Now the semicolon sticks
to the attribute.

This is called side effect

10

Compilation error? (3)

class PERSON
feature
 … -- name and set_name as before

 s : STRING

 exchange_names (other : PERSON)
 do
 s := other.name
 other.set_name (name)
 set_name (s)
 end

 s : STRING

 print_with_semicolon
 do
 create s.make_from_string (name)
 s.append (“;”)
 print (s)
 end
end

Error: an attribute
with the same name
was already defined

11

Compilation error? (4)

class PERSON
feature
 … -- name and set_name as before

 exchange_names (other : PERSON)
 do
 s := other.name
 other.set_name (name)
 set_name (s)
 end

 print_with_semicolon
 do
 create s.make_from_string (name)
 s.append (‘;’)
 print (s)
 end

 s : STRING
end

OK: a single attribute
used in both routines

12

Local variables vs. attributes

 Which one of the two correct versions
(2 and 4) do you like more? Why?

 Describe the conditions under which it is better to use
a local variable instead of an attribute and vice versa

13

Result

 Inside every function you can use the predefined local
variable Result (you needn’t and shouldn’t declare it)

 The return value of a function is whatever value the
Result variable has at the end of the function execution

 At the beginning of routine’s body Result (as well as
regular local variables) is initialized with the default
value of its type

 Every regular local variable is declared with some type;
and what is the type of Result?

 It’s the function return type!

14

Compilation error? (5)

class PERSON

feature

 … -- name and set_name as before

 exchange_names (other : PERSON)

 do

 Result := other.name

 other.set_name (name)

 set_name (Result)

 end

 name_with_semicolon : STRING

 do

 create Result.make_from_string (name)

 Result.append (‘;’)

 print (Result)

 end

end

Error: Result can
not be used in a

procedure

18

Assignment to attributes

 Direct assignment to an attribute is only allowed if an
attribute is called in an unqualified way:

 y := 5

 x.y := 5

 Current.y := 5

 There are two main reasons for this rule:

1. A client may not be aware of the restrictions on
the attribute value and interdependencies with
other attributes => class invariant violation
(Example?)

2. Guess! (Hint: uniform access principle)

OK

Error

? Error

19

Entity: the final definition

 variable attribute

 constant attribute

Only a variable can be used in a creation instruction and in
the left part of an assignment

An entity in program text is a “name” that directly
denotes an object. More precisely: it is one of

 attribute name

 formal argument name

 local variable name

 Result

 Current

Read-write entities / variables

Read-only entities

20

Find 5 errors

class VECTOR
feature
 x, y : REAL

 copy_from (other : VECTOR)
 do
 Current := other
 end

 copy_to (other : VECTOR)
 do
 create other
 other.x := x
 other.y := y
 end

 reset
 do
 create Current
 end
end

Current is not a variable and
can not be assigned to

other is a formal argument
(not a variable) and thus can

not be used in creation

other.x is a qualified attribute
call (not a variable) and thus

can not be assigned to

the same reason for other.y

Current is not a variable and
thus can not be used in

creation

21

Structured programming

 In structured programming instructions can be combined
only in three ways (constructs):

s_1 c

s_2
s_1 s_2

c

s

sequential
composition

conditional loop

True False
False

True

 Each of these blocks has a single entry and exit and is
itself a (possibly empty) compound

Compound

Condition

22

Conditional

 Basic syntax:
 if c then

 s_1
 else

 s_2
 end

 Could c be an integral expressions?

 No. c is a boolean expression (e.g., entity, query
call of type BOOLEAN)

 Are these valid conditionals?

Condition

Compound

Compound

if c then
 s_1
end

if c then

end

if c then
else
end

Yes, else is optional Yes, s_1 could be
empty.

Yes, s_1 and s_2
could be both empty.

23

Calculating function’s value

f (max : INTEGER ; s : STRING): STRING

 do

 if s.is_equal (“Java”) then

 Result := “J**a”

 else

 if s.count > max then

 Result := “<an unreadable German word>”

 end

 end

 end

Calculate the value of:
 f (3, “Java”)

 f (20, “Immatrikulationsbestätigung”)

 f (6, “Eiffel”)

→ “J**a”
→ “<an unreadable
German word>”

→ Void

24

Write a routine...

 ... that computes the maximum of two

integers

 max (a, b : INTEGER) : INTEGER

 ... that increases time by one second inside class TIME

class TIME
 hour, minute, second : INTEGER

 second_forth
 do ... end

 ...

end

25

Comb-like conditional

If there are more than two alternatives, you can use the
syntax:

if c_1 then

 s_1
elseif c_2 then

 s_2
...

elseif c_n then

 s_n
else

 s_e
end

instead of:

if c_1 then
 s_1
else
 if c_2 then
 s_2
 else
 ...
 if c_n then
 s_n
 else
 s_e
 end
 ...
 end
end

Condition

Compound

26

Multiple choice

If all the conditions have a specific structure, you can
use the syntax:

 inspect expression
 when const_1 then
 s_1
 when const_2 then
 s_2
 ...
 when const_n1 .. const_n2 then
 s_n
 else
 s_e
 end

Integer or character
expression

Integer or character
constant

Compound

Interval

27

Lost in conditions

Rewrite the following multiple choice:

 using a comb-like conditional

 using nested conditionals

inspect user_choice
when 0 then
 print (“Hamburger”)
when 1 then
 print (“Coke”)
else
 print (“Not on the menu!”)
end

if user_choice = 0 then
 print (“Hamburger”)
elseif user_choice = 1 then
 print (“Coke”)
else
 print (“Not on the menu !”)
end

if user_choice = 0 then
 print (“Hamburger”)
else
 if user_choice = 1 then
 print (“Coke”)
 else
 print (“Not on the menu!”)
 end
end

28

Loop: Basic form

Compound

Boolean expression

Compound

Syntax:
 from

 initialization

 until

 exit_condition
 loop

 body

 end

29

Compilation error? Runtime error?

f (x, y : INTEGER): INTEGER
 do

 from

 until (x // y)

 loop

 "Print me!"
 end

 end

Compilation error:
integer expression
instead of boolean

Compilation error:
expression instead

of instruction

Correct

f (x, y : INTEGER) : INTEGER
 local

 i : INTEGER
 do

 from i := 1 until (True)

 loop

 i := i * x * y
 end

 end

Correct, but
non-terminating

f
 do
 from
 until False
 loop

 end
 end

30

Simple loop

How many times will the body of the following

loop be executed?

In Eiffel we usually start counting from 1

10

i : INTEGER
...
from
 i := 1
until
 i > 10
loop
 print (“ I will not say bad things about assistants”)
 i := i + 1
end
…
from
 i := 10
until
 i < 1
loop
 print (“ I will not say bad things about assistants”)
end

Caution! Loops can be infinite!

∞

31

What does this function do?

 (n : INTEGER) : INTEGER
 require
 n >= 0
 local
 i : INTEGER
 do
 from
 i := 2
 Result := 1
 until
 i > n
 loop
 Result := Result * i
 i := i + 1
 end
 end

f factorial

32

invariant

 inv

Loop: More general form

Compound

Optional

Boolean expression

Boolean expression

Compound

variant

 var

Syntax:
 from

 initialization

 until

 exit_condition
 loop

 body

 end Integer expression

Optional

33

Invariant and variant

Loop invariant (do not confuse with class invariant)

 holds before and after the execution of loop body

 captures how the loop iteratively solves the
problem: e.g. “to calculate the sum of all n elements
in a list, on each iteration i (i = 1..n) the sum of
first i elements is obtained”

Loop variant

 integer expression that is nonnegative after
execution of from clause and after each execution
of loop clause and strictly decreases with each
iteration

 a loop with a correct variant can not be infinite
(why?)

34

What are the invariant and variant of

the “factorial” loop?
 from

 i := 2

 Result := 1

 invariant

 ?

 until

 i > n

 loop

 Result := Result * i
 i := i + 1

 variant

 ?

 end

i = 2; Result = 1 = 1! i = 3; Result = 2 = 2! i = 4; Result = 6 = 3!

Invariant and variant

Result = factorial (i - 1)

n – i + 2

35

Writing loops

Implement a function that calculates

Fibonacci numbers, using a loop

fibonacci (n : INTEGER) : INTEGER

 -- n-th Fibonacci number

 require

 n_non_negative : n >= 0

 ensure

 first_is_zero : n = 0 implies Result = 0

 second_is_one : n = 1 implies Result = 1

 other_correct : n > 1 implies Result = fibonacci (n - 1) + fibonacci (n - 2)

 end

36

Writing loops (solution)

fibonacci (n : INTEGER) : INTEGER
 local
 a, b, i : INTEGER
 do
 if n <= 1 then
 Result := n
 else
 from
 a := 0
 b := 1
 i := 1

 until
 i = n
 loop
 Result := a + b
 a := b
 b := Result
 i := i + 1

 end
 end
 end

 invariant

 variant

 a = fibonacci (i - 1)
 b = fibonacci (i)

 n - i

37

Summary

 Attributes, formal arguments, and local variables

 Scope

 Control structures

