
Chair of Software Engineering

Einführung in die Programmierung
Introduction to Programming

Prof. Dr. Bertrand Meyer

Exercise Session 9

2

Today

 Feedback on the mock exam

 Recursion
 Recursion

• Recursion
 Recursion

 Recursion

 Basic data structures

 Arrays

 Linked Lists

 Hashtables

3

Recursion: an example

 Fibonacci numbers:

 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ...

 How can we calculate the n-th Fibonacci number?

 Recursive formula:

F(n) = F(n-1) + F(n-2) for n > 1

with F(0) = 0, F(1) = 1

4

Recursion: a second example

 Another example of recursion

Source: en.wikipedia.org/wiki/Recursion

5

A recursive feature

fibonacci(n: INTEGER): INTEGER

 do

 if n = 0 then

 Result := 0

 elseif n = 1 then

 Result := 1

 else

 Result := fibonacci(n-1) +

 fibonacci(n-2)

 end

 end

fib(4)

fib(3) fib(2)

fib(1) fib(0) fib(2) fib(1)

fib(1) fib(0)

 Calculate fibonacci(4)

1 0

1 1

2

1 0

1

3

6

The general notion of recursion

A definition for a concept is recursive
if it involves an instance of the concept itself

 The definition may use more than one “instance of the
concept itself ”

 Recursion is the use of a recursive definition

7

Thoughts

Better use iterative approach if reasonable

8

Iteration vs. recursion

 Every recursion could be rewritten as an iteration and
vice versa.

 BUT, depending on how the problem is formulated, this
can be difficult or might not give you a performance
improvement.

9

Be careful when using recursion!

10

Exercise: Printing numbers

 If we pass n = 4, what will be printed?

print_int (n: INTEGER)
 do
 print (n)
 if n > 1 then
 print_int (n - 1)
 end
 end

print_int (n: INTEGER)
 do
 if n > 1 then
 print_int (n - 1)
 end
 print (n)
 end

4321 1234

11

Exercise: Reverse string

 Print a given string in reverse order using a
recursive function.

12

Exercise: Solution

class APPLICATION

create
 make

feature
 make
 local
 s: STRING
 do
 create s.make_from_string ("poldomangia")
 invert(s)
 end

 invert (s: STRING)
 require
 s /= Void
 do
 if not s.is_empty then
 invert (s.substring (2, s.count))
 print (s[1])
 end
 end
end

16

Arrays

An array is a very fundamental data-structure, which is
very close to how your computer organizes its memory. An
array is characterized by:

Constant time for random reads

Constant time for random writes

Costly to resize (including inserting elements in the
middle of the array)

Must be indexed by an integer

Generally very space efficient

In Eiffel the basic array class is generic, V_ARRAY [G].

17

Using Arrays

Which of the following lines are valid?

Which can fail, and why?

 my_array : V_ARRAY [STRING]

 my_array [“Fred”] := “Sam”

 my_array [10] + “’s Hat”

 my_array [5] := “Ed”

 my_array.force (“Constantine”, 9)

Which is not a constant-time array operation?

Valid, can’t fail

Invalid

Valid, can fail

Valid, can fail

Valid, can’t fail

18

Linked Lists

 Linked lists are one of the simplest data-structures

 They consist of linkable cells

class LINKABLE [G]

create
 set_value

feature
 set_value (v : G)
 do
 value := v
 end

 value : G

 set_next (n : LINKABLE[G])
 do
 next := n
 end

 next : LINKABLE [G]
end

19

Using Linked Lists

Suppose you keep a reference to only the head of the
linked list, what is the running time (using big O notation)
to:

Insert at the beginning

Insert in the middle

Insert at the end

Find the length of the list

What simple optimization could be made to make end-
access faster?

O (1)

O (n)

O (n)

O (n)

20

Binary search tree

10

8 13

4 9 20

 A binary search tree is a binary tree where each node
has a COMPARABLE value.

 Left sub-tree of a node contains only values less than
the node’s value.

 Right sub-tree of a node contains only values greater
than or equal to the node’s value.

21

Exercise: Adding nodes

 Implement command put (n: INTEGER) in class
NODE which creates a new NODE object at the
correct place in the binary search tree rooted by
Current.

 Test your code with a class APPLICATION which
builds a binary search tree using put and prints out
the values using the traversal feature.

 Hint: You might need to adapt the traversal
feature such that the values are printed out in
order.

22

Exercise: Solution

 See code in IDE.

23

Exercise: Searching

 Implement feature has (n: INTEGER): BOOLEAN
in class NODE which returns true if and only if n is in
the tree rooted by Current.

 Test your code with a class APPLICATION which builds
a binary search tree and calls has.

24

Exercise: Solution

 See code in IDE.

