
Chair of Software Engineering 

Einführung in die Programmierung 
Introduction to Programming 

 
Prof. Dr. Bertrand Meyer 

 

Exercise Session 9 

 



2 

Today 

 Feedback on the mock exam 

 

 Recursion 
 Recursion 

• Recursion 
 Recursion 

 Recursion 

 

 Basic data structures 

 Arrays 

 Linked Lists 

 Hashtables 

 
 

 



3 

Recursion: an example 

 Fibonacci numbers: 

 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ... 

 

 How can we calculate the n-th Fibonacci number? 

 

 Recursive formula: 

 

 

  

F(n) = F(n-1) + F(n-2) for n > 1 
 

with F(0) = 0, F(1) = 1 



4 

Recursion: a second example 

 Another example of recursion 

Source: en.wikipedia.org/wiki/Recursion 



5 

A recursive feature 

fibonacci(n: INTEGER): INTEGER 

   do 

      if n = 0 then 

         Result := 0 

      elseif n = 1 then 

         Result := 1 

      else 

         Result := fibonacci(n-1) + 

                       fibonacci(n-2) 

      end 

   end 

fib(4) 

fib(3) fib(2) 

fib(1) fib(0) fib(2) fib(1) 

fib(1) fib(0) 

 Calculate fibonacci(4) 

1 0 

1 1 

2 

1 0 

1 

3 



6 

The general notion of recursion 

A definition for a concept is recursive 
if it involves an instance of the concept itself 

 The definition may use more than one “instance of the 
concept itself ” 

 Recursion is the use of a recursive definition 

 



7 

Thoughts 

Better use iterative approach if reasonable 



8 

Iteration vs. recursion 

 Every recursion could be rewritten as an iteration and 
vice versa. 

 BUT, depending on how the problem is formulated, this 
can be difficult or might not give you a performance 
improvement. 

 

 



9 

Be careful when using recursion! 

 

 



10 

Exercise: Printing numbers 

 If we pass n = 4, what will be printed?  

 

print_int (n: INTEGER) 
  do 
   print (n) 
   if n > 1 then 
    print_int (n - 1) 
   end 
  end 
 

print_int (n: INTEGER) 
  do 
   if n > 1 then 
    print_int (n - 1) 
   end 
   print (n) 
  end 
 

4321 1234 



11 

Exercise: Reverse string 

 Print a given string in reverse order using a 
recursive function. 

 



12 

Exercise: Solution 

class APPLICATION 
 
create 
 make 
 
feature 
 make  
  local 
   s: STRING 
  do 
   create s.make_from_string ("poldomangia") 
   invert(s) 
  end 
 
 invert (s: STRING)  
  require 
   s /= Void 
  do 
   if not s.is_empty then 
    invert (s.substring (2, s.count)) 
    print (s[1]) 
   end 
  end 
end 
 



16 

Arrays 

An array is a very fundamental data-structure, which is 
very close to how your computer organizes its memory. An 
array is characterized by: 

 

Constant time for random reads 

Constant time for random writes 

Costly to resize (including inserting elements in the 
middle of the array) 

Must be indexed by an integer 

Generally very space efficient 

 

In Eiffel the basic array class is generic, V_ARRAY [G]. 



17 

Using Arrays 

Which of the following lines are valid? 

Which can fail, and why? 

 

 my_array : V_ARRAY [STRING] 

 my_array [“Fred”] := “Sam” 

 my_array [10] + “’s Hat” 

 my_array [5] := “Ed” 

 my_array.force (“Constantine”, 9) 

 

Which is not a constant-time array operation? 

 

Valid, can’t fail 

Invalid 

Valid, can fail 

Valid, can fail 

Valid, can’t fail 



18 

Linked Lists 

 Linked lists are one of the simplest data-structures 

 They consist of linkable cells 

 

class LINKABLE [G] 
 
create 
    set_value 
 
feature 
    set_value (v : G) 
 do 
     value := v 
 end 
 
    value : G 
 

    set_next (n : LINKABLE[G]) 
 do 
     next := n 
 end 
 
    next : LINKABLE [G] 
end 



19 

Using Linked Lists 

Suppose you keep a reference to only the head of the 
linked list, what is the running time (using big O notation) 
to: 

 

Insert at the beginning 

Insert in the middle 

Insert at the end 

Find the length of the list 

 

What simple optimization could be made to make end-
access faster? 

O (1) 

O (n) 

O (n) 

O (n) 



20 

Binary search tree 

10 

8 13 

4 9 20 

 A binary search tree is a binary tree where each node 
has a COMPARABLE value. 

 Left sub-tree of a node contains only values less than 
the node’s value. 

 Right sub-tree of a node contains only values greater 
than or equal to the node’s value.  

 

 

 



21 

Exercise: Adding nodes 

 Implement command put (n: INTEGER) in class 
NODE which creates a new NODE object at the 
correct place in the binary search tree rooted by 
Current. 

 Test your code with a class APPLICATION which 
builds a binary search tree using put and prints out 
the values using the traversal feature. 

 Hint: You might need to adapt the traversal 
feature such that the values are printed out in 
order. 

 

 

 



22 

Exercise: Solution 

 See code in IDE. 

 



23 

Exercise: Searching 

 Implement feature has (n: INTEGER): BOOLEAN 
in class NODE which returns true if and only if n is in 
the tree rooted by Current. 

 Test your code with a class APPLICATION which builds 
a binary search tree and calls has. 

 

 



24 

Exercise: Solution 

 See code in IDE. 

 


