
ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – In-Class Exercises
Fall 2012

In-Class Exercises

ETH Zurich

November 28 2012

1 Contracts

ETH students recently designed a special kind of oven for cooking potatoes. Here are some facts
about such an oven:

• each oven is equipped with a door which is either open or closed;

• the oven is fairly small, therefore only one potato can fit inside;

• it is only possible to put a potato in or take one out when the door is open;

• to start or stop cooking, one has to use the start/stop switch;

• for safety reasons, the oven would not start cooking if its door is open or there is nothing
to cook;

• the door cannot be opened during cooking: cooking has to be stopped first.

The following class POTATO OVEN models such an oven. Please fill in the missing con-
tracts (preconditions, postconditions, and class invariants), so that each fact from the informal
specification above is reflected in the class interface.

Please note the number of dotted lines does not indicate the number of missing contracts.

deferred class
POTATO OVEN

feature −− Access

potato to cook : POTATO
−− The potato inside the oven.

feature −− Status report

is door open : BOOLEAN
−− Is the oven door open?

is cooking : BOOLEAN
−− Is the oven cooking?

is empty: BOOLEAN

1



ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – In-Class Exercises
Fall 2012

−− Is the oven empty?
deferred
ensure

Result = (potato to cook = Void)
end

feature −− Basic operation

open door
−− Open the door.

require
not cooking : not is cooking
door closed : not is door open −− optional

deferred
ensure

door open: is door open
end

close door
−− Close the door.

require
door open: is door open −− optional

deferred
ensure

door closed : not is door open
end

put (a potato : POTATO)
−− Put ‘a potato’ into the oven.

require
potato attached : a potato /= Void −− optional
empty oven: is empty
door open: is door open

deferred
ensure

potato in oven : potato to cook = a potato
not empty: not is empty −− optional

end

remove
−− Remove the potato.

require
not empty: not is empty
door open: is door open

deferred
ensure

empty oven: is empty
end

switch on
−− Turn on the start/stop switch.

require

2



ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – In-Class Exercises
Fall 2012

door closed : not is door open
not empty: not is empty
not cooking : not is cooking −− optional

deferred
ensure

is cooking : is cooking
end

switch off
−− Turn off the start/stop switch.

require
cooking: is cooking −− optional

deferred
ensure

not cooking : not is cooking
end

invariant

is cooking implies not is door open
is cooking implies not is empty
−− Or: (is door open or is empty) implies not is cooking

end

3



ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – In-Class Exercises
Fall 2012

2 Inheritance

Below you see the class GAME CHARACTER. The class represents game characters. There
are three types of game characters: dragon, marshmallow man and zombie. Every character has
a health level in the range of 0 to 100, where 0 means that the character is dead and 100 that it
has full strength. Since zombies are dead by definition, their health level stays at 0 at all times.
Each of the character types has a damage potential that it can inflict on others. For all of them
the damage doubles if the character is angry.

Listing 1: Class GAME CHARACTER

1 class
GAME CHARACTER

3
create

5 make

7 feature −− Initialization

9 make (t: INTEGER)
−− Initialize with type ‘t ’.

11 require
t valid : (t = marshmallow man xor t = dragon xor t = zombie) and not

13 (t = marshmallow man and t = dragon and t = zombie)
do

15 type := t
if type = zombie then

17 health := 0
else

19 health := 100
end

21 ensure
type set : type = t

23 end

25 feature −− Access

27 type : INTEGER
−− Type of character

29
health : INTEGER

31 −− Health of character (0: dead, 100: full strength)

33 damage: INTEGER
−− Damage that the character can do

35 do
if type = zombie then

37 Result := zombie damage
elseif type = marshmallow man then

39 Result := marshmallow man damage
else

41 Result := dragon damage
end

4



ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – In-Class Exercises
Fall 2012

43 if is angry then
Result := Result ∗ 2

45 end
ensure

47 zombie: not is angry and type = zombie implies Result = zombie damage
angry zombie: is angry and type = zombie implies Result = 2∗zombie damage

49 dragon: not is angry and type = dragon implies Result = dragon damage
angry dragon: is angry and type = dragon implies Result = 2∗dragon damage

51 marshmallow man: not is angry and type = marshmallow man implies Result =
marshmallow man damage

angry marshmallow man: is angry and type = marshmallow man implies Result = 2∗
marshmallow man damage

53 end

55 feature −− Status report

57 is dead : BOOLEAN
−− Is the character dead?

59 do
Result := (health = 0)

61 ensure
Result set : Result = (health = 0)

63 end

65 is angry : BOOLEAN
−− Is the character angry?

67 −− (Then it can do more damage!)

69 feature −− Element change

71 set health (h: INTEGER)
−− Set ‘health’ to ‘h ’.

73 require
h valid : h >= 0 and h <= 100

75 h for zombie: type = zombie implies h = 0
do

77 health := h
ensure

79 health set : health = h
end

81
set angry (b: BOOLEAN)

83 −− Set ‘is angry’ to ‘b ’.
do

85 is angry := b
ensure

87 is angry set : is angry = b
end

89
feature −− Constants

91
marshmallow man: INTEGER = 1

5



ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – In-Class Exercises
Fall 2012

93 −− Marshmallow man

95 dragon: INTEGER = 2
−− Dragon

97
zombie: INTEGER = 3

99 −− Zombie (is always dead)

101 zombie damage: INTEGER = 1
−− Damage that a zombie does

103
dragon damage: INTEGER = 2

105 −− Damage that a dragon does

107 marshmallow man damage: INTEGER = 3
−− Damage that a marshmallow man does

109
invariant

111
type valid : (type = marshmallow man xor type = dragon xor type = zombie) and not (

type = marshmallow man and type = dragon and type = zombie)
113 health valid : health >= 0 and health <= 100

zombie always dead: type = zombie implies health = 0
115

end

The above code does not exhibit a nice object-oriented design and it can hardly be called
reusable. Redesign the code such that it uses inheritance instead of the type attribute to repre-
sent the three types of game characters. Write a deferred ancestor class NEW GAME CHARACTER
and effective descendants ZOMBIE, MARSHMALLOW MAN, and DRAGON that inherit from
NEW GAME CHARACTER.

Your design should

• result in the deletion of the type attribute.

• result in the same behavior for the three types of game characters as the original code of
class GAME CHARACTER.

• include semantically equivalent contracts as the original code of class GAME CHARACTER.

If a feature stays the same in your re-factored code as in the original code, please indicate it
by giving the full feature signature and adding a comment -- See original.

Example:

is dead : BOOLEAN
−− See original.

6



ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – In-Class Exercises
Fall 2012

Listing 2: Class NEW GAME CHARACTER

deferred class
2 NEW GAME CHARACTER

4 feature −− Access

6 health : INTEGER
−− Health of character (0: dead, 100: full strength)

8
damage: INTEGER

10 −− Damage that the character can do
do

12 Result := damage constant
if is angry then

14 Result := Result ∗ 2
end

16 ensure
not angry: not is angry implies Result = damage constant

18 angry: is angry implies Result = 2∗damage constant
end

20
feature −− Status report

22
is dead : BOOLEAN

24 −− Is the character dead?
do

26 Result := (health = 0)
ensure

28 Result set : Result = (health = 0)
end

30
is angry : BOOLEAN

32 −− Is the character angry?
−− (Then it can do more damage!)

34
is valid health (h: INTEGER): BOOLEAN

36 −− Is ‘h’ a valid health for the character?
deferred

38 ensure
Result implies (h >= 0 and h <= 100)

40 −− other possiblilty : no postcondition
end

42
feature −− Element change

44
set health (h: INTEGER)

46 −− Set ‘health’ to ‘h ’.
require

48 h valid : is valid health (h)
do

50 health := h
ensure

7



ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – In-Class Exercises
Fall 2012

52 health set : health = h
end

54
set angry (b: BOOLEAN)

56 −− Set ‘is angry’ to ‘b ’.
do

58 is angry := b
ensure

60 is angry set : is angry = b
end

62
feature −− Constants

64
damage constant: INTEGER

66 −− Damage that a character does
deferred

68 end

70 invariant

72 health valid : is valid health (health)
−− other possiblilty : health >= 0 and health <= 100

74
end

Listing 3: Class ZOMBIE

class
2 ZOMBIE

4 inherit

6 NEW GAME CHARACTER

8 create
make

10
feature −− Initialization

12
make

14 −− Initialize health 0.
do

16 health := 0
ensure

18 health set : health = 0
end

20
feature −− Status report

22
is valid health (h: INTEGER): BOOLEAN

24 −− Is ‘h’ a valid health for the character?
do

26 Result := (h = 0)

8



ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – In-Class Exercises
Fall 2012

ensure then
28 Result = (h = 0)

end
30

feature −− Constants
32

damage constant: INTEGER = 1
34

invariant
36

zombie always dead: health = 0
38

end

Listing 4: Class DRAGON

class
2 DRAGON

4 inherit

6 NEW GAME CHARACTER

8 create
make

10
feature −− Initialization

12
make

14 −− Initialize with health 100.
do

16 health := 100
ensure

18 health set : health = 100
end

20
feature −− Status report

22
is valid health (h: INTEGER): BOOLEAN

24 −− Is ‘h’ a valid health for the character?
do

26 Result := (h >= 0 and h <= 100)
ensure then

28 Result = (h >= 0 and h <= 100)
end

30
feature −− Constants

32
damage constant: INTEGER = 2

34
end

9



ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – In-Class Exercises
Fall 2012

Listing 5: Class MARSHMALLOW MAN

class
2 MARSHMALLOW MAN

4 inherit

6 NEW GAME CHARACTER

8 create
make

10
feature −− Initialization

12
make

14 −− Initialize with health 100.
do

16 health := 100
ensure

18 health set : health = 100
end

20
feature −− Status report

22
is valid health (h: INTEGER): BOOLEAN

24 −− Is ‘h’ a valid health for the character?
do

26 Result := (h >= 0 and h <= 100)
ensure then

28 Result = (h >= 0 and h <= 100)
end

30
feature −− Constants

32
damage constant: INTEGER = 3

34
end

10


