Software Verification Exercise Session 1 Solution

We present proof in outline form - you can also use explicit lists of theorems or proof trees.

• 9.3 $\{x = a \land y = b\}$ $\{x+y=a+b \land x=a\}$ t := x $\{x+y=a+b \land t=a\}$ $\mathbf{x} := \mathbf{x} + \mathbf{y}$ { $x = a+b \land t = a$ } y := t $\{x = a + b \land y = a\}$ • 9.6 1) $\{z^*x^y = K\}$ $\{(z^*x)^*x^{y-1} = K\}$ $z := z^*x$ $\{z^*x^{y-1} = K\}$ 2) $\{z^*x^y = K\}$ $\{(z^*x)^*x^{y-1} = K\}$ y := y-1 $\{(z^*x)^*x^y = K\}$ $z := z^*x$ $\{z^*x^y = K\}$ 3)

{y even $\land z^*x^y = K$ } // With integer arithmetic, we cannot assume 2(y/2) = y for all y. { $z^*(x^2)^{y/2} = K$ } y := y/2{ $z^*(x^2)^y = K$ } $x := x^2$ { $z^*x^y = K$ } 4) Here is the inference rule for guarded commands of the form **if**... [] $g_i : c_i$ [] ... **end**: P => ($V_{i=1..n} g_i$) $\forall i \in 1..n$. { $g_i \land P$ } c_i {Q}

 $\{P\}$ **if**... [] $g_i : c_i$ [] ... **end** $\{Q\}$

Notice that the following implications hold (i.e. they are valid/tautologies):

i) $(z^*x^y = K) \Longrightarrow (y \text{ odd } \forall y \text{ even}), \text{ and}$

ii) (y odd $\land z^*x^y = K$) => ($z^*x^y = K$),

Now we can apply the rule of Consequence with the triple from part 2 and the valid implication ii to obtain the triple:

{y odd $\land z^*x^y = K$ } y := y-1; z := $z^*x \{z^*x^y = K\}$

This triple, the triple from part 3 and the valid implication i fulfill all the premises of the rule. We can therefore infer the triple:

$$\{z^*x^y = K\}$$
 if y odd : y := y-1 ; z := z^*x [] y even : y := $y/2$; x := x^2 end $\{z^*x^y = K\}$

In proof outline form:

 ${z*x^y = K}$ // Remember that here is an implicit implication of the V of the guards! if

y odd :
{y odd
$$\land z^*x^y = K$$
}
{z^*x^y = K}
{(z^*x)^*x^{y-1} = K}
y := y-1
{(z^*x)^*x^y = K}
z := z^*x
{z^*x^y = K}
[]
y even :
{y even $\land z^*x^y = K$ }
{z^*(x^2)^{y/2} = K}
y := y/2
{z^*(x^2)^y = K}
x := x^2
{z^*x^y = K}
end
{z^*x^y = K}

• 9.7

Recall the proof rule for **from**..**until** commands, where I is the loop invariant: $\{P\}c_1\{I\} \qquad \{I \land \neg b\}c_2\{I\}$

{P} from c_1 until b loop c_2 end {I \land b}

It should be clear that $z^*x^y = K$ is an invariant of the loop.

With the usual backward assertion propatation, we can easily prove the initialization triple $\{m^n = K\} \ x := m \ ; \ y := n \ ; \ z := 1 \ \{z^*x^y = K\}.$

By the rule of Consequence and the triple from 9.6.4, we also know:

 $\{z^*x^y = K \land \neg(y=0)\}$ if y odd : y := y-1; z := z*x [] y even : y := y/2; x := x^2 end $\{z^*x^y = K\}$.

Hence $\{m^n = K\}$ from...end $\{z^*x^y = K \land y = 0\}$ by the inference rule above, and with another application of Consequence, we know:

 $\{m^n = K\}$ from...end $\{z = K\}$

Now since the **from**...end command did not modify m, n or K, we know that $m^n = K$ still holds afterwards. Formally, we can apply the rule of Constancy:

 $\{P\}c\{Q\}$

 $\{P \land R\} c \{Q \land R\}$

provided c does not modify (i.e. assign to) any of the free variables of R.

In this case, the R will be $m^n = K$, so we know: $\{m^n = K \land m^n = K\}$ from...end $\{z = K \land m^n = K\}$ By the rule of Consequence, we again simplify and get: $\{m^n = K\}$ from...end $\{z = m^n\}$ Next, we can apply the Auxiliary Variable Elimination rule to get rid of K. The rule is:

 $\{P\}c\{Q\}$

 $\{\exists v. P\}c\{\exists v. Q\}$

provided v does not occur free in c.

So now we have $\{\exists K. m^n = K\}$ from...end $\{\exists K. z = m^n\}$, and we can simplify it with the rule of Consequence to get:

{true} **from...end** { $z = m^{n}$ }

We can now strengthen the precondition with the rule of Consequence to get:

 $\{m>0 \land n \ge 0\}$ from...end $\{z = m^n\}$

Hence, we have proven that the program computes m^n and stores the result in the variable z. The $n\geq 0$ is important only for termination, which we have not proven.

Note: in a proof outline, an application of Constancy or Auxiliary Variable Elimination will be denoted by a level of indentation. For example, the application of Constancy above would be written:

```
\{m^{n} = K \land m^{n} = K\}\{m^{n} = K\}from...end\{z = K\}\{z = K \land m^{n} = K\}
```

• 9.9

One can imagine several sound axioms of various strength. However, the following one is known to be equivalent to the well-known backward rule $\{P[e/x]\}x := e\{P\}$:

 $\{P\}x := e\{\exists x', P[x'/x] \land x = e[x'/x]\}, \text{ where } x' \text{ is fresh, i.e. it does not occur free in P or } is the exact of the exact of$ e, and it is not the same variable as x.

In the postcondition, the variable x' can be understood as recording what x used to be. So we can read the triple informally as: after executing x := e, we remember that there used to be something (let's call it x') such that P[x'/x] holds. Furthermore, the value of x is now updated to e where we are careful to replace occurrences of x in e by its old value x'.

9.14

repeat s **until** b = s; while $\neg b$ do s end

So we can propose the rule:

 $\{P\}S\{I\}$ $\{I \land \neg b\}S\{I\}$

 $\{P\}$ **repeat** s **until** b $\{I \land b\}$

To see that the rule is sound (i.e. correct), notice that we can derive it as follows:

 $\{I \land \neg b\} s\{I\}$ -----While {I}while $\neg b$ do s end{I $\land \neg \neg b$ } -----Consequence $\{P\}$ s $\{I\}$ {I}while $\neg b$ do s end{I $\land b$ } -----SequentialComposition

 $\{P\}$ s ; while $\neg b$ do s end $\{I \land b\}$