

Software Verification

Exercise Session 1 Solution

We present proof in outline form - you can also use explicit lists of theorems or proof trees.

• 9.3

{x = a /\ y = b}

{x+y = a+b /\ x = a}

 t := x

{x+y = a+b /\ t = a}

 x := x + y

{x = a+b /\ t = a}

 y := t

{x = a+b /\ y = a}

• 9.6

1)

{z*x
y
 = K}

{(z*x)*x
y-1

 = K}

 z := z*x

{z*x
y-1

 = K}

2)

{z*x
y
 = K}

{(z*x)*x
y-1

 = K}

 y := y-1

{(z*x)*x
y
 = K}

 z := z*x

{z*x
y
 = K}

3)

{y even /\ z*x
y
 = K} // With integer arithmetic, we cannot assume 2(y/2) = y for all y.

{ z*(x
2
)

y/2
 = K}

 y := y/2

{z*(x
2
)

y
 = K}

 x := x
2

{z*x
y
 = K}

4) Here is the inference rule for guarded commands of the form if... [] gi : ci [] ... end:

P => (\/i=1..n gi) ∀i ∊ 1..n . {gi /\ P}ci{Q}

 {P} if... [] gi : ci [] ... end {Q}

Notice that the following implications hold (i.e. they are valid/tautologies):

i) (z*x
y
 = K) => (y odd \/ y even), and

ii) (y odd /\ z*x
y
 = K) => (z*x

y
 = K),

Now we can apply the rule of Consequence with the triple from part 2 and the valid

implication ii to obtain the triple:

{y odd /\ z*x
y
 = K} y := y-1 ; z := z*x {z*x

y
 = K}

This triple, the triple from part 3 and the valid implication i fulfill all the premises of the

rule. We can therefore infer the triple:

{z*x
y
 = K} if y odd : y := y-1 ; z := z*x [] y even : y := y/2 ; x := x

2
 end {z*x

y
 = K}

In proof outline form:

{z*x
y
 = K} // Remember that here is an implicit implication of the \/ of the guards!

 if
 y odd :

 {y odd /\ z*x
y
 = K}

 {z*x
y
 = K}

 {(z*x)*x
y-1

 = K}

 y := y-1

 {(z*x)*x
y
 = K}

 z := z*x

 {z*x
y
 = K}

 []

 y even :

 {y even /\ z*x
y
 = K}

 { z*(x
2
)

y/2
 = K}

 y := y/2

 {z*(x
2
)

y
 = K}

 x := x
2

 {z*x
y
 = K}

 end

{z*x
y
 = K}

• 9.7

Recall the proof rule for from..until commands, where I is the loop invariant:

 {P}c1{I} {I /\ ¬b}c2{I}

 {P} from c1 until b loop c2 end {I /\ b}

It should be clear that z*x
y
 = K is an invariant of the loop.

With the usual backward assertion propatation, we can easily prove the initialization

triple {m
n
 = K} x := m ; y := n ; z := 1 {z*x

y
 = K}.

By the rule of Consequence and the triple from 9.6.4, we also know:

{z*x
y
 = K /\ ¬(y=0)} if y odd : y := y-1 ; z := z*x [] y even : y := y/2 ; x := x

2
 end {z*x

y

= K}.

Hence {m
n
 = K} from...end {z*x

y
 = K /\ y = 0} by the inference rule above, and with

another application of Consequence, we know:

{m
n
 = K} from...end {z = K}

Now since the from...end command did not modify m, n or K, we know that m
n
 = K

still holds afterwards. Formally, we can apply the rule of Constancy:

 {P}c{Q}

 {P /\ R}c{Q /\ R}

provided c does not modify (i.e. assign to) any of the free variables of R.

In this case, the R will be m
n
 = K, so we know:

{m
n
 = K /\ m

n
 = K} from...end {z = K /\ m

n
 = K}

By the rule of Consequence, we again simplify and get:

{m
n
 = K} from...end {z = m

n
}

Next, we can apply the Auxiliary Variable Elimination rule to get rid of K. The rule is:

 {P}c{Q}

 {$v. P}c{$v. Q}

provided v does not occur free in c.

So now we have {$K. m
n
 = K} from...end {$K. z = m

n
}, and we can simplify it with

the rule of Consequence to get:

{true} from...end {z = m
n
}

We can now strengthen the precondition with the rule of Consequence to get:

{m>0 /\ n≥0} from...end {z = m
n
}

Hence, we have proven that the program computes m
n
 and stores the result in the

variable z. The n≥0 is important only for termination, which we have not proven.

Note: in a proof outline, an application of Constancy or Auxiliary Variable Elimination

will be denoted by a level of indentation. For example, the application of Constancy

above would be written:

{m
n
 = K /\ m

n
 = K}

 {m
n
 = K}

 from...end

 {z = K}

{z = K /\ m
n
 = K}

• 9.9

One can imagine several sound axioms of various strength. However, the following one

is known to be equivalent to the well-known backward rule {P[e/x]}x := e{P}:

{P}x := e{$x'. P[x'/x] /\ x = e[x'/x]}, where x' is fresh, i.e. it does not occur free in P or

e, and it is not the same variable as x.

In the postcondition, the variable x' can be understood as recording what x used to be.

So we can read the triple informally as: after executing x := e, we remember that there

used to be something (let's call it x') such that P[x'/x] holds. Furthermore, the value of x

is now updated to e where we are careful to replace occurrences of x in e by its old value

x'.

• 9.14

repeat s until b = s ; while ¬b do s end

So we can propose the rule:

{P}S{I} {I /\ ¬b}S{I}

 {P}repeat s until b{I /\ b}

To see that the rule is sound (i.e. correct), notice that we can derive it as follows:

 {I /\ ¬b}s{I}

 ---------------------------------------While

 {I}while ¬b do s end{I /\ ¬¬b}

 ---------------------------------------Consequence

{P}s{I} {I}while ¬b do s end{I /\ b}

--SequentialComposition

 {P}s ; while ¬b do s end{I /\ b}

