
 

Software Verification 

Exercise Session 1 Solution 

 
We present proof in outline form - you can also use explicit lists of theorems or proof trees. 

 

• 9.3 

 

{x = a  /\  y = b} 

{x+y = a+b  /\  x = a} 

    t := x 

{x+y = a+b  /\  t = a} 

    x := x + y 

{x = a+b  /\  t = a} 

    y := t 

{x = a+b  /\  y = a} 

 

• 9.6 

 

1) 

{z*x
y
 = K} 

{(z*x)*x
y-1

 = K} 

    z := z*x 

{z*x
y-1

 = K} 

 

2) 

{z*x
y
 = K} 

{(z*x)*x
y-1

 = K} 

    y := y-1 

{(z*x)*x
y
 = K} 

    z := z*x 

{z*x
y
 = K} 

 

3) 

{y even  /\  z*x
y
 = K}  // With integer arithmetic, we cannot assume 2(y/2) = y for all y. 

{ z*(x
2
)

y/2
 = K} 

    y := y/2 

{z*(x
2
)

y
 = K} 

    x := x
2
 

{z*x
y
 = K} 

 



4) Here is the inference rule for guarded commands of the form  if... [] gi : ci [] ... end: 

P  =>  (\/i=1..n gi)         ∀i ∊ 1..n .  {gi /\ P}ci{Q} 

------------------------------------------------------- 

               {P} if... [] gi : ci [] ... end {Q} 

 

Notice that the following implications hold (i.e. they are valid/tautologies): 

i)   (z*x
y
 = K) => (y odd  \/  y even),  and 

ii)  (y odd  /\  z*x
y
 = K) => (z*x

y
 = K), 

Now we can apply the rule of Consequence with the triple from part 2 and the valid 

implication ii to obtain the triple: 

{y odd  /\  z*x
y
 = K} y := y-1 ; z := z*x {z*x

y
 = K} 

This triple, the triple from part 3 and the valid implication i fulfill all the premises of the 

rule. We can therefore infer the triple: 

{z*x
y
 = K} if  y odd : y := y-1 ; z := z*x [] y even : y := y/2 ; x := x

2
 end {z*x

y
 = K} 

 

In proof outline form: 

{z*x
y
 = K}         // Remember that here is an implicit implication of the \/ of the guards! 

    if 
           y odd : 

               {y odd  /\  z*x
y
 = K} 

               {z*x
y
 = K} 

               {(z*x)*x
y-1

 = K} 

                       y := y-1 

               {(z*x)*x
y
 = K} 

                       z := z*x 

               {z*x
y
 = K} 

          [] 

           y even : 

                {y even  /\  z*x
y
 = K} 

                { z*(x
2
)

y/2
 = K} 

                       y := y/2 

                {z*(x
2
)

y
 = K} 

                       x := x
2
 

                {z*x
y
 = K} 

   end 

{z*x
y
 = K} 

 

• 9.7 

 

Recall the proof rule for from..until commands, where I is the loop invariant: 

            {P}c1{I}           {I /\ ¬b}c2{I} 

------------------------------------------------- 

  {P} from c1 until b loop c2 end {I /\ b} 

 

It should be clear that z*x
y
 = K is an invariant of the loop.  



With the usual backward assertion propatation, we can easily prove the initialization 

triple  {m
n
 = K} x := m ; y := n ; z := 1 {z*x

y
 = K}. 

By the rule of Consequence and the triple from 9.6.4, we also know: 

{z*x
y
 = K /\ ¬(y=0)} if  y odd : y := y-1 ; z := z*x [] y even : y := y/2 ; x := x

2
 end {z*x

y
 

= K}. 

Hence {m
n
 = K} from...end {z*x

y
 = K  /\  y = 0} by the inference rule above, and with 

another application of Consequence, we know: 

{m
n
 = K} from...end {z = K} 

Now since the from...end command did not modify m, n or K, we know that m
n
 = K 

still holds afterwards. Formally, we can apply the rule of Constancy: 

 

        {P}c{Q} 

---------------------- 

 {P /\ R}c{Q /\ R} 

provided c does not modify (i.e. assign to) any of the free variables of R. 

 

In this case, the R will be m
n
 = K, so we know: 

{m
n
 = K  /\  m

n
 = K} from...end {z = K  /\  m

n
 = K} 

By the rule of Consequence, we again simplify and get: 

{m
n
 = K} from...end {z = m

n
} 

Next, we can apply the Auxiliary Variable Elimination rule to get rid of K. The rule is: 

 

       {P}c{Q} 

--------------------- 

 {$v. P}c{$v. Q} 

provided v does not occur free in c. 

 

So now we have {$K. m
n
 = K} from...end {$K. z = m

n
}, and we can simplify it with 

the rule of Consequence to get: 

{true} from...end {z = m
n
} 

We can now strengthen the precondition with the rule of Consequence to get: 

{m>0  /\  n≥0} from...end {z = m
n
} 

Hence, we have proven that the program computes m
n
 and stores the result in the 

variable z. The n≥0 is important only for termination, which we have not proven. 

 

Note: in a proof outline, an application of Constancy or Auxiliary Variable Elimination 

will be denoted by a level of indentation. For example, the application of Constancy 

above would be written: 

{m
n
 = K  /\  m

n
 = K} 

      {m
n
 = K} 

              from...end 

      {z = K} 

{z = K  /\  m
n
 = K} 

 

 



• 9.9 

 

One can imagine several sound axioms of various strength. However, the following one 

is known to be equivalent to the well-known backward rule {P[e/x]}x := e{P}: 

 

{P}x := e{$x'. P[x'/x] /\ x = e[x'/x]}, where x' is fresh, i.e. it does not occur free in P or 

e, and it is not the same variable as x. 

 

In the postcondition, the variable x' can be understood as recording what x used to be. 

So we can read the triple informally as: after executing x := e, we remember that there 

used to be something (let's call it x') such that P[x'/x] holds. Furthermore, the value of x 

is now updated to e where we are careful to replace occurrences of x in e by its old value 

x'. 

 

• 9.14 

 

repeat s until b   =   s ; while ¬b do s end 

 

So we can propose the rule: 

 

{P}S{I}         {I /\ ¬b}S{I} 

-------------------------------- 

 {P}repeat s until b{I /\ b} 

 

 

To see that the rule is sound (i.e. correct), notice that we can derive it as follows: 

 

                                    {I /\ ¬b}s{I} 

                    ---------------------------------------While 

                     {I}while ¬b do s end{I /\ ¬¬b} 

                    ---------------------------------------Consequence 

{P}s{I}          {I}while ¬b do s end{I /\ b} 

----------------------------------------------------SequentialComposition 

        {P}s ; while ¬b do s end{I /\ b} 


