
 

Software Verification 

Exercise Solution: Separation Logic 
 

 

By application of small axioms and the frame rule, we obtain the following proof outline: 

 

copytree(i; j) = 

 {tree τ i} 

 if i = nil then 

  {tree τ i ˄ i = nil} 

  j := i 

  {tree τ i ˄ i = nil ˄ j = i}    // ... by e.g. Hoare's forward assignment axiom. 

  {empty ˄ τ = ε ˄ i = nil ˄ j = nil * empty} 

  // Facts that do not involve the heap can migrate over * or be duplicated over it: 

  {empty ˄ τ = ε ˄ i = nil * empty ˄ τ = ε ˄ j = nil} 

{tree τ i * tree τ j} 

else 

 newvar i1, i2, v, j1, j2 in 

  {tree τ i ˄ i != nil} 

  {∃j,a,k,τ1,τ2. (ia j,a,k) * (tree τ1 j) * (tree τ2 k) ˄ τ = (τ1,a,τ2)} 

  i1 := [i]; 

  {∃a,k,τ1,τ2. (ia i1,a,k) * (tree τ1 i1) * (tree τ2 k) ˄ τ = (τ1,a,τ2)} 

  v := [i + 1]; 

  {∃k,τ1,τ2. (ia i1,v,k) * (tree τ1 i1) * (tree τ2 k) ˄ τ = (τ1,v,τ2)} 

  i2 := [i + 2]; 

  {∃τ1,τ2. (ia i1,v,i2) * (tree τ1 i1) * (tree τ2 i2) ˄ τ = (τ1,v,τ2)} 

  copytree(i1, j1); 

  {∃τ1,τ2. (ia i1,v,i2) * (tree τ1 i1) * (tree τ1 j1) * (tree τ2 i2) ˄ τ = (τ1,v,τ2)} 

  copytree(i2, j2); 

  {∃τ1,τ2. (ia i1,v,i2) * (tree τ1 i1) * (tree τ1 j1) * (tree τ2 i2) * (tree τ2 j2) ˄ τ = 

(τ1,v,τ2)} 

  j := cons(j1, v, j2); 

  {∃τ1,τ2. (ia i1,v,i2) * (tree τ1 i1) * (tree τ1 j1) * (tree τ2 i2) * (tree τ2 j2) * 

(ja j1,v,j2) ˄ τ = (τ1,v,τ2)} 

  {∃τ1,τ2. (ia i1,v,i2) * (tree τ1 i1) * (tree τ2 i2) * (ja j1,v,j2) * (tree τ1 j1) * 

(tree τ2 j2) ˄ τ = (τ1,v,τ2)} 

  {tree τ i * tree τ j} 

 end 

end 

{tree τ i * tree τ j} 

 



 

Remarks: 
 

There are, as usual, several proofs for the correctness of a single code snippet. For example, we 

can prove the first branch of the if-statement as follows: 

 

  {tree τ i ˄ i = nil} 

  {τ = ε ˄ empty ˄ i = nil} 

  {τ = ε ˄ (empty ˄ i = nil) * (empty ˄ i = nil)}  // By e.g. Hoare's backward axiom: 

j := i 

{τ = ε ˄ (empty ˄ i = nil) * (empty ˄ j = nil)} 

{τ = ε ˄ (tree ε i) * (tree ε j)} 

{tree τ i * tree τ j} 

 

The proof of this code snippet uses only familiar rules of Hoare logic: assignment and 

consequence. The implications used by the rule of consequence are of course now expressed in 

separation logic. 

 

 

The next part of the proof employs the small axioms and the frame rule. It is convenient to use 

the following derived axiom for heap lookup: 

 

{e a e'} x := [e] {e a e' ˄ x = e'} 

provided x does not appear free in e or e'. 

 

 

Here is a detailed proof of the first heap lookup: 

 

{tree τ i ˄ i != nil} 

{∃j,a,k,τ1,τ2. (ia j,a,k) * (tree τ1 j) * (tree τ2 k) ˄ τ = (τ1,a,τ2)} 

 {∃a,k,τ1,τ2. (ia j,a,k) * (tree τ1 j) * (tree τ2 k) ˄ τ = (τ1,a,τ2)} 

 {ia j * ∃a,k,τ1,τ2. (i+1a a,k) * (tree τ1 j) * (tree τ2 k) ˄ τ = (τ1,a,τ2)} 

  {ia j} 

  i1 := [i] 

  {ia j ˄ i1 = j} 

 {(ia j ˄ i1 = j) * ∃a,k,τ1,τ2. (i+1a a,k) * (tree τ1 j) * (tree τ2 k) ˄ τ = (τ1,a,τ2)} 

 {∃a,k,τ1,τ2. (ia j,a,k ˄ i1 = j) * (tree τ1 j) * (tree τ2 k) ˄ τ = (τ1,a,τ2)} 

{∃j,a,k,τ1,τ2. (ia j,a,k ˄ i1 = j) * (tree τ1 j) * (tree τ2 k) ˄ τ = (τ1,a,τ2)} 

{∃j,a,k,τ1,τ2. (ia  i1,a,k) * (tree τ1 i1) * (tree τ2 k) ˄ τ = (τ1,a,τ2)} 

{∃a,k,τ1,τ2. (ia i1,a,k) * (tree τ1 i1) * (tree τ2 k) ˄ τ = (τ1,a,τ2)} 

 

Note that we applied Auxiliary Variable Elimination to quantify only j - the other variables 

were quantified in the frame. In contrast to this, the following detailed proof of the first 

recursive call to copytree uses AuxVarElim to quantify both τ1 and τ2. It includes no quantifiers 



in the frame: 

 

{∃τ1,τ2. (ia i1,v,i2) * (tree τ1 i1) * (tree τ2 i2) ˄ τ = (τ1,v,τ2)} 

 {tree τ1 i1 * (ia i1,v,i2) * (tree τ2 i2) ˄ τ = (τ1,v,τ2)} 

{tree τ1 i1} 

copytree(i1, j1) 

{tree τ1 i1 * tree τ1 j1} 

 {tree τ1 i1 * tree τ1 j1* (ia i1,v,i2) * (tree τ2 i2) ˄ τ = (τ1,v,τ2)} 

 {(ia i1,v,i2) * (tree τ1 i1) * (tree τ1 j1) * (tree τ2 i2) ˄ τ = (τ1,v,τ2)} 

{∃τ1,τ2. (ia i1,v,i2) * (tree τ1 i1) * (tree τ1 j1) * (tree τ2 i2) ˄ τ = (τ1,v,τ2)} 

 

Here is a detailed proof of the final cons command. It is similar to the previous proof because it 

excludes existential quantifies from the frame: 

 

{∃τ1,τ2. (ia i1,v,i2) * (tree τ1 i1) * (tree τ1 j1) * (tree τ2 i2) * (tree τ2 j2) ˄ τ = (τ1,v,τ2)} 

{(ia i1,v,i2) * (tree τ1 i1) * (tree τ1 j1) * (tree τ2 i2) * (tree τ2 j2) ˄ τ = (τ1,v,τ2)} 

{empty * (ia i1,v,i2) * (tree τ1 i1) * (tree τ1 j1) * (tree τ2 i2) * (tree τ2 j2) ˄ τ = (τ1,v,τ2)} 

{empty} 

j := cons(j1, v, j2) 

{ja j1,v,j2} 

{ja j1,v,j2 * (ia i1,v,i2) * (tree τ1 i1) * (tree τ1 j1) * (tree τ2 i2) * (tree τ2 j2) ˄ τ = (τ1,v,τ2)} 

 {ia i1,v,i2 * (tree τ1 i1) * (tree τ1 j1) * (tree τ2 i2) * (tree τ2 j2) * (ja j1,v,j2) ˄ τ = (τ1,v,τ2)} 

{∃τ1,τ2. (ia i1,v,i2) * (tree τ1 i1) * (tree τ1 j1) * (tree τ2 i2) * (tree τ2 j2) * (ja j1,v,j2) ˄ τ = 

(τ1,v,τ2)} 


