Software Verification Exercise Solution: Separation Logic

By application of small axioms and the frame rule, we obtain the following proof outline:

```
copytree(i; j) =
    {tree \tau i}
    if i=nil then
        {tree \taui^i i= nil}
        j := i
        {tree \taui^i=nil^j=i} // ... by e.g. Hoare's forward assignment axiom.
        {empty }\wedge\tau=\varepsilon^i=nil^j= nil * empty
        // Facts that do not involve the heap can migrate over * or be duplicated over it:
        {empty^\tau=\varepsilon^\textrm{i}=\mathrm{ nil * empty ^ }\tau=\varepsilon\wedgej= nil}
        {tree \tau i * tree \tau j}
    else
        newvar i}\mp@subsup{i}{1}{},\mp@subsup{i}{2}{},v,\mp@subsup{j}{1}{},\mp@subsup{j}{2}{}\mathrm{ in
            {tree \taui^ ^ != nil}
            {\existsj,a,k,\mp@subsup{\tau}{1}{},\mp@subsup{\tau}{2}{}.(\textrm{i}\mapsto\textrm{j},\textrm{a},\textrm{k})*(tree \mp@subsup{\tau}{1}{}\textrm{j})*(tree \mp@subsup{\tau}{2}{}\textrm{k})\wedge\tau=(\mp@subsup{\tau}{1}{},\textrm{a},\mp@subsup{\tau}{2}{})}
            i
            {\existsa,k,\mp@subsup{\tau}{1}{},\mp@subsup{\tau}{2}{}.(\textrm{i}\mapsto\mp@subsup{\textrm{i}}{1}{},\textrm{a},\textrm{k})*(tree}\mp@subsup{\tau}{1}{}\mp@subsup{\textrm{i}}{1}{})*(\mathrm{ tree }\mp@subsup{\tau}{2}{}\textrm{k})\wedge\tau=(\mp@subsup{\tau}{1}{},\textrm{a},\mp@subsup{\tau}{2}{})
            v := [i+1];
            {\exists\textrm{k},\mp@subsup{\tau}{1}{},\mp@subsup{\tau}{2}{}.(\textrm{i}\mapsto\mp@subsup{\textrm{i}}{1}{},\textrm{v},\textrm{k})*(tree}\mp@subsup{\tau}{1}{}\mp@subsup{\textrm{i}}{1}{})*(\mathrm{ (ree }\mp@subsup{\tau}{2}{}\textrm{k})\wedge\tau=(\mp@subsup{\tau}{1}{},\textrm{v},\mp@subsup{\tau}{2}{})
            i
            {\exists\mp@subsup{\tau}{1}{},\mp@subsup{\tau}{2}{}.(\textrm{i}\mapsto\mp@subsup{\textrm{i}}{1}{\prime},\textrm{v},\mp@subsup{\textrm{i}}{2}{\prime})*(\mathrm{ tree }\mp@subsup{\tau}{1}{}\mp@subsup{\textrm{i}}{1}{})*(\mathrm{ tree }\mp@subsup{\tau}{2}{}\mp@subsup{\textrm{i}}{2}{})\wedge\tau=(\mp@subsup{\tau}{1}{},\textrm{v},\mp@subsup{\tau}{2}{})}
            copytree(\mp@subsup{i}{1}{},\mp@subsup{\textrm{j}}{1}{});
            {\exists\mp@subsup{\tau}{1}{},\mp@subsup{\tau}{2}{\prime}.(\textrm{i}\mapsto\mp@subsup{\textrm{i}}{1}{},v,\mp@subsup{\textrm{i}}{2}{})*(\mathrm{ tree }\mp@subsup{\tau}{1}{}\mp@subsup{\textrm{i}}{1}{})*(\mathrm{ tree }\mp@subsup{\tau}{1}{}\mp@subsup{\textrm{j}}{1}{})*(\mathrm{ tree }\mp@subsup{\tau}{2}{}\mp@subsup{\textrm{i}}{2}{})\wedge\tau=(\mp@subsup{\tau}{1}{},\textrm{v},\mp@subsup{\tau}{2}{})}
            copytree(i, (, j
            {\exists\mp@subsup{\tau}{1}{},\mp@subsup{\tau}{2}{}.(i\mapsto\mp@subsup{i}{1}{},v,\mp@subsup{i}{2}{})*(tree \mp@subsup{\tau}{1}{}\mp@subsup{\textrm{i}}{1}{})*(\mathrm{ tree }\mp@subsup{\tau}{1}{}\mp@subsup{\textrm{j}}{1}{})*(\mathrm{ tree }\mp@subsup{\tau}{2}{}\mp@subsup{\textrm{i}}{2}{})*(tree \mp@subsup{\tau}{2}{}\mp@subsup{\textrm{j}}{2}{})\wedge\tau=
(\tau 
    j := cons(j (j, v, j
    {\exists\mp@subsup{\tau}{1}{},\mp@subsup{\tau}{2}{}.(\textrm{i}\mapsto\mp@subsup{\textrm{i}}{1}{},v,\mp@subsup{\textrm{i}}{2}{})*(tree \mp@subsup{\tau}{1}{}\mp@subsup{\textrm{i}}{1}{})*(tree \mp@subsup{\tau}{1}{}\mp@subsup{\textrm{j}}{1}{})*(tree \mp@subsup{\tau}{2}{}\mp@subsup{\textrm{i}}{2}{})*(tree \mp@subsup{\tau}{2}{}\mp@subsup{\textrm{j}}{2}{})*
(j\mapsto\mp@subsup{\textrm{j}}{1}{},v,\mp@subsup{\textrm{j}}{2}{})\wedge\tau=(\mp@subsup{\tau}{1}{},\textrm{v},\mp@subsup{\tau}{2}{})}
    {\exists\mp@subsup{\tau}{1}{\prime},\mp@subsup{\tau}{2}{*}.(i\mapsto\mp@subsup{i}{1}{},v,\mp@subsup{i}{2}{})*(tree \mp@subsup{\tau}{1}{}\mp@subsup{i}{1}{})*(tree \mp@subsup{\tau}{2}{}\mp@subsup{i}{2}{})*(j\mapsto\mp@subsup{j}{1}{},v,\mp@subsup{j}{2}{})*(tree \mp@subsup{\tau}{1}{}\mp@subsup{j}{1}{})*
(tree }\mp@subsup{\tau}{2}{}\mp@subsup{\textrm{j}}{2}{})\wedge\tau=(\mp@subsup{\tau}{1}{},\textrm{v},\mp@subsup{\tau}{2}{})
                            {tree \tau i * tree \tau j}
end
    end
    {tree \tau i * tree \tau j}
```


Remarks:

There are, as usual, several proofs for the correctness of a single code snippet. For example, we can prove the first branch of the if-statement as follows:

```
\(\{\) tree \(\tau \mathrm{i} \wedge \mathrm{i}=\) nil \(\}\)
\(\{\tau=\varepsilon \wedge\) empty \(\wedge \mathrm{i}=\) nil \(\}\)
\(\{\tau=\varepsilon \wedge(\) empty \(\wedge \mathrm{i}=\) nil) \(*(\) empty \(\wedge \mathrm{i}=\) nil \()\} / /\) By e.g. Hoare's backward axiom:
\(\mathrm{j}:=\mathrm{i}\)
\(\{\tau=\varepsilon \wedge(\) empty \(\wedge \mathrm{i}=\) nil) \(*(\) empty \(\wedge \mathrm{j}=\) nil \()\}\)
\(\{\tau=\varepsilon \wedge(\) tree \(\varepsilon \mathrm{i}) *(\) tree \(\varepsilon \mathrm{j})\}\)
\(\{\) tree \(\tau \mathrm{i}\) * tree \(\tau \mathrm{j}\) \}
```

The proof of this code snippet uses only familiar rules of Hoare logic: assignment and consequence. The implications used by the rule of consequence are of course now expressed in separation logic.

The next part of the proof employs the small axioms and the frame rule. It is convenient to use the following derived axiom for heap lookup:
$\left\{\mathrm{e} \mapsto \mathrm{e}^{\prime}\right\} \mathrm{x}:=[\mathrm{e}]\left\{\mathrm{e} \mapsto \mathrm{e}^{\prime} \wedge \mathrm{x}=\mathrm{e}^{\prime}\right\}$
provided x does not appear free in e or e^{\prime}.

Here is a detailed proof of the first heap lookup:

```
\(\{\) tree \(\tau\) i \(\wedge \mathrm{i}!=\) nil \(\}\)
\(\left\{\exists \mathrm{j}, \mathrm{a}, \mathrm{k}, \tau_{1}, \tau_{2} .(\mathrm{i} \mapsto \mathrm{j}, \mathrm{a}, \mathrm{k}) *\left(\right.\right.\) tree \(\left.\tau_{1} \mathrm{j}\right) *\left(\right.\) tree \(\left.\left.\tau_{2} \mathrm{k}\right) \wedge \tau=\left(\tau_{1}, \mathrm{a}, \tau_{2}\right)\right\}\)
    \(\left\{\exists \mathrm{a}, \mathrm{k}, \tau_{1}, \tau_{2} .(\mathrm{i} \mapsto \mathrm{j}, \mathrm{a}, \mathrm{k}) *\left(\right.\right.\) tree \(\left.\tau_{1} \mathrm{j}\right) *\left(\right.\) tree \(\left.\left.\tau_{2} \mathrm{k}\right) \wedge \tau=\left(\tau_{1}, \mathrm{a}, \tau_{2}\right)\right\}\)
    \(\left\{\mathrm{i} \mapsto \mathrm{j} * \exists \mathrm{a}, \mathrm{k}, \tau_{1}, \tau_{2} .(\mathrm{i}+1 \mapsto \mathrm{a}, \mathrm{k}) *\left(\right.\right.\) tree \(\left.\tau_{1} \mathrm{j}\right) *\left(\right.\) tree \(\left.\left.\tau_{2} \mathrm{k}\right) \wedge \tau=\left(\tau_{1}, \mathrm{a}, \tau_{2}\right)\right\}\)
            \(\{\mathrm{i} \mapsto \mathrm{j}\}\)
            \(\mathrm{i}_{1}:=\) [i]
            \(\left\{\mathrm{i} \mapsto \mathrm{j} \wedge \mathrm{i}_{1}=\mathrm{j}\right\}\)
    \(\left\{\left(\mathrm{i} \mapsto \mathrm{j} \wedge \mathrm{i}_{1}=\mathrm{j}\right) * \exists \mathrm{a}, \mathrm{k}, \tau_{1}, \tau_{2} .(\mathrm{i}+1 \mapsto \mathrm{a}, \mathrm{k}) *\left(\right.\right.\) tree \(\left.\tau_{1} \mathrm{j}\right) *\left(\right.\) tree \(\left.\left.\tau_{2} \mathrm{k}\right) \wedge \tau=\left(\tau_{1}, \mathrm{a}, \tau_{2}\right)\right\}\)
    \(\left\{\exists \mathrm{a}, \mathrm{k}, \tau_{1}, \tau_{2} .\left(\mathrm{i} \mapsto \mathrm{j}, \mathrm{a}, \mathrm{k} \wedge \mathrm{i}_{1}=\mathrm{j}\right) *\left(\right.\right.\) tree \(\left.\tau_{1} \mathrm{j}\right) *\left(\right.\) tree \(\left.\left.\tau_{2} \mathrm{k}\right) \wedge \tau=\left(\tau_{1}, \mathrm{a}, \tau_{2}\right)\right\}\)
\(\left\{\exists \mathrm{j}, \mathrm{a}, \mathrm{k}, \tau_{1}, \tau_{2} .\left(\mathrm{i} \mapsto \mathrm{j}, \mathrm{a}, \mathrm{k} \wedge \mathrm{i}_{1}=\mathrm{j}\right) *\left(\right.\right.\) tree \(\left.\tau_{1} \mathrm{j}\right) *\left(\right.\) tree \(\left.\left.\tau_{2} \mathrm{k}\right) \wedge \tau=\left(\tau_{1}, \mathrm{a}, \tau_{2}\right)\right\}\)
\(\left\{\exists \mathrm{j}, \mathrm{a}, \mathrm{k}, \tau_{1}, \tau_{2} .\left(\mathrm{i} \mapsto \mathrm{i}_{1}, \mathrm{a}, \mathrm{k}\right) *\left(\right.\right.\) tree \(\left.\tau_{1} \mathrm{i}_{1}\right) *\left(\right.\) tree \(\left.\left.\tau_{2} \mathrm{k}\right) \wedge \tau=\left(\tau_{1}, \mathrm{a}, \tau_{2}\right)\right\}\)
\(\left\{\exists \mathrm{a}, \mathrm{k}, \tau_{1}, \tau_{2} .\left(\mathrm{i} \mapsto \mathrm{i}_{1}, \mathrm{a}, \mathrm{k}\right) *\left(\right.\right.\) tree \(\left.\tau_{1} \mathrm{i}_{1}\right) *\left(\right.\) tree \(\left.\left.\tau_{2} \mathrm{k}\right) \wedge \tau=\left(\tau_{1}, \mathrm{a}, \tau_{2}\right)\right\}\)
```

Note that we applied Auxiliary Variable Elimination to quantify only j - the other variables were quantified in the frame. In contrast to this, the following detailed proof of the first recursive call to copytree uses AuxVarElim to quantify both τ_{1} and τ_{2}. It includes no quantifiers
in the frame:

```
{\exists\mp@subsup{\tau}{1}{},\mp@subsup{\tau}{2}{}.(\textrm{i}\mapsto\mp@subsup{\textrm{i}}{1}{},\textrm{v},\mp@subsup{\textrm{i}}{2}{})*(\mathrm{ tree }\mp@subsup{\tau}{1}{}\mp@subsup{\textrm{i}}{1}{})*(\mathrm{ tree }\mp@subsup{\tau}{2}{}\mp@subsup{\textrm{i}}{2}{})\wedge\tau=(\mp@subsup{\tau}{1}{},\textrm{v},\mp@subsup{\tau}{2}{\prime})}
    {tree }\mp@subsup{\tau}{1}{}\mp@subsup{\textrm{i}}{1}{*}*(\textrm{i}\mapsto\mp@subsup{\textrm{i}}{1}{},\textrm{v},\mp@subsup{\textrm{i}}{2}{})*(\mathrm{ tree }\mp@subsup{\tau}{2}{}\mp@subsup{\textrm{i}}{2}{})\wedge\tau=(\mp@subsup{\tau}{1}{},\textrm{v},\mp@subsup{\tau}{2}{})
        {tree }\mp@subsup{\tau}{1}{}\mp@subsup{\textrm{i}}{1}{}\mathrm{ }
        copytree(i}\mp@subsup{i}{1}{},\mp@subsup{j}{1}{}
        {tree }\mp@subsup{\tau}{1}{}\mp@subsup{\textrm{i}}{1}{}*\mathrm{ tree }\mp@subsup{\tau}{1}{}\mp@subsup{\textrm{j}}{1}{}
    {tree }\mp@subsup{\tau}{1}{}\mp@subsup{\textrm{i}}{1}{}*\mathrm{ tree }\mp@subsup{\tau}{1}{}\mp@subsup{\textrm{j}}{1}{}*(\textrm{i}\mapsto\mp@subsup{\textrm{i}}{1}{},\textrm{v},\mp@subsup{\textrm{i}}{2}{})*(\mathrm{ tree }\mp@subsup{\tau}{2}{}\mp@subsup{\textrm{i}}{2}{})\wedge\tau=(\mp@subsup{\tau}{1}{},\textrm{v},\mp@subsup{\tau}{2}{})
    {(i\mapsto, i
{\exists\mp@subsup{\tau}{1}{},\mp@subsup{\tau}{2}{}.(\textrm{i}\mapsto\mp@subsup{\textrm{i}}{1}{},\textrm{v},\mp@subsup{\textrm{i}}{2}{})*(\mathrm{ tree }\mp@subsup{\tau}{1}{}\mp@subsup{\textrm{i}}{1}{})*(\mathrm{ tree }\mp@subsup{\tau}{1}{}\mp@subsup{\textrm{j}}{1}{})*(\mathrm{ tree }\mp@subsup{\tau}{2}{}\mp@subsup{\textrm{i}}{2}{})\wedge\tau=(\mp@subsup{\tau}{1}{},\textrm{v},\mp@subsup{\tau}{2}{})}
```

Here is a detailed proof of the final cons command. It is similar to the previous proof because it excludes existential quantifies from the frame:

```
{\exists\mp@subsup{\tau}{1}{},\mp@subsup{\tau}{2}{}.(\textrm{i}\mapsto\textrm{i}\mp@subsup{\textrm{i}}{1}{},\textrm{v},\mp@subsup{\textrm{i}}{2}{\prime})*(\mathrm{ tree }\mp@subsup{\tau}{1}{}\mp@subsup{\textrm{i}}{1}{})*(\mathrm{ tree }\mp@subsup{\tau}{1}{}\mp@subsup{\textrm{j}}{1}{})*(\mathrm{ tree }\mp@subsup{\tau}{2}{}\mp@subsup{\textrm{i}}{2}{})*(\mathrm{ tree }\mp@subsup{\tau}{2}{}\mp@subsup{\textrm{j}}{2}{})\wedge\tau=(\mp@subsup{\tau}{1}{},\textrm{v},\mp@subsup{\tau}{2}{})}
    {(i\mapsto\mp@subsup{i}{1}{},v,\mp@subsup{i}{2}{\prime})*(tree }\mp@subsup{\tau}{1}{}\mp@subsup{\textrm{i}}{1}{})*(\mathrm{ tree }\mp@subsup{\tau}{1}{}\mp@subsup{\textrm{j}}{1}{})*(\mathrm{ tree }\mp@subsup{\tau}{2}{}\mp@subsup{\textrm{i}}{2}{})*(\mathrm{ tree }\mp@subsup{\tau}{2}{}\mp@subsup{\textrm{j}}{2}{})\wedge\tau=(\mp@subsup{\tau}{1}{},\textrm{v},\mp@subsup{\tau}{2}{})
    {empty*(i\mapsto, i
            {empty}
            j := cons(j ( , v, j}\mp@subsup{\textrm{j}}{2}{}
            {j\mapsto \mp@subsup{j}{1}{},\textrm{v},\mp@subsup{\mathbf{j}}{2}{}}
    {j\mapsto\mp@subsup{\textrm{j}}{1}{},\textrm{v},\mp@subsup{\textrm{j}}{2}{}*(\textrm{i}\mapsto\mp@subsup{\textrm{i}}{1}{},\textrm{v},\mp@subsup{\textrm{i}}{2}{})*(\mathrm{ tree }\mp@subsup{\tau}{1}{}\mp@subsup{\textrm{i}}{1}{})*(\mathrm{ tree }\mp@subsup{\tau}{1}{}\mp@subsup{\textrm{j}}{1}{})*(\mathrm{ tree }\mp@subsup{\tau}{2}{}\mp@subsup{\textrm{i}}{2}{})*(\operatorname{tree}\mp@subsup{\tau}{2}{}\mp@subsup{\textrm{j}}{2}{})\wedge\tau=(\mp@subsup{\tau}{1}{},\textrm{v},\mp@subsup{\tau}{2}{})}
    {i\mapsto}\mapsto\mp@subsup{\textrm{i}}{1}{},\textrm{v},\mp@subsup{\textrm{i}}{2}{}*(\mathrm{ tree }\mp@subsup{\tau}{1}{}\mp@subsup{\textrm{i}}{1}{})*(\mathrm{ tree }\mp@subsup{\tau}{1}{}\mp@subsup{\textrm{j}}{1}{})*(\mathrm{ tree }\mp@subsup{\tau}{2}{}\mp@subsup{\textrm{i}}{2}{})*(\operatorname{tree}\mp@subsup{\tau}{2}{}\mp@subsup{\textrm{j}}{2}{})*(\textrm{j}\mapsto\mp@subsup{\textrm{j}}{1}{},\textrm{v},\mp@subsup{\textrm{j}}{2}{})\wedge\tau=(\mp@subsup{\tau}{1}{},\textrm{v},\mp@subsup{\tau}{2}{})
```

$\left\{\exists \tau_{1}, \tau_{2} .\left(\mathrm{i} \mapsto \mathrm{i}_{1}, \mathrm{v}, \mathrm{i}_{2}\right) *\left(\right.\right.$ tree $\left.\tau_{1} \mathrm{i}_{1}\right) *\left(\operatorname{tree} \tau_{1} \mathrm{j}_{1}\right) *\left(\right.$ tree $\left.\tau_{2} \mathrm{i}_{2}\right) *\left(\operatorname{tree} \tau_{2} \mathrm{j}_{2}\right) *\left(\mathrm{j} \mapsto \mathrm{j}_{1}, \mathrm{v}, \mathrm{j}_{2}\right) \wedge \tau=$
$\left.\left(\tau_{1}, \mathbf{v}, \tau_{2}\right)\right\}$

