

Software Verification

Exercise Solution: Hoare & Separation logic

Solutions:

1) We introduce the helper variable z. The loop invariant y = z! is crucial for the proof, and can

be found by executing the loop for a couple of iterations with test values.

{true}

{1 = 0!}

y := 1;

{y = 0!}

z := 0;

{y = z!}

while (z != x) {

 {y = z! ˄ z ≠ x}

 {y.(z + 1) = (z + 1)!}

 z := z + 1;

 {y.z = z!}

 y := y * z;

 {y = z!}

}

{y = z! ˄ ¬(z ≠ x)}

{y = x!}

2) The algorithm employs a helper variable k. The proof uses the definition of the list predicate

from the slides (see slide 18). We first give a rather detailed proof outline. You can use fewer

assertions in the exam - the second outline is a good example.

{list (a::as) i}

{∃j. i↦a,j * list as j}

 {i↦a,j * list as j}

 {i↦a}

 dispose(i);

 {empty}

 {i+1↦j * list as j}

 {i+1↦j}

 k := [i+1];

 {i+1↦j ˄ k=j}

 {i+1↦j * list as j ˄ k=j}

 {i+1↦j}

 dispose(i+1);

 {empty}

 {list as j ˄ k=j}

{∃j. list as j ˄ k=j}

{list as k}

 i := k

{list as i}

{list (a::as) i}

{∃j. i↦a,j * list as j}

 {i↦a,j * list as j}

 dispose(i);

 {i+1↦j * list as j}

 k := [i+1];

 {i+1↦j * list as j ˄ k=j}

 dispose(i+1);

 {list as j ˄ k=j}

{∃j. list as j ˄ k=j}

{list as k}

 i := k

{list as i}

