Software Verification Exercise class: Model Checking

Exercises:
Semantics of derived operators

LTL derived operators: eventually

Prove that the satisfaction relation

$$
w, i \vDash<>F
$$

for eventually, defined as:

$$
\langle>F \triangleq \text { True UF }
$$

is equivalent to:
for some $i \leq j \leq n$ it is: $w, j \neq F$

LTL derived operators: eventually

$w, i \vDash<>F$
iff
w, if True U F

(definition of eventually)

iff
for some $i \leq j \leq n$ it is: $w, j \neq F$ and for all $i \leq k<j$ it is $w, k=$ True iff
for some $i \leq j \leq n$ it is: $w, j \neq F$
(simplification of A and True)

LTL derived operators: always

Prove that the satisfaction relation

$$
w, i \neq[] F
$$

for always, defined as:

$$
[] F \triangleq \neg\rangle \neg F
$$

is equivalent to:
for all $i \leq j \leq n$ it is: $w, j \vDash F$

LTL derived operators: always

w, if[] F
iff
$w, i \vDash \neg\langle>\neg F \quad$ (definition of always)
iff
$w, i \vDash<>\rightarrow F$ is not the case (definition of not)
iff
it is not the case that: for some $i \leq j \leq n$ it is: $w, j \vDash \neg F$
(semantics of eventually)
iff
for all $i \leq j \leq n$ it is not the case that $w, j \vDash-F$
(semantics of quantifiers: pushing negation inward)
if
for all $i \leq j \leq n$: it is not the case that it is not the case that $w, j \neq F$
(semantics of negation)
iff

$$
\text { for all } i \leq j \leq n \text { it is: } w, j \neq F
$$

(simplification of double negation)

Exercises:

Evaluate LTL formulas on automata

Does the property hold?

[] (start \Rightarrow <> stop)

Does the property hold?

[] (start \Rightarrow <> stop)

Yes:
. whenever start occurs we reach state closed-cooking

- we must eventually exit state closed-cooking to reach the only accepting state closed-off
- state closed-cooking can be exited only if stop occurs

Does the property hold?

[] <> turn_off

Does the property hold?

[] <> turn_off
 No:

- counterexample: pull push

Does the property hold?

Does the property hold?

Does the property hold?

<> (turn_off v push)

Does the property hold?

<> (turn_off V push)

No:

- counterexample: the empty word (compare the semantics of existential quantification against universal
quantification)

Does the property hold?

[] False

<> (turn_off v push)

Does the property hold?

[] False V

<> (turn_off V push)

Yes:

- "always False" means that False holds at every step in the word: it is satisfied precisely by the empty word
- if the word is not empty, then it must end with turn_off or push, thus it satisfies the other disjunct

Does the property hold?

turn_on U start

 Vpull U push

Does the property hold?

turn_on U start

V pull U push

No:

- counterexample: the empty word
- counterexample: turn_on turn_off
- counterexample:
turn_on pull push turn_off

Does the property hold?

Does the property hold?

[] (start \Rightarrow (cook U <>turn_off))

Yes:

- once start occurs, turn_off must occur eventually
- hence "eventually turn_off" is the case right after start occurs
- cook can occur right after start occurs, one or more times

Exercises:

Equivalence of LTL formulas

Equivalence of formulas

Prove that <> is idempotent, that is:
<><> q
is equivalent to:
<> q

Equivalence of formulas

$w, i=$ <>> q
iff
for some $i \leq j \leq n$ it is: $w, j \vDash<>q$
for some $i \leq j \leq n$ it is: for some $j \leq h \leq n$ it is: $w, h \neq q$ (semantics of eventually)
iff
for some $i \leq j \leq h \leq n$ it is: $w, h \neq q$

> (merging of intervals)
iff
for some $i \leq h \leq n$ it is: $w, h \neq q$
(dropping j, a fortiori)
iff

$$
w, i \neq \ll q
$$

Equivalence of formulas

Prove that:
$p \cup<>q$
is equivalent to:
<> q

Equivalence of formulas: \Rightarrow direction

```
w,i f p U <> q
```

iff
for some $i \leq j \leq n$ it is: $w, j \vDash<>q$
and for all $i \leq k<j$ it is $w, k \neq p$
implies

$$
\text { for some } i \leq j \leq n \text { it is: } w, j \vDash<>q
$$

iff
for some $i \leq j \leq n$ it is: for some $j \leq h \leq n$ it is: $w, h \vDash q$

$$
\text { for some } i \leq h \leq n \text { it is: } w, h \neq q
$$

(simplification of range of quantification)
iff

$$
w, i \neq<>q
$$

Equivalence of formulas: \Leftarrow direction

```
w,i F<>q
iff
for some i\leqj\leqi:w,j F<>q
(singleton range of quantification)
iff
for some i\leqj\leqi:w,jk<>q and True
(semantics of and)
iff
for some i\leqj\leqi:w,j\vDash<>q
and for all i\leqk< j=i it is w, k F p
(semantics of universally quantified empty range)
implies
```

for some $i \leq j \leq n: w, j \vDash<>q$
and for all $i \leq k<j$ it is $w, k \neq p$
(a fortiori)
iff

$$
w, i \neq p U<>q
$$

(semantics of until)

Exercises: Automata-theoretic model-checking (on paper)

Automata-based model checking

[] <> turn_off

Let us prove by model checking that it's not a property of the automaton

LTL2FSA

Build an automaton with the same language as:

$\neg([]<>$ turn_off)

Let us start from the unnegated formula:
[] <> turn_off
and then complement the states of the automaton

LTL2FSA

[] <> turn_off

LTL2FSA

\bigcirc

-([] «> turn_off)

FSA Intersection

FSA Intersection

FSA-Emptiness: node reachability

Any accepting run on the intersection automaton is a counterexample to the LTL formula being a property of the automaton

- pull push
- pull push pull push

