

Chair of Software Engineering

Software Verification Exercise class: Model Checking

Exercises: Semantics of derived operators

LTL derived operators: eventually

Prove that the satisfaction relation

w,i⊧ <> F

for eventually, defined as:

 \leftrightarrow F \triangleq True U F

is equivalent to:

for some $i \leq j \leq n$ it is: $w, j \models F$

LTL derived operators: eventually

w,i⊧ <> F

iff

w, i = True U F (definition of eventually)

for some $i \le j \le n$ it is: w, $j \models F$ and for all $i \le k < j$ it is w, $k \models True$ (definition of until) iff

for some $i \leq j \leq n$ it is: $w, j \models F$

(simplification of A and True)

LTL derived operators: always

Prove that the satisfaction relation

w,i⊧[]F

for always, defined as:

is equivalent to:

for all $i \leq j \leq n$ it is: w, $j \models F$

(。)

LTL derived operators: always

```
w,i⊧[]F
iff
w, i \models \neg \leftrightarrow \neg F (definition of always)
iff
w, i \models \leftrightarrow \neg F is not the case (definition of not)
iff
                           it is not the case that: for some i \le j \le n it is: w, j \models \neg F
(semantics of eventually)
iff
                           for all i \leq j \leq n it is not the case that w, j \models \neg F
(semantics of quantifiers: pushing negation inward)
iff
                           for all i \leq j \leq n: it is not the case that it is not the case that w, j \models F
(semantics of negation)
iff
                           for all i \leq j \leq n it is: w, j \models F
```

(simplification of double negation)

6

Exercises: Evaluate LTL formulas on automata

()

 \bigcirc

[] (start \Rightarrow \leftrightarrow stop)

Yes:

- whenever start occurs we reach state closed-cooking
- we must eventually exit state closed-cooking to reach the only accepting state closed-off
- state closed-cooking can be exited only if stop occurs

 \bigcirc

 \bigcirc

 \bigcirc

es:

- "always False" means that False holds at every step in the word: it is satisfied precisely by the empty word
- if the word is not empty, then it must end with turn_off or push, thus it satisfies the other disjunct

turn_on U start v pull U push

No:

- counterexample: the empty word
- counterexample: turn_on turn_off
- counterexample: turn_on pull push turn_off

 \bigcirc

Yes:

- once start occurs, turn_off must occur eventually
- hence "eventually turn_off" is the case right after start occurs
- cook can occur right after start occurs, one or more times

Exercises: Equivalence of LTL formulas

()

Equivalence of formulas

Prove that <> is idempotent, that is:

<><> q

is equivalent to:

23

Equivalence of formulas

```
w_i \models \leftrightarrow q
iff
for some i \leq j \leq n it is: w, j \models \leftrightarrow q
                                                                               (semantics of eventually)
iff
                       for some i \leq j \leq n it is: for some j \leq h \leq n it is: w, h \models q
                                                                          (semantics of eventually)
iff
                       for some i \leq j \leq h \leq n it is: w, h \models q
                                                                               (merging of intervals)
iff
                       for some i \leq h \leq n it is: w, h \models q
                                                                               (dropping j, a fortiori)
iff
                                  w, i \models \leftrightarrow q
                                                                          (semantics of eventually)
```

6

Equivalence of formulas

Prove that:

p **U** <> q

is equivalent to:

()

Equivalence of formulas: \Rightarrow **direction**

```
w,i ⊧ p U ↔ q
iff
for some i \leq j \leq n it is: w, j \models \leftrightarrow q
and for all i \leq k < j it is w, k \models p
                                                                                   (semantics of until)
implies
                        for some i \leq j \leq n it is: w, j \models \leftrightarrow q
                                                                                               (a fortiori)
iff
for some i \leq j \leq n it is: for some j \leq h \leq n it is: w, h \models q
                                                                              (semantics of eventually)
iff
                    for some i \leq h \leq n it is: w, h \models q
                                                            (simplification of range of quantification)
iff
                                                                                   (semantics of eventually)
                                    w, i ⊧ ↔ q
```

Equivalence of formulas: \leftarrow **direction**

```
w,i ⊧ ↔ q
iff
for some i \le j \le i: w, j \models \leftrightarrow q
                                                                                     (singleton range of quantification)
iff
for some i \le j \le i: w, j \models \leftrightarrow q and True
                                                                                   (semantics of and)
iff
for some i \le j \le i: w, j \models \leftrightarrow q
and for all i \leq k < j=i it is w, k \models p
                                                                (semantics of universally quantified empty range)
implies
                   for some i \le j \le n: w, j \models \rightsquigarrow q
                   and for all i \leq k < j it is w, k \models p
                                                                                                (a fortiori)
iff
                          w, i ⊧ p U ↔ q
                                                                                   (semantics of until)
```

Exercises: Automata-theoretic model-checking (on paper)

Automata-based model checking

[] <> turn_off

Let us prove by model checking that it's not a property of the automaton

LTL2FSA

Build an automaton with the same language as:

```
¬([] <> turn_off )
```

Let us start from the unnegated formula:

[] <> turn_off

and then complement the states of the automaton

LTL2FSA

 \bigcirc

FSA Intersection

FSA Intersection

FSA-Emptiness: node reachability

Any accepting run on the intersection automaton is a counterexample to the LTL formula being a property of the automaton

