
Chair of Software Engineering

Software Verification

Exercise class:

Model Checking

2

Exercises:

Semantics of derived operators

3

LTL derived operators: eventually

Prove that the satisfaction relation

 w, i ⊧ <> F

for eventually, defined as:

 <> F ≜ True U F

is equivalent to:

 for some i ≤ j ≤ n it is: w, j ⊧ F

4

LTL derived operators: eventually

w, i ⊧ <> F

 iff

w, i ⊧ True U F (definition of eventually)

 iff

for some i ≤ j ≤ n it is: w, j ⊧ F

and for all i ≤ k < j it is w, k ⊧ True (definition of until)

 iff

for some i ≤ j ≤ n it is: w, j ⊧ F

 (simplification of A and True)

5

LTL derived operators: always

Prove that the satisfaction relation

 w, i ⊧ [] F

for always, defined as:

 [] F ≜ ¬ <> ¬F

is equivalent to:

 for all i ≤ j ≤ n it is: w, j ⊧ F

6

LTL derived operators: always

w, i ⊧ [] F

iff

w, i ⊧ ¬ <> ¬F (definition of always)

iff

w, i ⊧ <> ¬F is not the case (definition of not)

iff
 it is not the case that: for some i ≤ j ≤ n it is: w, j ⊧ ¬F

(semantics of eventually)

iff
 for all i ≤ j ≤ n it is not the case that w, j ⊧ ¬F

(semantics of quantifiers: pushing negation inward)

iff
 for all i ≤ j ≤ n: it is not the case that it is not the case that w, j ⊧ F

(semantics of negation)

iff
 for all i ≤ j ≤ n it is: w, j ⊧ F

(simplification of double negation)

7

Exercises:

Evaluate LTL formulas on automata

8

Does the property hold?

[] (start ⇒ <> stop)

9

Does the property hold?

[] (start ⇒ <> stop)

Yes:
• whenever start occurs we

reach state closed-cooking
• we must eventually exit

state closed-cooking to

reach the only accepting

state closed-off

• state closed-cooking can be

exited only if stop occurs

10

Does the property hold?

[] <> turn_off

11

Does the property hold?

[] <> turn_off

No:

• counterexample:

 pull push

12

Does the property hold?

[] <> (turn_off∨push)

13

Does the property hold?

[] <> (turn_off∨push)

Yes:

• every accepting run

eventually goes back to

state closed-off

• state closed-off can be

reached only if either

turn_off or push occurs

• the empty word is also

compliant with the

semantics of the always

operator

14

Does the property hold?

<> (turn_off ∨ push)

15

Does the property hold?

<> (turn_off ∨ push)

No:

• counterexample:

the empty word

(compare the semantics of

existential quantification

against universal

quantification)

16

Does the property hold?

 [] False

 ∨

<> (turn_off ∨ push)

17

Does the property hold?

Yes:

• “always False” means that False

holds at every step in the word:

it is satisfied precisely by the

empty word

• if the word is not empty, then

it must end with turn_off or

push, thus it satisfies the

other disjunct

 [] False

 ∨

<> (turn_off ∨ push)

18

Does the property hold?

 turn_on U start

 ∨

 pull U push

19

Does the property hold?

No:

• counterexample:

the empty word

• counterexample:

turn_on turn_off

• counterexample:

turn_on pull push turn_off

 turn_on U start

 ∨

 pull U push

20

Does the property hold?

 [] (start ⇒

(cook U <>turn_off))

21

Does the property hold?

Yes:

• once start occurs, turn_off

must occur eventually

• hence “eventually turn_off”

is the case right after start

occurs

• cook can occur right after

start occurs, one or more

times

 [] (start ⇒

(cook U <>turn_off))

22

Exercises:

Equivalence of LTL formulas

23

Equivalence of formulas

Prove that <> is idempotent, that is:

<><> q

is equivalent to:

<> q

24

Equivalence of formulas

w,i ⊧ <><> q

iff

for some i ≤ j ≤ n it is: w, j ⊧ <> q (semantics of eventually)

iff
 for some i ≤ j ≤ n it is: for some j ≤ h ≤ n it is: w, h ⊧ q
 (semantics of eventually)

iff

 for some i ≤ j ≤ h ≤ n it is: w, h ⊧ q
 (merging of intervals)

iff
 for some i ≤ h ≤ n it is: w, h ⊧ q
 (dropping j, a fortiori)

iff
 w, i ⊧ <> q
 (semantics of eventually)

25

Equivalence of formulas

Prove that:

p U <> q

is equivalent to:

<> q

26

Equivalence of formulas: ⇒ direction

w,i ⊧ p U <> q

iff

for some i ≤ j ≤ n it is: w, j ⊧ <> q

and for all i ≤ k < j it is w, k ⊧ p (semantics of until)

implies
 for some i ≤ j ≤ n it is: w, j ⊧ <> q (a fortiori)

iff

for some i ≤ j ≤ n it is: for some j ≤ h ≤ n it is: w, h ⊧ q
 (semantics of eventually)

iff
 for some i ≤ h ≤ n it is: w, h ⊧ q
 (simplification of range of quantification)

iff
 w, i ⊧ <> q (semantics of eventually)

27

Equivalence of formulas: ⇐ direction

w,i ⊧ <> q

iff

for some i ≤ j ≤ i: w, j ⊧ <> q (singleton range of quantification)

iff

for some i ≤ j ≤ i: w, j ⊧ <> q and True (semantics of and)

iff

for some i ≤ j ≤ i: w, j ⊧ <> q

and for all i ≤ k < j=i it is w, k ⊧ p (semantics of universally quantified empty range)

implies

 for some i ≤ j ≤ n: w, j ⊧ <> q

 and for all i ≤ k < j it is w, k ⊧ p (a fortiori)

iff
 w, i ⊧ p U <> q (semantics of until)

28

Exercises:

Automata-theoretic model-checking

(on paper)

29

Automata-based model checking

[] <> turn_off

Let us prove by

model checking that

it's not a property

of the automaton

30

LTL2FSA

Build an automaton with the same language as:

 ¬([] <> turn_off)

Let us start from the unnegated formula:

 [] <> turn_off

and then complement the states of the automaton

31

LTL2FSA

[] <> turn_off

32

LTL2FSA

¬([] <> turn_off)

33

FSA Intersection

x

34

FSA Intersection

35

FSA-Emptiness: node reachability

Any accepting run on the intersection automaton is a

counterexample to the LTL formula being a property of

the automaton

pull push

pull push pull push

...

