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Exercises: 

Semantics of derived operators 
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LTL derived operators: eventually 

Prove that the satisfaction relation 

 

     w, i ⊧ <> F 

 

for eventually, defined as: 

 

     <> F  ≜ True U F 

 

is equivalent to: 

 

                 for some i ≤ j ≤ n it is: w, j ⊧ F 
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LTL derived operators: eventually 

w, i ⊧ <> F 

 iff 

w, i ⊧ True U F        (definition of eventually) 

 iff 

for some i ≤ j ≤ n it is: w, j ⊧ F 

and for all i ≤ k < j it is w, k ⊧ True  (definition of until) 

 iff 

for some i ≤ j ≤ n it is: w, j ⊧ F 

        (simplification of A and True) 
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LTL derived operators: always 

Prove that the satisfaction relation 

 

     w, i ⊧ [] F 

 

for always, defined as: 

 

     [] F  ≜ ¬ <> ¬F 

 

is equivalent to: 

 

                   for all i ≤ j ≤ n it is: w, j ⊧ F 
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LTL derived operators: always 

w, i ⊧ [] F 

iff 

w, i ⊧ ¬ <> ¬F  (definition of always) 

iff 

w, i ⊧ <> ¬F   is not the case  (definition of not) 

iff 
  it is not the case that:  for some i ≤ j ≤ n it is: w, j ⊧ ¬F 

(semantics of eventually) 

iff 
  for all i ≤ j ≤ n it is not the case that w, j ⊧ ¬F 

(semantics of quantifiers: pushing negation inward) 
 

iff 
  for all i ≤ j ≤ n: it is not the case that it is not the case that w, j ⊧ F 

(semantics of negation) 

iff 
  for all i ≤ j ≤ n it is: w, j ⊧ F 

(simplification of double negation) 
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Exercises: 

Evaluate LTL formulas on automata 
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Does the property hold? 

[] (start ⇒ <> stop) 
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Does the property hold? 

[] (start ⇒ <> stop) 

Yes: 
• whenever start occurs we 

reach state closed-cooking 
• we must eventually exit 

state closed-cooking to 

reach the only accepting 

state closed-off 

• state closed-cooking can be 

exited only if stop occurs 
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Does the property hold? 

[] <> turn_off 
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Does the property hold? 

[] <> turn_off 

No: 

• counterexample: 

 pull push 
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Does the property hold? 

[] <> (turn_off∨push) 
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Does the property hold? 

[] <> (turn_off∨push) 

Yes: 

• every accepting run 

eventually goes back to 

state closed-off 

• state closed-off can be 

reached only if either 

turn_off or push occurs 

• the empty word is also 

compliant with the 

semantics of the always 

operator 
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Does the property hold? 

<> (turn_off ∨ push) 
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Does the property hold? 

<> (turn_off ∨ push) 

No: 

• counterexample: 

the empty word 

(compare the semantics of 

existential quantification 

against universal 

quantification) 
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Does the property hold? 

 [] False 

  ∨ 

<> (turn_off ∨ push) 
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Does the property hold? 

Yes: 

• “always False” means that False 

holds at every step in the word: 

it is satisfied precisely by the 

empty word 

• if the word is not empty, then 

it must end with turn_off or 

push, thus it satisfies the 

other disjunct 

 [] False 

  ∨ 

<> (turn_off ∨ push) 
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Does the property hold? 

 turn_on U start 

 ∨ 

   pull U push 
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Does the property hold? 

No: 

• counterexample: 

the empty word 

• counterexample: 

turn_on turn_off 

• counterexample: 

turn_on pull push turn_off 

 turn_on U start 

 ∨ 

   pull U push 
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Does the property hold? 

 [] (   start ⇒ 

(cook U <>turn_off) ) 
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Does the property hold? 

Yes: 

• once start occurs, turn_off 

must occur eventually 

• hence “eventually turn_off” 

is the case right after start 

occurs 

• cook can occur right after 

start occurs, one or more 

times 

 [] (   start ⇒ 

(cook U <>turn_off) ) 
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Exercises: 

Equivalence of LTL formulas 
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Equivalence of formulas 

Prove that <> is idempotent, that is: 

 

<><> q 

 

is equivalent to: 

 

<> q 



24 

Equivalence of formulas 

w,i ⊧  <><> q 

iff 

for some i ≤ j ≤ n it is: w, j ⊧ <> q      (semantics of eventually) 

iff 
   for some i ≤ j ≤ n it is: for some j ≤ h ≤ n it is: w, h ⊧ q 
            (semantics of eventually) 

iff 

  for some i ≤ j ≤ h ≤ n it is: w, h ⊧ q 
            (merging of intervals) 

iff 
  for some i ≤ h ≤ n it is: w, h ⊧ q   
            (dropping j, a fortiori) 

iff 
     w, i ⊧ <> q            
           (semantics of eventually) 
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Equivalence of formulas 

Prove that: 

 

p U <> q 

 

is equivalent to: 

 

<> q 
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Equivalence of formulas: ⇒ direction 

w,i ⊧ p U <> q 

iff 

for some i ≤ j ≤ n it is: w, j ⊧ <> q 

and for all i ≤ k < j it is w, k ⊧ p        (semantics of until) 

implies 
     for some i ≤ j ≤ n it is: w, j ⊧ <> q     (a fortiori) 

iff 

for some i ≤ j ≤ n it is: for some j ≤ h ≤ n it is: w, h ⊧ q 
                (semantics of eventually) 

iff 
    for some i ≤ h ≤ n it is: w, h ⊧ q 
        (simplification of range of quantification) 

iff 
     w, i ⊧ <> q      (semantics of eventually) 



27 

Equivalence of formulas: ⇐ direction 

w,i ⊧ <> q 

iff 

for some i ≤ j ≤ i: w, j ⊧ <> q            (singleton range of quantification) 

iff 

for some i ≤ j ≤ i: w, j ⊧ <> q        and True     (semantics of and) 

iff 

for some i ≤ j ≤ i: w, j ⊧ <> q 

and for all i ≤ k < j=i it is w, k ⊧ p    (semantics of universally quantified empty range) 

implies 

 for some i ≤ j ≤ n: w, j ⊧ <> q 

 and for all i ≤ k < j it is w, k ⊧ p        (a fortiori) 

iff 
  w, i ⊧ p U <> q         (semantics of until) 
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Exercises: 

Automata-theoretic model-checking 

(on paper) 
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Automata-based model checking 

[] <> turn_off 

Let us prove by 

model checking that 

it's not a property 

of the automaton 
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LTL2FSA 

Build an automaton with the same language as: 
                      
  ¬( [] <> turn_off ) 
 

Let us start from the unnegated formula: 

 [] <> turn_off 

and then complement the states of the automaton 
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LTL2FSA 

[] <> turn_off 
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LTL2FSA 

¬( [] <> turn_off ) 
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FSA Intersection 

x 
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FSA Intersection 
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FSA-Emptiness: node reachability 

Any accepting run on the intersection automaton is a 

counterexample to the LTL formula being a property of 

the automaton 

pull push 

pull push pull push 

... 


