
Software Verification
Exercise Solution: Software Model Checking

The routine we consider is:

always_positive (x: INTEGER): INTEGER
if x > 0 then
 Result := x + x

 else
 if x = 0 then
 Result := 1
 else
 Result := x * x
 end
 end
ensure Result > 0 end

(a) We build the predicate abstraction of always_positive in an incremental fashion.
1. Normalize the conditions appearing in conditionals and loops. We get

always_positive_1 (x: INTEGER): INTEGER

if ? then
 assume x > 0

Result := x + x
else
 assume x <= 0

 if ? then
 assume x = 0
 Result := 1
 else
 assume x /= 0
 Result := x * x
 end

end
ensure Result > 0 end

2. We rewrite the assume statements, and apply common simplifications to the
logical formulae as well as peephole optimizations.

i. For assume x > 0:

¬ Pred(¬ x > 0) = ¬ Pred(x <= 0) = ¬ ¬ pos = pos
So we will add assume pos.

We must also take into account the effect of the assume statement on pos
and Rpos:

For pos:
wp(assume x > 0, x > 0) = (x > 0 => x > 0) = True
Pred(True) = True
So we must include the update
if True then pos := True else if ... else ... end,
which simplifies to pos := True.

For Rpos:
wp(assume x > 0, Result > 0) = (x > 0 => Result > 0)
Pred(x > 0 => Result > 0) = (pos => Rpos).
Similarly, wp(assume x > 0, Result <= 0) = (x > 0 => Result <= 0)
Pred(x > 0 => Result <= 0) = (pos => ¬ Rpos)
So we get
if pos => Rpos then
 Rpos := True
else if pos => ¬ Rpos then
 Rpos := False
else Rpos := ?
end
Since we just assumed pos in the code, we can apply the peephole
optimization and remove this update, since it will have no effect on the
value of Rpos.

Hence assume x > 0 becomes assume pos; pos := True in the abstraction.

ii. For assume x <= 0:
¬ Pred(¬ x <= 0) = ¬ Pred(x > 0) = ¬ pos
So we will add assume ¬ pos in the abstraction.

The effect on pos:
wp(assume x <= 0, x > 0) = (x <= 0 => x > 0) = x > 0
Pred(x > 0) = pos.
Similarly, wp(assume x <= 0, x <= 0) = (x <= 0 => x <= 0) = True
Pred(True) = True.
So we have
if pos then
 pos := True
else if True then
 pos := False

else pos := ? end
Since we just assumed ¬ pos in the abstraction, we can simplify this
update to pos := False.

The effect on Rpos:
wp(assume x <= 0, Result > 0) = (x <= 0 => Result > 0)
Pred(x <= 0 => Result > 0) = (¬ pos => Rpos) = Rpos because of a
peephole optimization.
wp(assume x <= 0, Result <= 0) = (x <= 0 => Result <= 0)
Pred(x <= 0 => Result <= 0) = (¬ pos => ¬ Rpos) = ¬ Rpos because of the
same peephole optimization.
So we have
if Rpos then
 Rpos := True
else if ¬ Rpos then
 Rpos := False
else Rpos := ? end
which can be eliminated.

Hence assume x <= 0 becomes assume ¬ pos; pos := False.

iii. For assume x = 0:
¬ Pred(¬ x = 0) = ¬ pos
So we will add assume ¬ pos in the abstraction.

The effect on pos:
wp(assume x = 0, x > 0) = (x = 0 => x > 0) = (x /= 0)
Pred(x /= 0) = pos
Similarly, wp(assume x = 0, x <= 0) = (x = 0 => x <= 0) = True
Pred(True) = True
So we have the update:
if pos then
 pos := True
else if True then
 pos := False
else pos := ? end
which becomes pos := False when we do a peephole simplification.

The effect on Rpos:
wp(assume x = 0, Result > 0) = (x = 0 => Result > 0)
Pred(x = 0 => Result > 0) = pos \/ Rpos
Similarly, wp(assume x = 0, Result <= 0) = (x = 0 => Result <= 0)
Pred(x = 0 => Result <= 0) = pos \/ ¬ Rpos
Applying peephole optimization, we see that the update will not have any
effect and can be removed.

Hence assume x = 0 becomes assume ¬ pos; pos := False.

iv. For assume x /= 0:
¬ Pred(¬ x /= 0) = ¬ Pred(x = 0) = ¬ False = True
So we do not need to add an assume statement to the abstraction.

The effect on pos:
wp(assume x /= 0, x > 0) = (x /= 0 => x > 0) = (x >= 0)
Pred(x >= 0) = pos
wp(assume x /= 0, x <= 0) = (x /= 0 => x <= 0) = (x <= 0)
Pred(x <= 0) = ¬ pos
So the assume has no effect on the value of pos.

The effect on Rpos:
wp(assume x /= 0, Result > 0) = (x /= 0 => Result > 0)
Pred(x /= 0 => Result > 0) = Rpos
wp(assume x /= 0, Result <= 0) = (x /= 0 => Result <= 0)
Pred(x /= 0 => Result <= 0) = ¬ Rpos
So assume x /= 0 has no effect on the value of Rpos.

Hence assume x /= 0 becomes skip.

After transforming the assume statements, we also abstract the postcondition and
get:

always_positive_2 (x: INTEGER): INTEGER

if ? then
 assume pos; pos := True

Result := x + x
else
 assume ¬ pos; pos := False

 if ? then
 assume ¬ pos; pos := False
 Result := 1
 else
 skip
 Result := x * x
 end

end
ensure Rpos end

3. Lastly, we transform the assignment statements.
i. The assignment Result := x + x.

The effect on pos:
wp(Result := x + x, x > 0) = (x > 0)
Pred(x > 0) = pos
wp(Result := x + x, x <= 0) = (x <= 0)
Pred(x <= 0) = ¬ pos
So the assignment has no effect on pos.

The effect on Rpos:
wp(Result := x + x, Result > 0) = (x + x > 0)
Pred(x + x > 0) = pos
wp(Result := x + x, Result <= 0) = (x + x <= 0)
Pred(x + x <= 0) = ¬ pos
So we have the update:
if pos then
 Rpos := True
else if ¬ pos then
 Rpos := False
else Rpos := ?
end
which can be simplified by a peephole optimization to Rpos := True.

Hence Result := x + x is transformed into Rpos := True.

ii. The assignment Result := 1.

The effect on pos:
wp(Result := 1, x > 0) = (x > 0)
Pred(x > 0) = pos
wp(Result := 1, x <= 0) = (x <= 0)
Pred(x <= 0) = ¬ pos
So Result := 1 has no effect on pos.

The effect on Rpos:
wp(Result := 1, Result > 0) = (1 > 0) = True
Pred(True) = True
So Result := 1 has the effect Rpos := True.

Hence Result := 1 is transformed into Rpos := True.

iii. The assignment Result := x * x.

The effect on pos:
wp(Result := x * x, x > 0) = (x > 0)
Pred(x > 0) = pos
wp(Result := x * x, x <= 0) = (x <= 0)

Pred(x <= 0) = ¬ pos
So Result := x * x has no effect on pos.

The effect on Rpos:
wp(Result := x * x, Result > 0) = (x * x > 0) = (x /= 0)
Pred(x /= 0) = pos
wp(Result := x * x, Result <= 0) = (x * x <= 0) = (x = 0)
Pred(x = 0) = False
The update:
if pos then
 Rpos := True
else if False then
 Rpos := False
else Rpos := ? end
can be simplified with a peephole optimization to become Rpos := ?.

Hence Result := x * x is transformed into Rpos := ?.

The resulting abstraction looks as follows:

always_positive_3 (x: INTEGER): INTEGER

if ? then
 assume pos; pos := True

Rpos := True
else
 assume ¬ pos; pos := False

 if ? then
 assume ¬ pos; pos := False
 Rpos := True
 else
 skip
 Rpos := ?
 end

end
ensure Rpos end

(b) No, we cannot verify the abstraction always_positive_3.

Here is a counterexample run:
{¬ pos, ¬ Rpos}
[¬ ?]
{¬ pos, ¬ Rpos}
assume ¬ pos; pos := False
{¬ pos, ¬ Rpos}
[¬ ?]

{¬ pos, ¬ Rpos}
Rpos := ?
{¬ pos, ¬ Rpos}

It corresponds to the following concrete run, for which we computed the weakest
precondition with respect to x <= 0 /\ Result <= 0:
{x <= 0 /\ x2 <= 0 /\ ¬ x = 0 /\ ¬ x > 0} // Equivalent to False.
[¬ x > 0]
{x <= 0 /\ x2 <= 0 /\ ¬ x = 0} // Equivalent to False.
[¬ x = 0]
{x <= 0 /\ x2 <= 0} // Equivalent to x = 0
Result := x * x
{x <= 0 /\ Result <= 0}

Since two of the concrete assertions are not satisfiable (equivalent to False), we know
that the conjunctions of these assertions will their abstract counterparts will not be
satisfiable either. Hence the abstract run is spurious, and calls for abstraction refinement.

 Cheat sheet for the translation of assume statements and assignments

Assume statements
A statement assume ex end
gets translated into assume ¬(Pred(¬ex)) end
plus a parallel assignment such that:
For each p(i),
 if ex => e(i), add p(i) := True to the parallel assignment
 if ex => ¬e(i), add p(i) := False to the parallel assignment
 else omit p(i) from the parallel assignment.
This parallel assignment is equivalent to the sequence of individual assignments,
because all of them assign constants to different variables.

Assignments
If an assignment statement does not modify any of e(i)’s free variables, then the
assignment will leave p(i) unchanged.

