Software Verification
 Exercise Solution: Software Model Checking

The routine we consider is:

```
always_positive (x: INTEGER): INTEGER
    if \(x>0\) then
            Result := \(\mathrm{x}+\mathrm{x}\)
    else
            if \(\mathrm{x}=0\) then
            Result := 1
            else
            Result := x * x
            end
    end
ensure Result > 0 end
```

(a) We build the predicate abstraction of always_positive in an incremental fashion.

1. Normalize the conditions appearing in conditionals and loops. We get
```
always_positive_1 (x: INTEGER): INTEGER
    if ? then
            assume \(\mathrm{x}>0\)
            Result := x + x
    else
            assume \(\mathrm{x}<=0\)
            if ? then
                assume \(\mathrm{x}=0\)
                Result := 1
            else
                assume \(\mathrm{x} /=0\)
                Result := x * x
            end
        end
ensure Result > 0 end
```

2. We rewrite the assume statements, and apply common simplifications to the logical formulae as well as peephole optimizations.
i. For assume $x>0$:
$\neg \operatorname{Pred}(\neg \mathrm{x}>0)=\neg \operatorname{Pred}(\mathrm{x}<=0)=\neg \neg \operatorname{pos}=\operatorname{pos}$
So we will add assume pos.

We must also take into account the effect of the assume statement on pos and Rpos:

For pos:
wp $($ assume $x>0, x>0)=(x>0=>x>0)=$ True
Pred $($ True $)=$ True
So we must include the update
if True then pos := True else if ... else ... end,
which simplifies to pos := True.
For Rpos:
wp(assume $x>0$, Result $>0)=(x>0=>$ Result $>0)$
Pred ($\mathrm{x}>0=>$ Result >0) $=$ (pos $=>$ Rpos).
Similarly, wp(assume $x>0$, Result $<=0)=(x>0=>$ Result $<=0)$
Pred (x $>0=>$ Result $<=0$) $=($ pos $=>\neg$ Rpos)
So we get
if pos => Rpos then
Rpos:= True
else if pos $=>\neg$ Rpos then
Rpos:= False
else Rpos:=?
end
Since we just assumed pos in the code, we can apply the peephole optimization and remove this update, since it will have no effect on the value of Rpos.

Hence assume $\mathrm{x}>0$ becomes assume pos; pos := True in the abstraction.
ii. For assume $x<=0$:
$\neg \operatorname{Pred}(\neg \mathrm{x}<=0)=\neg \operatorname{Pred}(\mathrm{x}>0)=\neg \operatorname{pos}$
So we will add assume \neg pos in the abstraction.
The effect on pos:
wp(assume $x<=0, x>0)=(x<=0=>x>0)=x>0$
$\operatorname{Pred}(x>0)=$ pos.
Similarly, wp(assume $\mathrm{x}<=0, \mathrm{x}<=0)=(\mathrm{x}<=0=>\mathrm{x}<=0)=$ True
Pred(True) = True.
So we have
if pos then
pos:= True
else if True then
pos := False
else pos := ? end
Since we just assumed \neg pos in the abstraction, we can simplify this update to pos := False.

The effect on Rpos:
wp(assume $\mathrm{x}<=0$, Result $>0)=(\mathrm{x}<=0=>$ Result $>0)$
Pred $(\mathrm{x}<=0=>$ Result $>0)=(\neg$ pos $=>$ Rpos $)=$ Rpos because of a peephole optimization.
wp(assume $\mathrm{x}<=0$, Result $<=0$) $=(\mathrm{x}<=0=>$ Result $<=0$)
Pred $(\mathrm{x}<=0=>$ Result $<=0)=(\neg$ pos $=>\neg$ Rpos $)=\neg$ Rpos because of the same peephole optimization.
So we have
if Rpos then
Rpos:= True
else if \neg Rpos then
Rpos:= False
else Rpos := ? end
which can be eliminated.

Hence assume $\mathrm{x}<=0$ becomes assume \neg pos; pos := False.
iii. For assume $x=0$:
$\neg \operatorname{Pred}(\neg \mathrm{x}=0)=\neg$ pos
So we will add assume \neg pos in the abstraction.
The effect on pos:
wp $($ assume $x=0, x>0)=(x=0=>x>0)=(x /=0)$
$\operatorname{Pred}(x /=0)=\operatorname{pos}$
Similarly, wp (assume $x=0, x<=0)=(x=0=>x<=0)=$ True
Pred(True) $=$ True
So we have the update:
if pos then
pos:= True
else if True then
pos := False
else pos := ? end
which becomes pos := False when we do a peephole simplification.
The effect on Rpos:
wp(assume $x=0$, Result $>0)=(x=0=>$ Result $>0)$
$\operatorname{Pred}(\mathrm{x}=0=>$ Result $>0)=$ pos \bigvee Rpos
Similarly, wp(assume $x=0$, Result $<=0)=(x=0=>$ Result $<=0)$
Pred (x $=0=>$ Result $<=0$) $=\operatorname{pos} \vee \neg \operatorname{Rpos}$
Applying peephole optimization, we see that the update will not have any effect and can be removed.

Hence assume $x=0$ becomes assume \neg pos; pos := False.
iv. For assume $x /=0$:
$\neg \operatorname{Pred}(\neg \mathrm{x} /=0)=\neg \operatorname{Pred}(\mathrm{x}=0)=\neg$ False $=$ True
So we do not need to add an assume statement to the abstraction.

The effect on pos:
wp (assume $x /=0, x>0)=(x /=0=>x>0)=(x>=0)$
$\operatorname{Pred}(\mathrm{x}>=0)=$ pos
wp(assume $x /=0, x<=0)=(x /=0=>x<=0)=(x<=0)$
$\operatorname{Pred}(\mathrm{x}<=0)=\neg$ pos
So the assume has no effect on the value of pos.
The effect on Rpos:
wp $($ assume $x /=0$, Result $>0)=(x /=0=>$ Result $>0)$
$\operatorname{Pred}(\mathrm{x} /=0=>$ Result $>0)=$ Rpos
wp(assume $x /=0$, Result $<=0)=(\mathrm{x} /=0=>$ Result $<=0)$
Pred(x $/=0=>$ Result $<=0$) $=\neg$ Rpos
So assume $x /=0$ has no effect on the value of Rpos.
Hence assume $\mathrm{x} /=0$ becomes skip.
After transforming the assume statements, we also abstract the postcondition and get:
always_positive_2 (x: INTEGER): INTEGER
if ? then
assume pos; pos := True
Result := $\mathrm{x}+\mathrm{x}$
else
assume \neg pos; pos $:=$ False
if ? then assume \neg pos; pos := False Result := 1
else
skip
Result := x * x
end
end
ensure Rpos end
3. Lastly, we transform the assignment statements.
i. The assignment Result $:=\mathrm{x}+\mathrm{x}$.

The effect on pos:
wp $($ Result $:=x+x, x>0)=(x>0)$
Pred $(x>0)=$ pos
wp (Result := $\mathrm{x}+\mathrm{x}, \mathrm{x}<=0)=(\mathrm{x}<=0)$
$\operatorname{Pred}(\mathrm{x}<=0)=\neg$ pos
So the assignment has no effect on pos.
The effect on Rpos:
wp $($ Result $:=x+x$, Result $>0)=(x+x>0)$
$\operatorname{Pred}(x+x>0)=\operatorname{pos}$
wp $($ Result : $=\mathrm{x}+\mathrm{x}$, Result $<=0)=(\mathrm{x}+\mathrm{x}<=0)$
$\operatorname{Pred}(x+x<=0)=\neg \operatorname{pos}$
So we have the update:
if pos then
Rpos := True
else if \neg pos then
Rpos:= False
else Rpos := ?
end
which can be simplified by a peephole optimization to Rpos := True.
Hence Result := x + x is transformed into Rpos := True.
ii. The assignment Result := 1 .

The effect on pos:
wp $($ Result $:=1, x>0)=(x>0)$
$\operatorname{Pred}(\mathrm{x}>0)=$ pos
wp(Result :=1, x $<=0)=(x<=0)$
$\operatorname{Pred}(\mathrm{x}<=0)=\neg$ pos
So Result := 1 has no effect on pos.
The effect on Rpos:
wp $($ Result $:=1$, Result $>0)=(1>0)=$ True
$\operatorname{Pred}($ True $)=$ True
So Result := 1 has the effect Rpos := True.
Hence Result := 1 is transformed into Rpos := True.
iii. The assignment Result := x * x .

The effect on pos:
wp $($ Result $:=x * x, x>0)=(x>0)$
$\operatorname{Pred}(x>0)=$ pos
wp (Result :=x $* x, x<=0)=(x<=0)$
$\operatorname{Pred}(\mathrm{x}<=0)=\neg$ pos
So Result := $\mathrm{x} * \mathrm{x}$ has no effect on pos.

The effect on Rpos:
wp $($ Result $:=x * x$, Result $>0)=(x * x>0)=(x /=0)$
$\operatorname{Pred}(x /=0)=\operatorname{pos}$
wp $($ Result : $=\mathrm{x} * \mathrm{x}$, Result $<=0)=(\mathrm{x} * \mathrm{x}<=0)=(\mathrm{x}=0)$
$\operatorname{Pred}(\mathrm{x}=0)=$ False
The update:
if pos then
Rpos:= True
else if False then
Rpos:= False
else Rpos := ? end
can be simplified with a peephole optimization to become Rpos := ?.

Hence Result := x * x is transformed into Rpos := ?.
The resulting abstraction looks as follows:
always_positive_3 (x: INTEGER): INTEGER
if ? then
assume pos; pos := True
Rpos:= True
else
assume \neg pos; pos $:=$ False
if ? then assume \neg pos; pos := False Rpos:= True
else
skip
Rpos := ?
end
end
ensure Rpos end
(b) No, we cannot verify the abstraction always_positive_3.

Here is a counterexample run:
$\{\neg$ pos, \neg Rpos $\}$
[ᄀ ?]
$\{\neg$ pos, \neg Rpos $\}$
assume \neg pos; pos := False
$\{\neg$ pos, \neg Rpos $\}$
[\neg ?]
$\{\neg$ pos, \neg Rpos $\}$
Rpos:=?
$\{\neg$ pos, \neg Rpos $\}$
It corresponds to the following concrete run, for which we computed the weakest precondition with respect to $\mathrm{x}<=0 \wedge$ Result $<=0$:
$\left\{\mathrm{x}<=0 \wedge \mathrm{x}^{2}<=0 \wedge \neg \mathrm{x}=0 \wedge \neg \mathrm{x}>0\right\} \quad / /$ Equivalent to False.
[$\neg \mathrm{x}>0$]
$\left\{\mathrm{x}<=0 \wedge \mathrm{x}^{2}<=0 \wedge \neg \mathrm{x}=0\right\} \quad / /$ Equivalent to False.
[$\neg \mathrm{x}=0$]
$\left\{\mathrm{x}<=0 \wedge \mathrm{x}^{2}<=0\right\} \quad / /$ Equivalent to $\mathrm{x}=0$
Result := $\mathrm{x}^{*} \mathrm{x}$
$\{\mathrm{x}<=0 \wedge$ Result $<=0\}$
Since two of the concrete assertions are not satisfiable (equivalent to False), we know that the conjunctions of these assertions will their abstract counterparts will not be satisfiable either. Hence the abstract run is spurious, and calls for abstraction refinement.

Cheat sheet for the translation of assume statements and assignments

Assume statements

A statement assume ex end gets translated into assume $\neg(\operatorname{Pred}(\neg \mathrm{ex}))$ end plus a parallel assignment such that:
For each p(i),
if ex $=>\mathrm{e}(\mathrm{i})$, add $\mathrm{p}(\mathrm{i}):=$ True to the parallel assignment
if ex $=>\neg e(i)$, add $p(i):=$ False to the parallel assignment else omit p(i) from the parallel assignment.
This parallel assignment is equivalent to the sequence of individual assignments, because all of them assign constants to different variables.

Assignments

If an assignment statement does not modify any of e(i)'s free variables, then the assignment will leave $p(i)$ unchanged.

