Software Verification Exercise class: Real Time Systems

Carlo A. Furia

In all these exercises, we assume the nonnegative real numbers as time domain, unless explicitly stated otherwise.

Exercises:
Does the property hold?

Does the property hold?
\bigcirc

[] a

Does the property hold?

[] a

Yes:

- it simply means that a holds at every position in the word (if any)

Does the property hold?
\odot

[] (<>=1 a)

Does the property hold?

[] (<>=1 a)

No:

- this requires that there is always a future position, 1 time unit in the future, where a holds
- but this is not the case in the last position of any (non-empty) timed word

Does the property hold?
\bigcirc

$$
[]([]=1 a)
$$

Does the property hold?

[] ([]=1a)

Yes:

- the formula just requires that there if there is a future position 1 time unit in the future, then a holds there
- the automaton accepts only a's every time unit, hence the property is satisfied by any word accepted by the automaton

Does the property hold?

$$
[](a \Rightarrow\rangle(0,1) c)
$$

Does the property hold?

[] $(a \Rightarrow<>(0,1) c)$

Yes:

- clock x is reset \dagger upon reading a
- after that, it is checked upon reading c
- the constraint requires that x is in the range $(0,1)$

Does the property hold?

$$
[](a \Rightarrow\rangle(0,1) b)
$$

Does the property hold?

[] ($a \Rightarrow<>(0,1) b)$

Yes:

- clock x is reset upon reading a; after that it is checked upon reading c, which is always preceded by a reading of b
- if b occurs later than or exactly after 1 time unit since the reading of b the same occurs for the reading of c
- in this case the constraint on x would be violated

Does the property hold?

[] ($a \Rightarrow(a \vee b) \cup(0,1) c)$

Does the property hold?

[]$(a \Rightarrow(a \vee b) \cup(0,1) c)$

Yes:

- clock x is reset upon reading a
- after that there is one reading of b followed by a reading of c, which satisfies the sequence of events required by the until formula
- as far as timing is concerned, c must occur within interval of time' $(0,1)$ since a occurred because of the clock constraint $0<x, y<1$

Does the property hold?

[] $(a \Rightarrow(a \vee b) \cup(1,2) c)$

Does the property hold?

Exercises:
Region automaton construction

Build the region automaton for:

Build the region automaton for:
\bigcirc

Build the region automaton for:

Build the region automaton for:

Build the region automaton for:

Example from: Alur \& Dill, 1994

Build the region automaton for:

Exercises:
 Semantics of derived operators

MTL derived operators: always

Prove that the satisfaction relation

$$
w, i \neq[]<a, b>F
$$

for bounded always, defined as:

$$
[]<a, b>F \triangleq-(\text { True } U\langle a, b\rangle-F)
$$

is equivalent to:
for all $i \leq j \leq n$ such that $t(j)-t(i) \in\langle a, b\rangle$ it is: $w, j \neq F$

MTL derived operators: always

```
w,if[]<a,b>F
iff
w,i\vDash\neg(True U<a,b>~F) (definition of bounded always)
iff
    it is not the case that:
for some i\leq j\leqn such that t(j)-t(i) \in<a,b> it is: w, j F\negF
and for all i\leqk< j it is w, k& True
(definition of bounded until)
iff
                                    for all i\leq j \leq n such that t(j) - t(i) \in<a,b> it is: not w, j\vDash\negF
                                    or for all i\leqk< j it is w, k& False
(push negation inward)
iff
for all i\leq j { n such that t(j) - t(i) \in<a,b> it is: not w, j\vDash\negF
(dropping false term in disjunction)
iff
for all i\leq j\leqn such that t(j) - t(i) \in<a,b> it is: w, j & F
    (simplification of double negation)
```


MTL derived operators: X and X-

Compare the semantics of:

$$
X+F \triangleq \operatorname{True} U=1 F
$$

with the semantics of:

$$
X-F \triangleq F U>0 \text { True }
$$

Semantic of X+

$w, i \neq X+F$
iff
$w, i \neq$ True $U=1 F \quad$ (definition of $X+$)
iff
for some $i \leq j \leq n$ such that $t(j)-t(i)=1$ it is: $w, j \neq F$ and for all $i \leq k<j$ it is $w, k \neq$ True
(definition of bounded until)
iff
for some $i \leq j \leq n$ such that $t(j)=t(i)+1$ it is: $w, j \neq F$ (simplify term)

Semantic of X-

$w, i \neq X-F$
iff
$w, i f F U>0$ True (definition of X-)
iff
for some $i \leq j \leq n$ such that $t(j)-t(i)>0$ it is: $w, j \neq$ True and for all $i \leq k<j$ it is $w, k \neq F$
(definition of bounded until)
iff
for some $i<j \leq n$ it is: $w, j \vDash$ True and for all $i \leq k<j$ it is $w, k \neq F$ (timestamps are strictly increasing by assumption)
iff
$i<n$ and $w, i \neq F$

$$
\text { (take } j=i+1 \text { so that }[i, j)=[i, i])
$$

Exercises:
 Equivalence of MTL formulas

Comparison of formulas

Is formula:

[] <>>0 True
satisfied by any timed word?

Is formula satisfied?

Semantics of: $\quad w=[]<\gg 0$ True
for all positions $1 \leq i \leq n: w, i \vDash<\gg 0$ True
Semantics of: w, if <>>0 True
for some $j>i$ it is: $w, j \neq$ True ie.: $\quad i<n$

Hence: $w n[]<\gg 0$ True
holds only for the empty word!

Comparison of formulas

Is formula:

[] <>20 True
satisfied by any (non-empty) timed word?

Is formula satisfied?

Semantics of: $\quad w=[]<>\geq 0$ True
for all positions $1 \leq i \leq n: w, i \vDash\langle>\geq 0$ True
Semantics of: w,if<>>0 True
for some $\mathrm{j} \geq \mathrm{i}$ it is: $\mathrm{w}, \mathrm{j}=$ True
ie.: True
because one can always take $\mathrm{j}=\mathrm{i}$
Hence: w : [] <> \geq O True
holds for any word.

Comparison of formulas

Is formula:

$\langle>[a, b]\langle>[c, d] q$
equivalent or non-equivalent to:
$\langle>[a+c, b+d] q$

Inequivalent formulas

Informal meaning of: $\quad<>[a, b]<>[c, d] q$

- let i be the current position
- there exist a future position $j>i$ in the word with time in $[a, b]$ relative to i such that:
- there exist another future position $k>j$ in the word with time in $[c, d]$ relative to j, where q holds
- in all, the time at which q holds is in $[a+c, b+d]$ relative to i

Informal meaning of: $\quad<>[a+c, b+d] q$

- let i be the current position
- there exist another future position $k>i$ in the word with time in $[a+c, b+d]$ relative to i, where q holds

Hence, for instance: timed word $w=(\{ \}, 3)(\{q\}, 3+b+c)$ is such that: $\quad w$ satisfies $<>[a+c, b+d] q$ but it does not satisfy <>[abb] <>[ccd] q because there is no intermediate position between the first and the one where q holds

