
Chair of Software Engineering

Dynamic Contract Inference

Nadia Polikarpova

Software Verification

17.10.2012

Chair of Software Engineering

Dynamic contract inference

 Location invariant – a property that always holds at
a given point in the program

 Dynamic invariant inference – detecting location
invariants from values observed during execution

 Also called: invariant generation, contract inference,
specification inference, assertion inference, ...

 Pioneered by Daikon
http://groups.csail.mit.edu/pag/daikon/

2

...
x := 0
... x = 0

http://groups.csail.mit.edu/pag/daikon/

Chair of Software Engineering

Overview

 How does Daikon work?

 Inferred invariants

 Improving inferred invariants

 Contract inference in Eiffel: CITADEL and AutoInfer

3

Chair of Software Engineering

Daikon architecture 4

Instrumenter Execution

Detector
Postprocessor

(printer,
annotator, etc.)

Source
code

Instrumented
code

Declarations Trace

Test suite

Inferred
invariants

Annotated code

Formatted
invariants

Language-dependent

Chair of Software Engineering

Daikon architecture 5

Instrumenter Execution

Detector
Postprocessor

(printer,
annotator, etc.)

Source
code

Instrumented
code

Declarations Trace

Test suite

Inferred
invariants

Annotated code

Formatted
invariants

Language-dependent

Chair of Software Engineering

Instrumenter

 Finds program points of interest

 routine enter/exit, loop condition

 Finds variables of interest at these program points

 current object, formals, locals, return value,
expressions composed of other variables

 Modifies the source code so that every time a
program point is executed, variable values are
printed to the trace file

6

Chair of Software Engineering

class BANK_ACCOUNT
 ...
 balance: INTEGER

 deposit (amount: INTEGER)
 do
 trace.print (“BANK_ACCOUNT.deposit:::ENTER”)
 trace.print (“amount ” + amount.out)
 trace.print (“balance” + balance.out)
 balance := balance + amount
 trace.print (“BANK_ACCOUNT.deposit:::EXIT”)
 trace.print (“amount ” + amount.out)
 trace.print (“balance” + balance.out)
 end
end

Instrumenter: example 7

Chair of Software Engineering

Daikon architecture 8

Instrumenter Execution

Detector
Postprocessor

(printer,
annotator, etc.)

Source
code

Instrumented
code

Declarations Trace

Test suite

Inferred
invariants

Annotated code

Formatted
invariants

Language-dependent

Chair of Software Engineering

Detector

 Has a predefined set of invariant templates

 At each program point instantiates the templates
with appropriate variables

 Checks invariants against program point samples
(variable values in the trace)

 Reports invariants that are not falsified (and satisfy
other conditions)

9

Chair of Software Engineering

Detector: example

 Templates: x = const x >= const x = y ...

 Program point: BANK_ACCOUNT.deposit:::ENTER

 Variables: balance, amount: INTEGER

 Invariants:

 balance = const

 balance >= const

 amount = const

 amount >= const

 balance = amount

10

 Samples:

balance 0 amount 10

balance 10 amount 20

balance 30 amount 1

0

0

10

10 1

Chair of Software Engineering

Unary invariant templates

 Constant
x = const

 Bounds
x < const (<=, >, >=)

 Nonzero
x /= 0

 Modulus
x = r mod m

 No duplicates
s has no duplicates

 index and element
s [i] = i (<, <=, >, >=)

11

Chair of Software Engineering

Binary invariant templates

 Comparisons
x = y (<, <=, >, >=)

 Linear binary
ax + by = 0

 Squared
x = y^2

 Divides
x = 0 mod y

 Zero track
x = 0 implies y = 0

 Member
x in s

 Reversed
s1 = s2.reveresed

 Subsequence and subset
s1 is subsequence of s2 s1 is subset of s2

12

Chair of Software Engineering

 Linear ternary

ax + by + zc = 0

 Binary function

z = f (x, y)

where f = and, or, xor, min, max, gcd, pow

13 Ternary invariant templates

Chair of Software Engineering

Daikon architecture 14

Instrumenter Execution

Detector
Postprocessor

(printer,
annotator, etc.)

Source
code

Instrumented
code

Declarations Trace

Test suite

Inferred
invariants

Annotated code

Formatted
invariants

Language-dependent

Chair of Software Engineering

 Annotates code with inferred invariants

class BANK_ACCOUNT
 ...
 balance: INTEGER

 deposit (amount: INTEGER)
 require
 balance >= 0
 amount >= 1
 do
 balance := balance + amount
 end
end

Annotator 15

BANK_ACCOUNT.deposit:::ENTER

 balance >= 0

 amount >= 1

...

Chair of Software Engineering

Results depend on...

 Source code

 Invariant templates

 Variables that instrumenter finds

 potentially all expressions that can be evaluated
at a program point

 needs to choose interesting ones

 Test suite

 Fine tuning the detector

16

Chair of Software Engineering

Dynamic inference is...

 Not sound

 Sound over the test suite, but not potential runs

 Not complete

 Restricted to the set of templates and variables

 Heuristics for eliminating irrelevant invariants
might remove relevant ones

 Even if it was, it reports properties of the code, not
the developers intent

17

Chair of Software Engineering

Classification 18

uninteresting

incorrect

not inferred

relevant inferred
invariants

inferred
invariants

perfect
specification

Chair of Software Engineering

Quality measures 19

 Correctness – percentage of correct
inferred invariants (true code
properties)

 Relevance (precision) – percentage
of relevant inferred invariants

 Recall – percentage of true
invariants that were inferred

Chair of Software Engineering

Using inferred invariants

 As a specification (after human inspection)

 Strengthening and correcting human-written
specifications

 Inferring loop invariants that are difficult to
construct manually

 Finding bugs

 Evaluating and improving test suites

 Comparing several versions of a program

20

Chair of Software Engineering

Improving quality

 Improving relevance

 Statistical test

 Redundant invariants

 Comparability analysis

 Improving recall

 More templates and variables

 Conditional invariants

21

Chair of Software Engineering

Statistical test

 Checking invariant
x /= 0

 Let samples of x be nonzero, distributed in [-5, 5]

 With 3 samples:

pby_chance = (1 - 1/11)3 ≈ 0.75

 With 100 samples:

pby_chance = (1 - 1/11)100 ≈ 0.00007

 Each invariant calculates probability in its own way

 Threshold is defined by the user (usually < 0.01)

22

Chair of Software Engineering

Redundant invariants

 ensure
 x > 0
 x /= 0
 ...

 Invariants that are implied by other invariants are
not interesting

 How to find them?

 General-purpose theorem prover

 Daikon has built-in hierarchy of invariants
(invariants know their suppressors)

23

Chair of Software Engineering

Comparability analysis

 class BANK_ACCOUNT
 ...
 invariant
 number > owner.birth_year
 end

 Using the same syntactic type (INTEGER) to
represent multiple semantic types

 Semantics types can be recovered by static analysis

 Variables x and y are considered comparable if they
appear in constructs like

x = y x := y x > y x + y ...

24

Chair of Software Engineering

It is easy:

 add more invariant templates

 add more variables of interest

However that increases the search space and

 either makes inference intractable

 or decreases relevance

Choose templates and variables in a smart way

 e.g. at the entry to withdraw (amount: INTEGER)
is_amount_available (amount) is a good choice but
is_amount_available (5) is not

25 Improving recall

Chair of Software Engineering

Conditional invariants

 Invariants of the form

(P1 and P2 ... and Pm) implies Q

are hard to infer with the basic technique:

it has to try all combinations of Pi and Q

 An efficient way: Decision Tree Learning

26

old after

index = old index index = old index + 1

True False

Chair of Software Engineering

CITADEL

 Contract Inference Tool Applying Daikon to
Eiffel Language

http://se.inf.ethz.ch/people/polikarpova/citadel.html

 Infers only contracts expressible in Eiffel

 no invariants over sequences

 Uses zero-argument functions as variables

 Eiffel functions are pure

 user-supplied preconditions are used to check
whether a function can be called

 Infers loop invariants

27

http://se.inf.ethz.ch/people/polikarpova/citadel.html

Chair of Software Engineering

Experiment

 Comparing programmer-written contracts with
inferred ones

 Scope: 25 classes (89–1501 lines of code)

 15 from industrial-grade libraries

 4 from an application used in teaching CS at ETH

 6 from student projects

 Tests suite: 50 calls to every method, random
inputs + partition testing

 Contract clauses total:

 programmer-written: 831

 inferred: 9’349

28

Chair of Software Engineering

Classification 29

uninteresting

incorrect

new

implied by written

implied by inferred

not inferred

not expressible

both

inferred
invariants

programmer-
written

invariants

perfect
specification

Chair of Software Engineering

Results 30

Measure Description Value

Correctness correct IC
IC

90%

Relevance relevant IC
IC

64%

Expressibility PC expressible in Daikon
PC

86%

Recall inferred PC
PC

59%

Strengthening
factor

PC + relevant IC
PC

5.1

IC = Inferred contract Clauses

PC = Programmer-written contract Clauses

Chair of Software Engineering

DEMO

Chair of Software Engineering

AutoInfer

http://se.inf.ethz.ch/research/autoinfer

 Does not use Daikon

 Uses AutoTest to generate the test suite

 Infers universally quantified expressions and
implications

 Uses functions with arguments as variables

 Only infers postconditions of commands

32

http://se.inf.ethz.ch/research/autoinfer

Chair of Software Engineering

Example: LIST.extend
extend (v: G)

 -- Add `v' to end. Do not move cursor.

 ...

 ensure

 occurrences (v) = occurrences (v) + 1

 count = old count + 1

 i_th (old count + 1) = v

 forall i . 1 <= i <= old count implies i_th (i) = old i_th (i)

 old after implies index = old index + 1

 not old after implies index = old index

 last = v

 forall o:G /= v . occurrences (o) = old occurrences (o)

 forall o:G /=v . has (o) = old has (o)

33

