
ETH Zürich Chair of Software Engineering

SAT and SMT Solver Basics

Scott West

November 7, 2012

1 / 30



ETH Zürich Chair of Software Engineering

SAT and SMT

I SAT – Satisfiability

I SMT – Satisfiability Modulo Theories, pairing SAT solvers with
particular theories (ie, natural numbers).

I Implementations:
I SAT solvers – MiniSAT, cryptominisat and pingeling.
I SMT solvers – Z3, Yices and CVC3

2 / 30



ETH Zürich Chair of Software Engineering

Where are SAT and SMT used?

SAT and SMT solvers are used in various tools:

I Planning, and AI related activities.

I Bounded model checking.

I Proof assistants, such as Isabelle or Coq.

I Verification frameworks, such as Boogie or Why.

I Automated proof tools, such as Spec# or Dafny.

3 / 30



ETH Zürich Chair of Software Engineering

Boolean formulae

SAT sovlers determine satisfiability for clauses in CNF (conjunctive
normal form). For example, we may have some formula

φ = (a ∨ ¬b) ∧ (b ∨ ¬c ∨ ¬a).

SAT solvers also produce an assignment of variables that will satisfy
the formula. For φ, above, such an assignment could be σ = {a,¬c}.

4 / 30



ETH Zürich Chair of Software Engineering

Basic Algorithm

Definition

Given a partial assignment σ and a formula φ, if the assignment is
enough to conclude either φ is true or false, then the algorithm
terminates with that judgement.

If σ doesn’t have enough information yet, an unassigned variable, l, is
chosen and the process is repeated; with both σ′ = σ ∪ {l} and
σ′ = σ ∪ {¬l}.

This is what we will call SATbasic(σ, φ).

The basic algorithm is an unintelligent state exploration, this is not
used in practice.

5 / 30



ETH Zürich Chair of Software Engineering

Basic DPLL Algorithm

Definition

The DPLL (Davis, Putnam, Logemann, Loveland) algorithm extends
the basic algorithm by adding boolean constraint propagation. Boolean
constraint propagation, BCP (σ, φ), performs resolution on φ,
propagating the effects of “necessary” assignments.

Example

In a ∧ (¬a ∨ b), we first notice that a must be in σ. Propagating this
fact forces b to also be in σ.

Although pure literal assignment (assigning a variable that only ever is
seen in φ with a single polarity) is a part of DPLL, it is often done as a
pre-processing step.

6 / 30



ETH Zürich Chair of Software Engineering

DPLL Analysis

The DPLL family of algorithms improve over the basic algorithm by:

I Affirming facts that must be true, as a first step.

I Using logical consequence (BCP) to avoid making more decisions
than necessary. A decision is when we choose an unassigned literal
l to add to the state σ.

7 / 30



ETH Zürich Chair of Software Engineering

Main components of DPLL

I Picking which variable to make true or false.

I Quickly finding the consequences of such a choice (BCP).

I How to recover from an incorrect decision.

8 / 30



ETH Zürich Chair of Software Engineering

Backtracking

p q

After making decision q, we perform BCP, which leads to a conflict:
choosing q has made us to assert l and ¬l.

Clearly q was the wrong decision!

Backtracking doesn’t extract any information from the conflicts it
resolves!

9 / 30



ETH Zürich Chair of Software Engineering

Backtracking

p ¬q

All literals in the decision level of q are rolled-back, and ¬q is added as
a consequence of the previous decision level.

Backtracking doesn’t extract any information from the conflicts it
resolves!

10 / 30



ETH Zürich Chair of Software Engineering

Backtracking

p ¬q

All literals in the decision level of q are rolled-back, and ¬q is added as
a consequence of the previous decision level.

Backtracking doesn’t extract any information from the conflicts it
resolves!

11 / 30



ETH Zürich Chair of Software Engineering

Backjumping

I Backjumping is a smarter form of backtracking.

I Takes into account causes of conflicts.

12 / 30



ETH Zürich Chair of Software Engineering

Backjumping Example

q ¬cs

t

13 / 30



ETH Zürich Chair of Software Engineering

Backjumping Example

q ¬cs

t

Reason
Side

Conflict
Side

14 / 30



ETH Zürich Chair of Software Engineering

Backjumping Example

q ¬cs

t

Reason
Side

Conflict
Side

Examining the cut:

I If s ∧ t is true, then it leads
to a conflict.

I We can learn ¬s ∨ ¬t from
this, adding it as a clause.

I We jump back to the level
where t was introduced.

I There are many options for
where to make the cut.

15 / 30



ETH Zürich Chair of Software Engineering

Other optimizations

Literal selection

Variable state independent decaying sum (VSIDS) aims to make
decisions from recently used facts. Literals are given scores, and the
scores increase when the literals are seen in a conflict. The scores
periodically are cut in half, this prefers more recently used literals.

Constraint propagation

Two watched literals eliminate much of the time needed to find clauses
to perform BCP on. Literals such as p or q are mapped to the clauses
in which they appear. When they are made true or false, they are
looked up and their clauses examined for propagation.

16 / 30



ETH Zürich Chair of Software Engineering

Random Restarts

Random restarts drop the accumulated assignments, ie, the input
arguments (σ, φ) become (∅, φ).

In conjunction with backjumping and clause-learning, this allows “bad”
assignments to be discarded while retaining the experience from the
work performed so far.

17 / 30



ETH Zürich Chair of Software Engineering

DPLL Implementation Details

I The literals added to the state are segmented into two types,
regular (or consequence) and decision literals.

I The state (σ) in a real SAT solver is (likely) organized into
decision levels, corresponding to decisions literals. Each decision
level has a series of consequence literals generated by BCP,
associated to a decision literal.

I When a “wrong” decision is made, the current decision level is
rolled-back, and the negation of that decision is added as a
consequence.

18 / 30



ETH Zürich Chair of Software Engineering

Speed concerns

While theoretical exponential-upper-bounds on solving times are
known O(1.321n) (Hertli, Moser, Scheder), real-world solvers use many
heuristic techniques (random restarts, VSIDS) to get good results in
practice.

SAT solvers are several orders of magnitude faster today than they
were 10 years ago.

19 / 30



ETH Zürich Chair of Software Engineering

Speedup over time

20 / 30



ETH Zürich Chair of Software Engineering

SAT solver anecdotes

“To be really good at writing a SAT solver, you have to have a sort of
intuition (like the force).” – Mate Soos, author of CryptoMiniSat

“If you want people to work on optimizing a tool, turn it into a
competition.” – SAT-COMP organizers

21 / 30



ETH Zürich Chair of Software Engineering

What’s next?

Okay, now we can efficiently solve SAT problems, what next?

22 / 30



ETH Zürich Chair of Software Engineering

What’s next?

Satisfiability Modulo Theories!

23 / 30



ETH Zürich Chair of Software Engineering

What does SMT give us?

I More expressive language: beyond conjunctions and disjunctions
of literals!

I Lowers the burden to entry, no longer is it a requirement to
develop a clever translation from your problem to CNF.

I Things like arrays, quantifiers, arithmetic, etc, can now be used,
given that there’s a corresponding theory.

24 / 30



ETH Zürich Chair of Software Engineering

SMT Solver Styles

There are two main “styles” of SMT solvers for some theory T :

I Eager: convert the formulae into CNF form and feed it directly to
a SAT solver.

I Lazy: preserve the formula and interactively communicate
back-and-forth with a T -solver.

A T -solver can solve conjunctions of T -terms.

25 / 30



ETH Zürich Chair of Software Engineering

Eager SMT

Eager SMT is able to take advantage of the latest SAT solvers by
converting to a portable SAT solver format, such as DIMACS. Any
number of solvers can work on the instance in such a case.

However, very often the cost to convert an entire formula from the
SMT domain to SAT can be very computationally expensive.

26 / 30



ETH Zürich Chair of Software Engineering

Basic Lazy SMT

1. Replace theory-specific literals with placeholder variables.

2. If the SAT solver finds the formula inconsistent with placeholder
variables, it is also T -inconsistent.

3. If the theory is consistent, then there is an assignment given for
the placeholder variables.

4. The assignment is given back to the T -solver and it either confirms
the assignment or provides a counter-example clause that can be
learned by the SAT-solver.

27 / 30



ETH Zürich Chair of Software Engineering

Lazy SMT example

Suppose we want to prove the formula ¬(f(t) = f(s)) ∧ t = s, in the
domain of uninterpreted functions.

1. For theory-specific literal replacement (here, equality, non-boolean
terms, and functions are theory-specific): we take:

I a = (f(t) = f(s))
I b = (t = s),

translating the original to ¬a ∧ b
2. SAT (∅,¬a ∧ b) easily gives us σ = {¬a, b}.

3. We substitute a and b for their original definitions and give them
to the T-solver. It gives the counter-example clause a ∨ ¬b.

4. Finally, we have a new clause for the SAT-solver, ¬a∧ b∧ (a∨¬b),
which it decides is inconsistent. Since it is unsatisfiable, the
original formula is also T-inconsistent.

28 / 30



ETH Zürich Chair of Software Engineering

Lazy SMT extensions

Incremental

Do not wait for an entire assignment to be built before checking it with
the T -solver. Have the T -solver run incrementally for each new
assignment, and restart from scratch with the learned clause.

Online

If T -inconsistency is found incrementally, backjump using this T -solver
provided information.

Theory Propagation

Use the T -solver to actively affirm true literals in the formula. This is
active as opposed to the reactive techniques above.

29 / 30


