# SAT and SMT Solver Basics

Scott West

November 7, 2012



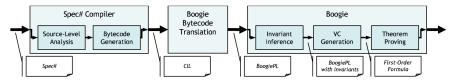
# SAT AND SMT

- ▶ SAT Satisfiability
- ► SMT Satisfiability Modulo Theories, pairing SAT solvers with particular theories (ie, natural numbers).
- ▶ Implementations:
  - ▶ SAT solvers MiniSAT, cryptominisat and pingeling.
  - ▶ SMT solvers Z3, Yices and CVC3

## WHERE ARE SAT AND SMT USED?

SAT and SMT solvers are used in various tools:

- ▶ Planning, and AI related activities.
- ▶ Bounded model checking.
- ▶ Proof assistants, such as Isabelle or Coq.
- ▶ Verification frameworks, such as Boogie or Why.
- ▶ Automated proof tools, such as Spec# or Dafny.



#### •

### BOOLEAN FORMULAE

SAT sovlers determine satisfiability for clauses in CNF (conjunctive normal form). For example, we may have some formula

$$\phi = (a \lor \neg b) \land (b \lor \neg c \lor \neg a).$$

SAT solvers also produce an assignment of variables that will satisfy the formula. For  $\phi$ , above, such an assignment could be  $\sigma = \{a, \neg c\}$ .

#### •

# BASIC ALGORITHM

#### Definition

Given a partial assignment  $\sigma$  and a formula  $\phi$ , if the assignment is enough to conclude either  $\phi$  is true or false, then the algorithm terminates with that judgement.

If  $\sigma$  doesn't have enough information yet, an unassigned variable, l, is chosen and the process is repeated; with both  $\sigma' = \sigma \cup \{l\}$  and  $\sigma' = \sigma \cup \{\neg l\}$ .

This is what we will call  $SAT_{basic}(\sigma, \phi)$ .

The basic algorithm is an unintelligent state exploration, this is not used in practice.

# BASIC DPLL ALGORITHM

#### Definition

The DPLL (Davis, Putnam, Logemann, Loveland) algorithm extends the basic algorithm by adding boolean constraint propagation. Boolean constraint propagation,  $BCP(\sigma, \phi)$ , performs resolution on  $\phi$ , propagating the effects of "necessary" assignments.

Example

In  $a \wedge (\neg a \vee b)$ , we first notice that a must be in  $\sigma$ . Propagating this fact forces b to also be in  $\sigma$ .

Although pure literal assignment (assigning a variable that only ever is seen in  $\phi$  with a single polarity) is a part of DPLL, it is often done as a pre-processing step.



The DPLL family of algorithms improve over the basic algorithm by:

- Affirming facts that *must* be true, as a first step.
- Using logical consequence (BCP) to avoid making more decisions than necessary. A decision is when we choose an unassigned literal l to add to the state  $\sigma$ .

#### MAIN COMPONENTS OF DPLL

- ▶ Picking which variable to make true or false.
- ▶ Quickly finding the consequences of such a choice (BCP).
- ▶ How to recover from an incorrect decision.

#### BACKTRACKING

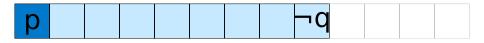


After making decision q, we perform BCP, which leads to a conflict: choosing q has made us to assert l and  $\neg l$ .

Clearly q was the wrong decision!

Backtracking doesn't extract any information from the conflicts it resolves!

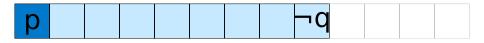
#### BACKTRACKING



All literals in the decision level of q are rolled-back, and  $\neg q$  is added as a consequence of the previous decision level.

Backtracking doesn't extract any information from the conflicts it resolves!

### BACKTRACKING



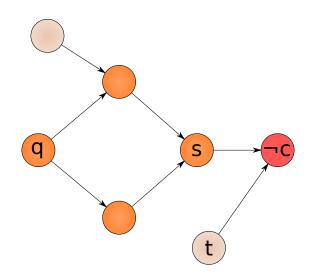
All literals in the decision level of q are rolled-back, and  $\neg q$  is added as a consequence of the previous decision level.

Backtracking doesn't extract any information from the conflicts it resolves!

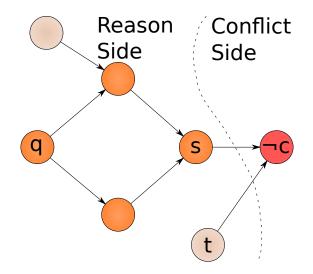


- ▶ Backjumping is a smarter form of backtracking.
- ▶ Takes into account causes of conflicts.

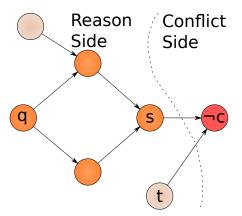
# BACKJUMPING EXAMPLE



#### BACKJUMPING EXAMPLE



# BACKJUMPING EXAMPLE



Examining the cut:

- If  $s \wedge t$  is true, then it leads to a conflict.
- We can *learn*  $\neg s \lor \neg t$  from this, adding it as a clause.
- ► We *jump* back to the level where t was introduced.
- ► There are many options for where to make the cut.

### OTHER OPTIMIZATIONS

#### Literal selection

Variable state independent decaying sum (VSIDS) aims to make decisions from recently used facts. Literals are given scores, and the scores increase when the literals are seen in a conflict. The scores periodically are cut in half, this prefers more recently used literals.

#### Constraint propagation

Two watched literals eliminate much of the time needed to find clauses to perform BCP on. Literals such as p or q are mapped to the clauses in which they appear. When they are made true or false, they are looked up and their clauses examined for propagation.



# RANDOM RESTARTS

Random restarts drop the accumulated assignments, ie, the input arguments  $(\sigma, \phi)$  become  $(\emptyset, \phi)$ .

In conjunction with backjumping and clause-learning, this allows "bad" assignments to be discarded while retaining the experience from the work performed so far.

#### DPLL IMPLEMENTATION DETAILS

- ▶ The literals added to the state are segmented into two types, regular (or consequence) and decision literals.
- The state (σ) in a real SAT solver is (likely) organized into decision levels, corresponding to decisions literals. Each decision level has a series of consequence literals generated by BCP, associated to a decision literal.
- ▶ When a "wrong" decision is made, the current decision level is rolled-back, and the negation of that decision is added as a consequence.



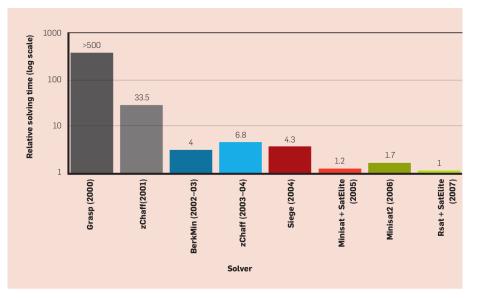
# Speed concerns

While theoretical exponential-upper-bounds on solving times are known  $O(1.321^n)$  (Hertli, Moser, Scheder), real-world solvers use many heuristic techniques (random restarts, VSIDS) to get good results in practice.

SAT solvers are several orders of magnitude faster today than they were 10 years ago.

#### ETH Zürich

## Speedup over time



#### SAT SOLVER ANECDOTES

"To be really good at writing a SAT solver, you have to have a sort of intuition (like the force)." – Mate Soos, author of CryptoMiniSat

"If you want people to work on optimizing a tool, turn it into a competition." – SAT-COMP organizers



# WHAT'S NEXT?

#### Okay, now we can efficiently solve SAT problems, what next?

ETH Zürich

Chair of Software Engineering ()



# WHAT'S NEXT?

#### Satisfiability Modulo Theories!

### WHAT DOES SMT GIVE US?

- More expressive language: beyond conjunctions and disjunctions of literals!
- ▶ Lowers the burden to entry, no longer is it a requirement to develop a clever translation from your problem to CNF.
- ▶ Things like arrays, quantifiers, arithmetic, etc, can now be used, given that there's a corresponding theory.



# SMT Solver Styles

There are two main "styles" of SMT solvers for some theory T:

- Eager: convert the formulae into CNF form and feed it directly to a SAT solver.
- ► Lazy: preserve the formula and interactively communicate back-and-forth with a *T*-solver.
- A T-solver can solve conjunctions of T-terms.



# EAGER SMT

Eager SMT is able to take advantage of the latest SAT solvers by converting to a portable SAT solver format, such as DIMACS. Any number of solvers can work on the instance in such a case.

However, very often the cost to convert an entire formula from the SMT domain to SAT can be very computationally expensive.

# BASIC LAZY SMT

- 1. Replace theory-specific literals with placeholder variables.
- 2. If the SAT solver finds the formula inconsistent with placeholder variables, it is also T-inconsistent.
- 3. If the theory is consistent, then there is an assignment given for the placeholder variables.
- 4. The assignment is given back to the T-solver and it either confirms the assignment or provides a counter-example clause that can be learned by the SAT-solver.

## LAZY SMT EXAMPLE

Suppose we want to prove the formula  $\neg(f(t) = f(s)) \land t = s$ , in the domain of uninterpreted functions.

1. For theory-specific literal replacement (here, equality, non-boolean terms, and functions are theory-specific): we take:

$$\bullet \ a = (f(t) = f(s))$$

$$\blacktriangleright \ b = (t = s),$$

translating the original to  $\neg a \wedge b$ 

- 2.  $SAT(\emptyset, \neg a \land b)$  easily gives us  $\sigma = \{\neg a, b\}.$
- 3. We substitute a and b for their original definitions and give them to the T-solver. It gives the counter-example clause  $a \lor \neg b$ .
- 4. Finally, we have a new clause for the SAT-solver,  $\neg a \land b \land (a \lor \neg b)$ , which it decides is inconsistent. Since it is unsatisfiable, the original formula is also T-inconsistent.

# LAZY SMT EXTENSIONS

#### Incremental

Do not wait for an entire assignment to be built before checking it with the T-solver. Have the T-solver run incrementally for each new assignment, and restart from scratch with the learned clause.

#### Online

If T-inconsistency is found incrementally, backjump using this T-solver provided information.

#### Theory Propagation

Use the T-solver to actively affirm true literals in the formula. This is active as opposed to the reactive techniques above.