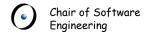
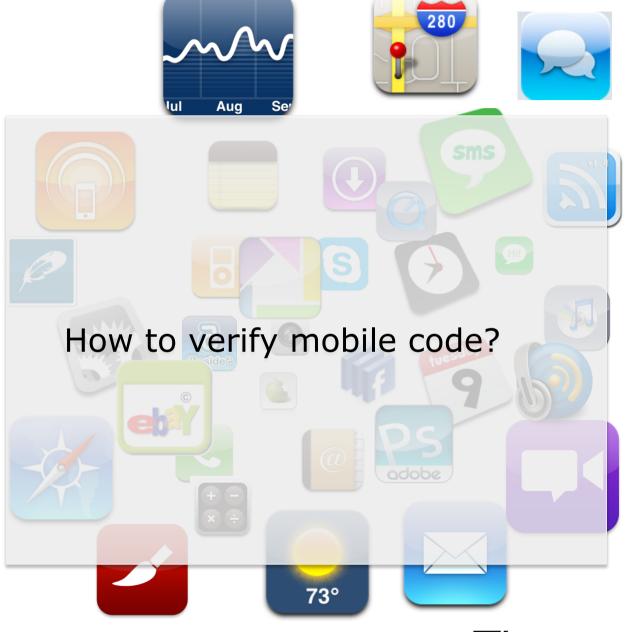

Software Verification

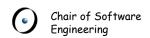
ETH Zurich, September-December 2012

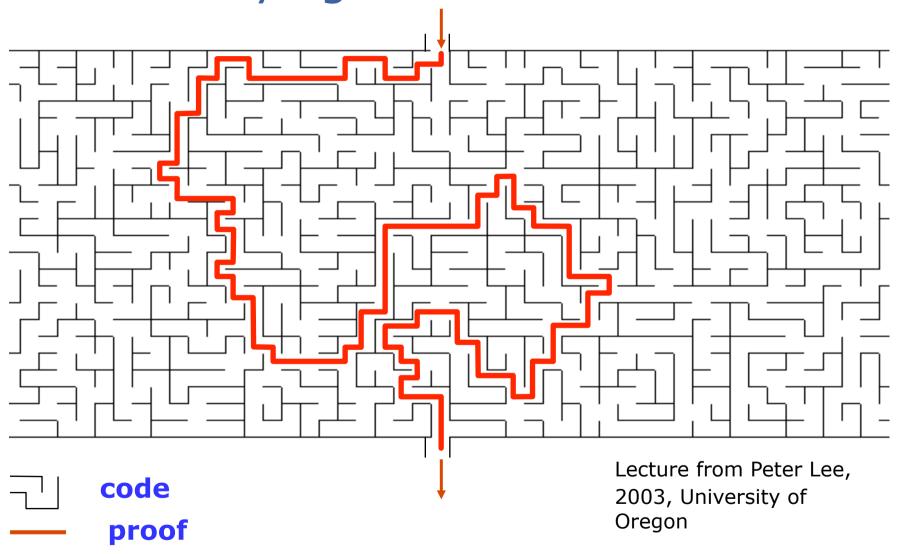
Proof-Carrying Code &

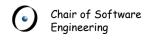

Proof-Transforming Compilation

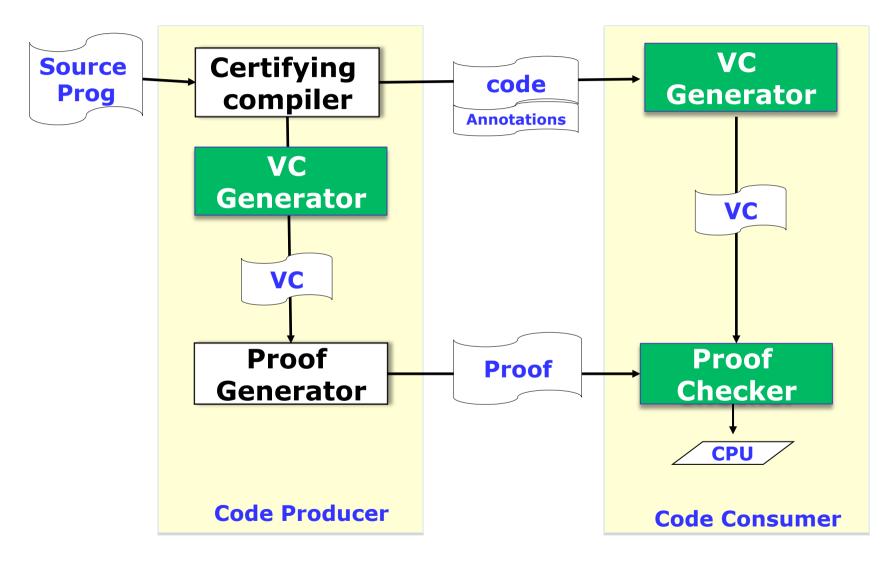
Overview

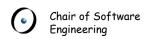

- Proof-Carrying Code
- Proof-Transforming Compilation
 - > Semantics for Java and Eiffel
 - ➤ A Hoare-style logic for Bytecode
 - > Proof Translation

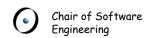



Mobile Code




Proof-Carrying Code



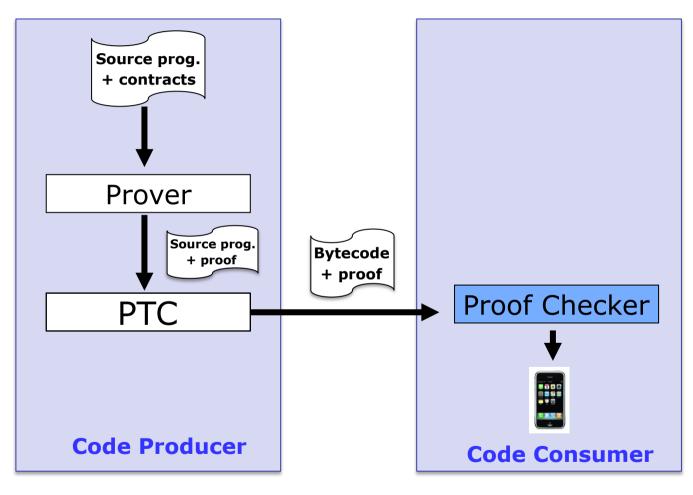

Proof-Carrying Code

What do we gain?

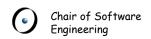
- The process of checking the proof is fast and automatic
- There is no loss of performance in the bytecode program
- The overhead of developing the proof is done once and for all by the code producer
- The code consumer does not need to trust the code producer

Limitations

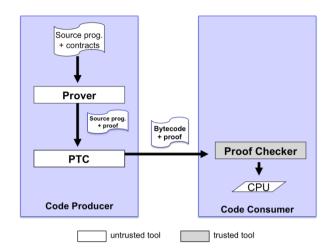
Proofs are big


Good for safety but not yet termination

Certifying compilers can generate proof automatically only for a restricted set of properties


In Lee and Necula's implementation, they consider machine code... portability?

Verification Process based on Proof-Transforming Compilation (PTC)


Advantages

Verification of functional properties

PTCs are not part of the trusted computing base

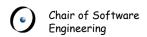
Small trusted computing base: Proof Checker

Verification on the source language

Basics of our PTC

Source Language: C#, Eiffel, and Java

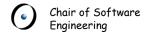
Logic: Hoare-Style


structured control flow variables

Translation Functions

Bytecode Language:
.Net CIL Bytecode

Bytecode Logic


unstructured control flow operand stack

Overview

- Proof-Carrying Code
- Proof-Transforming Compilation
 - > Semantics for Java and Eiffel
 - ➤ A Hoare-style logic for Bytecode
 - > Proof Translation

The Subset of Java

Assignment and compound

```
foo () {
    int b=1;
    b++;
} b = 2
```

Try-finally and throw

```
foo () {
   int b=1;
   try {
      throw new Exception();
   }
   finally {
      b++;
   }
} b = 2 Exception
```

While and break

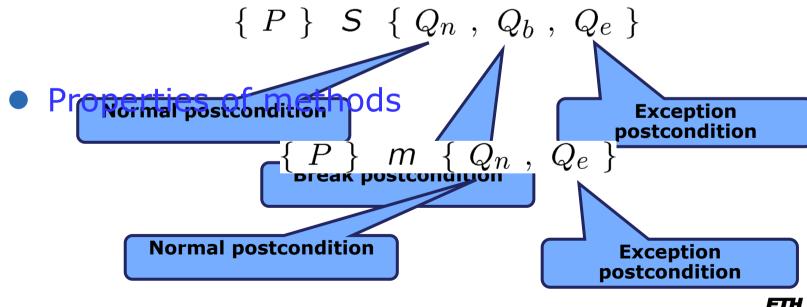
```
foo () {
   int b=1;
   while (true) {
      b++;
      break;
   }
} b = 2
```

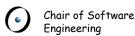
Other features:
Try-catch
If then else
Read and write fields
Routine invocation
Single inheritance

Why is this Subset of Java interesting?

Why is this Subset of Java interesting?

```
foo () {
    int b=1; b=1
     while (true) {
         try {
              throw new Exception(); b = 2
         finally
              b++; b = 3
break; b = 3
```


Does this program compile in C#?



Semantics for Java

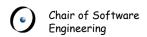
- Operational and axiomatic semantics
- The logic is based on the programming logic developed by P. Müller and A. Poetzsch-Heffter
- Properties of method bodies are expressed by Hoare triples of the form

The subset of Eiffel

Basic instructions such as assignments, if then else, and loops

Exception handling: rescue clauses

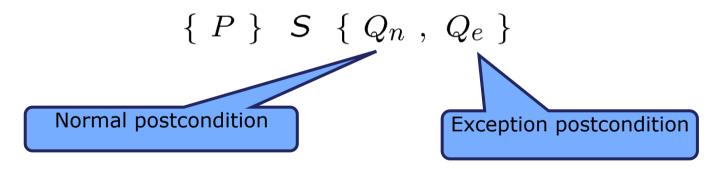
Once routines


Multiple inheritance

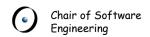
Eiffel: Exception Handling

```
connect_to_server
  —Connect to Madrid, York, or Zurich.
 local
   i: INTEGER
 do
   if i = 0 then connect_to_madrid
                                    end
   if i = 1 then connect_{to\_vork}
                                    end
   if i = 2 then connect to zurich
                                    end
 rescue
   if i < 3 then
     i := i + 1
     Retry := True
   else
      failed := True
   end
 end
```


Eiffel: Once Functions



Semantics for Eiffel

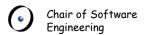

Operational and axiomatic semantics

Based on the logic by P. Müller and A. Poetzsch-Heffter

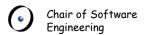
Properties of routines and routine bodies are expressed by Hoare triples of the form

Proof of soundness and completeness

Logic: Assignment Rule


$$\{ \begin{array}{l} (safe(e) \wedge P[e/x]) \vee \\ (\neg safe(e) \wedge Q_e) \end{array} \} \quad x := e \quad \{ P , Q_e \}$$

Logic: Compound

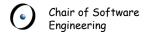


Example1: Hoare Logic

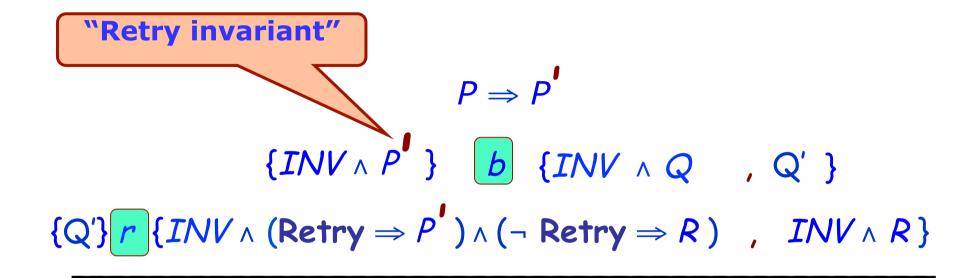
Example 2: Exceptions

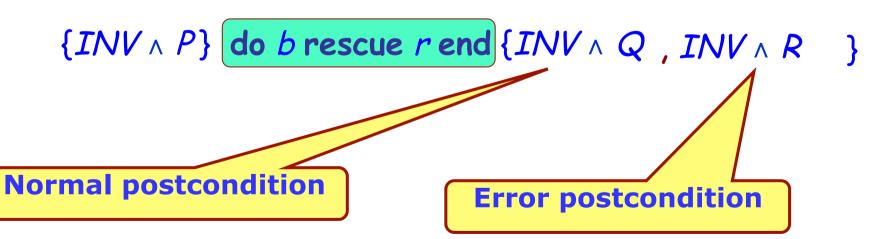
Example

Assignment Rule


$$\{\ true\ \}\ \ balance := b\ \setminus\setminus\ i\ \left\{\ i \neq 0\ \land\ balance = b\ \setminus\setminus\ i\ \land\ ,\ \ i = 0\ \right\}$$

Assignment Rule


$$\left\{i \neq 0 \ \land \ balance = b \ \setminus \setminus \ i \ \right\} \ \ credit := b + 10 \ \left\{ \begin{array}{l} i \neq 0 \ \land \ balance = b \ \setminus \setminus \ i \ \land \\ credit = b + 10 \end{array} \right\}$$


Compound Rule

$$\left\{ \ true \ \right\} \ balance := b \ \setminus \setminus i \ ; \ credit := b + 10 \ \left\{ \begin{array}{l} i \neq 0 \ \wedge \ balance = b \ \setminus \setminus i \ \wedge \\ credit = b + 10 \end{array} \right., \quad i = 0 \ \left\}$$

Rescue

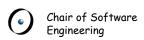
Example: rescue

```
safe_division (x,y: INTEGER): INTEGER
local
    z: INTEGER

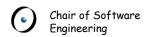
do
    Result := x // (y+z)
    ensure
    y = 0 implies Result = x
    y /= 0 implies Result = x // y
    rescue
    z := 1
    Retry := true
end
```

 $\{\ true\ \}$ MATH:safe_division $\{\ Q\ ,\ false\ \}$

where

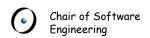

$$Q \equiv (y = 0 \Rightarrow Result = x) \land (y/=0 \Rightarrow Result = x//y)$$

Example: rescue


```
safe_division (x,y: INTEGER): INTEGER
 local
      z: INTEGER
                                                                 Retry invariant
 do
                                                                   (y \neq 0 \land z = 0) \lor (y = 0 \land (z = 1 \lor z = 0))
   \{(y \neq 0 \land z = 0) \lor (y = 0 \land (z = 1 \lor z = 0))\}
       Result := x // (y+z)
       \left\{ \left( \begin{array}{l} (y=0 \Rightarrow Result = x) \land \\ (y \neq 0 \Rightarrow Result = x/y) \end{array} \right), (y=0 \land z=0) \right\}
 ensure
      y = 0 implies Result = x
      y \neq 0 implies Result = x \neq y
 rescue
      \{ y = 0 \land z = 0 \}
      z := 1
      \{ (y = 0 \land z = 1), false \}
      Retrv := true
      \{(Retry \land (y = 0 \land z = 1)), false\}
 end
```


Overview

- Proof-Carrying Code
- Proof-Transforming Compilation
 - > Semantics for Java and Eiffel
 - ➤ A Hoare-style logic for Bytecode
 - > Proof Translation



The bytecode Language

Bytecode language similar to .Net CIL bytecode Boolean type

Instead of using an array of local variables like in .Net CIL, we use the name of the source variable

The Bytecode Language and its Logic

- Bytecode Logic:
 - ➤ Logic developed by F. Bannwart and P. Müller
 - > Instruction specification

The bytecode Logic

Rules for instructions

$$\frac{E_l \Rightarrow wp_p^1(I_l)}{\mathsf{A} \vdash \{E_l\} \ l : I_l}$$

The bytecode Logic

I_l	$ wp_p^1(I_l) $
pushc v	$unshift(E_{l+1}[v/s(0)])$
pushv x	$unshift(E_{l+1}[x/s(0)])$
pop x	$(shift(E_{l+1}))[s(0)/x]$
bin_{op}	$(shift(E_{l+1}))[s(1)ops(0)/s(1)]$
goto l'	$\mid E_{l'}$
brtrue l'	$(\neg s(0) \Rightarrow shift(E_{l+1})) \land (s(0) \Rightarrow shift(E_{l'}))$
return	true
nop	$\mid E_{l+1}$

$$shift(E) = E[s(i+1)/s(i) \text{ for all } i \in \mathbb{N}]$$

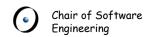
$$unshift = shift^{-1}$$

Example Bytecode Proof

Source Program:

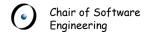
```
x := 5
```

$$y := 1$$


Compiled Program:

L00: push 5

L01: pop x

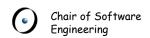

L02: push 1

L03: pop y

Overview

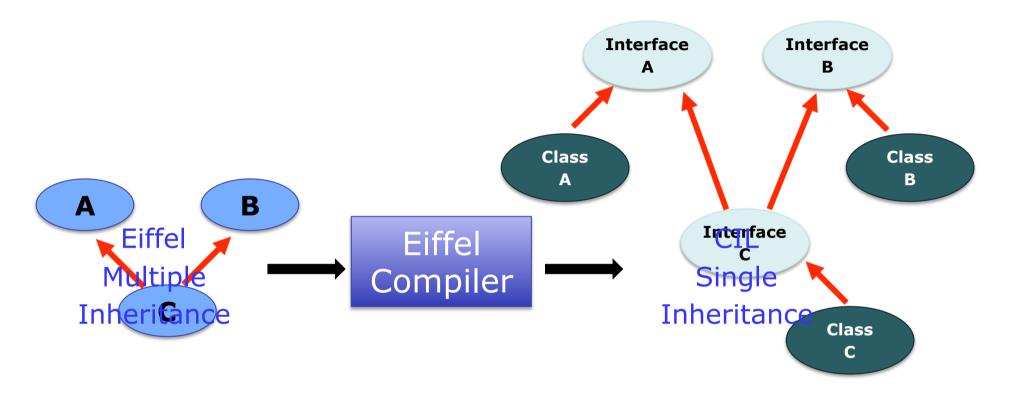
- Proof-Carrying Code
- Proof-Transforming Compilation
 - > Semantics for Java and Eiffel
 - ➤ A Hoare-style logic for Bytecode
 - > Proof Translation

Proof-Transforming Compilation for Eiffel

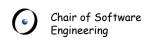

Contract Translator

- Deep embedding of contracts, pre- and postconditions
- > Translation functions
 - Input: Deep embedding of Boolean expressions
 - Output: First Order Logic

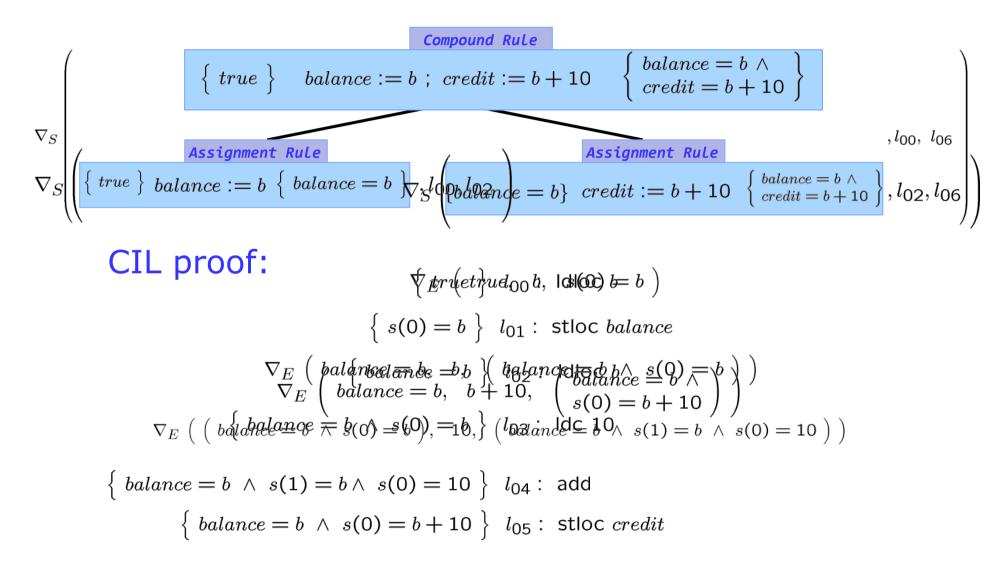
 $\nabla_E : Precondition \times Expression \times Postcondition \times Label \rightarrow BytecodeProof$

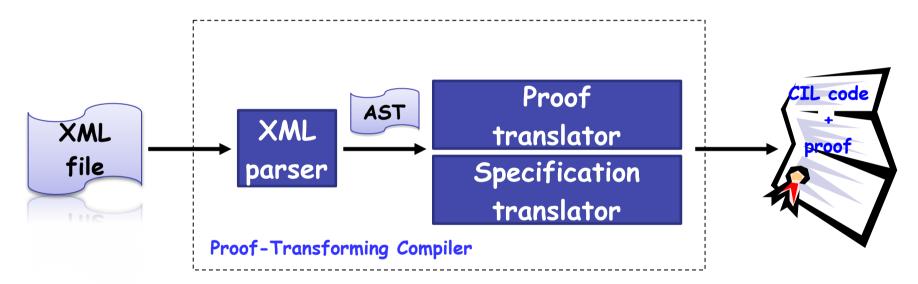

 $\nabla_S : ProofTree \times Label \times Label \times Label \rightarrow BytecodeProof$

Soundness Proof

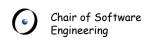


Compiling Eiffel to .Net CIL

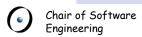



Applications

Tool Support



Experiments with PTC


Example	#Classes	#Routines	#lines Eiffel	#lines source proof
Boolean expressions	2	3	76	205
Attributes	3	5	83	167
Conditionals	1	2	55	154
Loops	1	1	31	73
Bank Account simple	1	3	57	108
Bank Account	1	5	57	130
Sum Integers	1	1	35	126
Subtyping	3	5	41	117
Demo	4	8	152	483
Total	17	33	587	1563

Size of the proof

Example	#lines Eiffel	#lines source proof	#lines in Isabelle
Boolean expressions	76	205	711
Attributes	83	167	1141
Conditionals	55	154	510
Loops	31	73	305
Bank Account simple	57	108	441
Bank Account	57	130	596
Sum Integers	35	126	358
Subtyping	41	117	756
Demo	152	483	1769
Total	587	1563	6587

Experiments Proof Checker

Isabelle Example	#lines in Isabelle	Simplifier Proof Script (in sec)	Optimized Proof Script (in sec)
Boolean expressions	711	3.4	1.9
Attributes	1141	3.6	2.2
Conditionals	510	7.3	3.8
Loops	305	14.1	3.2
Bank Account simple	441	5.5	2.4
Bank Account	596	12.8	4.6
Sum Integers	358	45.2	6.3
Subtyping	756	4.3	2.3
Demo	1769	92.2	27.5
Total	6587	192.4 (~3')	54.2

