

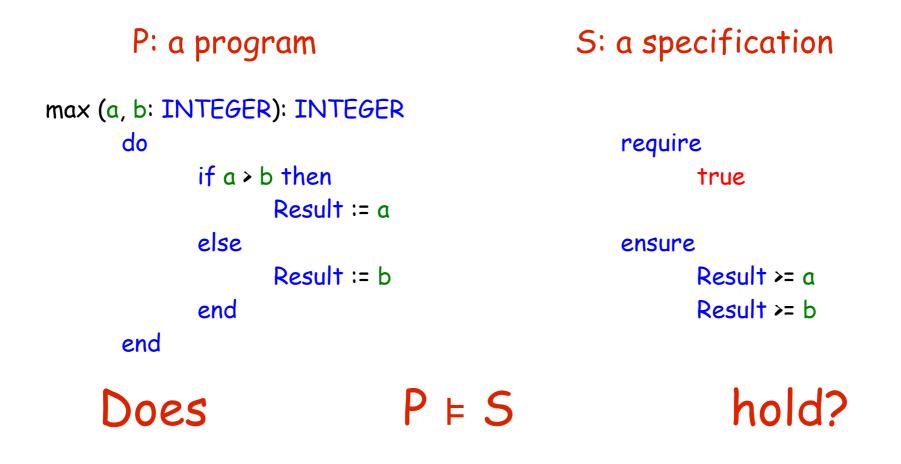
Chair of Software Engineering

Software Verification

Lecture 13: Verification of Real-time Systems

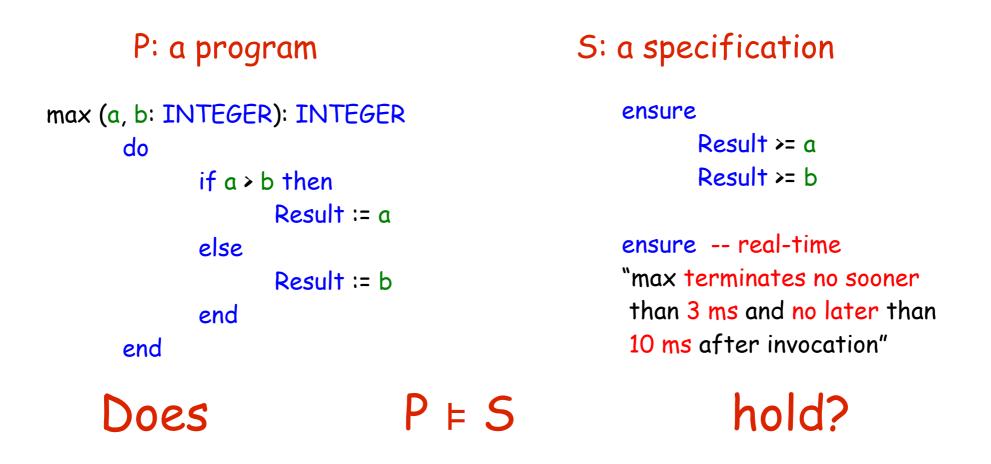
Carlo A. Furia

Program Verification: the very idea



The Program Verification problem:

- Given: a program P and a specification S
- Determine: if every execution of P, for every value of input parameters, satisfies S



The Real-time Verification problem:

- Given: program P (embedded in environment E) and real-time specification S
- Determine: if every execution of P (within E) satisfies S

6

Real-time Programs and Systems

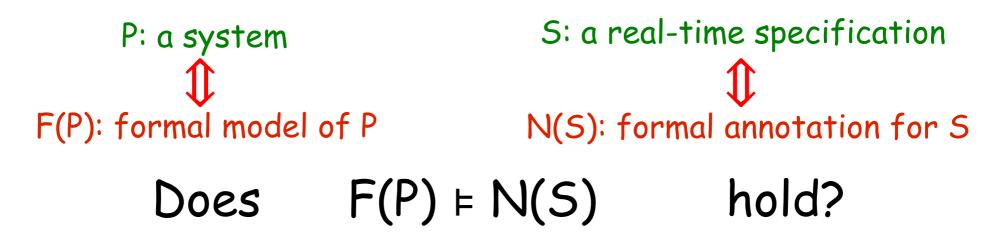
- Def. Real-time specification: specification that includes exact timing information.
- Def. Real-time computation: computation whose specification is real-time. In other words: computation whose correctness depends not only on the value of the result but also on when the result is available.
- The timing of a piece of software is usually dependent on the environment where the computation takes place
- Hence, in real-time verification the focus shifts from programs to (software-intensive) systems
- The purely computational aspects can often be analyzed in isolation
- Real-time verification can then focus on real-time aspects of the system
 - e.g., synchronization, deadlines, delays, ...

while abstracting away most of the rest

Decidability vs. Expressiveness Trade-Off

The Real-time Verification problem:

- Given: program P (embedded in environment E) and real-time specification S
- Determine: if every execution of P (within E) satisfies S



- The classes of F(P) and N(S) should guarantee:
 - enough expressiveness to include a quantitative notion of time
 - decidability of the verification problem

Real-time Model-Checking

The Real-time Model Checking problem:

- Given: a timed automaton A and a metric temporal-logic formula F
- Determine: if every run of A satisfies F or not
 - if not, also provide a counterexample: a run of A where F does not hold

A: a timed automaton $A \models F$ F: a metric temporal-logic formula

- The model-checking paradigm is naturally extended to real-time systems
- Different choices are possible for the family of automata and of formulae
 - Linear time is the standard option for real-time (as opposed to branching time)
 - A different attribute of time that becomes relevant in quantitative models is discrete vs. dense time

Discrete vs. dense (continuous) time

Discrete time

- sequence of isolated "steps"
- every instant has a unique successor
- e.g.: the naturals N = {0, 1, 2, ...}
 - + simple and intuitive
 - verification usually decidable (and acceptably complex)
 - + robust and elegant theoretical framework
 - cannot model true asynchrony
 - unsuitable to model physical variables

Dense (or continuous) time

- arbitrarily small distances
- the successor of an instant is not defined
- e.g.: the reals R
 - + can model true asynchrony
 - + accurate modeling of physical variables

- tricky to understand
- verification often undecidable (or highly complex)
- lacks a unifying framework

Discrete Real-time Model-Checking

Timed Automata and Metric Temporal Logic (。)

Discrete Real-time Model-Checking

Discrete real-time model checking extends standard "untimed" model checking straightforwardly:

- Discrete Timed Automata (TA) extend the Finite-State Automata (FSA)
- Metric Temporal Logic (MTL) extends Linear Temporal Logic (LTL)

The Discrete Real-time Model Checking problem:

• Given: a discrete TA A and an MTL formula F

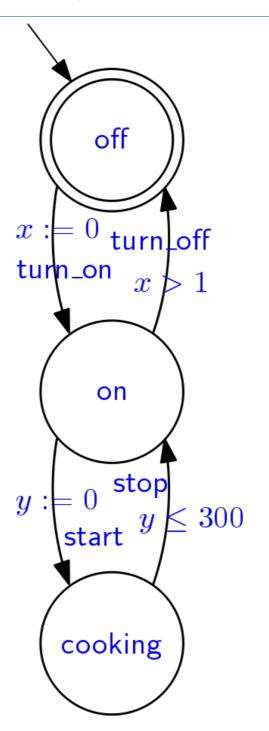
AE

- Determine: if every run of A satisfies F or not
 - if not, also provide a counterexample: a run of A where F does not hold

F: an MTL formula

A: a discrete TA

Timed Automata: Syntax



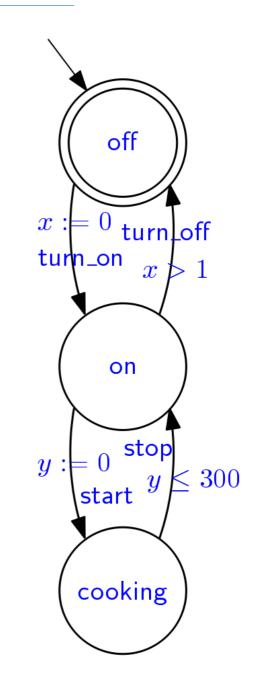
10

 \bigcirc

Timed Automata: Syntax

Def. Nondeterministic Timed Automaton (TA) A tuple [Σ, S, C, I, E, F]:

- Σ : finite nonempty (input) alphabet
- S: finite nonempty set of locations (i.e., discrete states)
- C: finite set of clocks
- I, F: set of initial/final states
- E: finite set of edges [s, σ, c, ρ, s']
 - $s \in S$: source location
 - $s' \in S$: target location
 - $\sigma \in \Sigma$: input character (also "label")
 - c: clock constraint in the form: c ::= x ≈ k | ¬ c | c1 ∧ c2
 - $x, y \in C$ are clocks
 - $k \in N$ is an integer constant
 - ≈ is a comparison operator among <, ≤, >, ≥, =
 - $\rho \subseteq C$: set of clock that are reset (to 0)

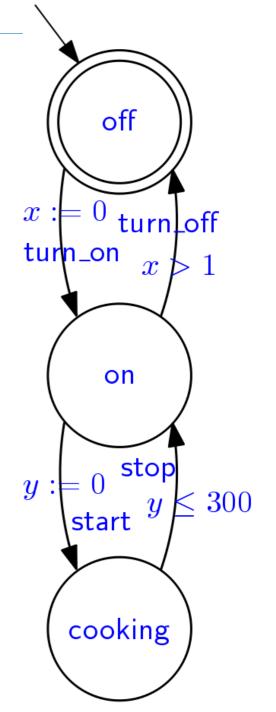


Accepting run:

 $r = [off, (x=0, y=0)] \\ [on, (x=0, y=3)] \\ [cooking, (x=8, y=0)] \\ [on, (x=81, y=73)] \\ [off, (x=85, y=77)] \end{cases}$

Over input timed word:

W = [turn_on, 3] [start, 11] [stop, 84] [turn_off, 88]



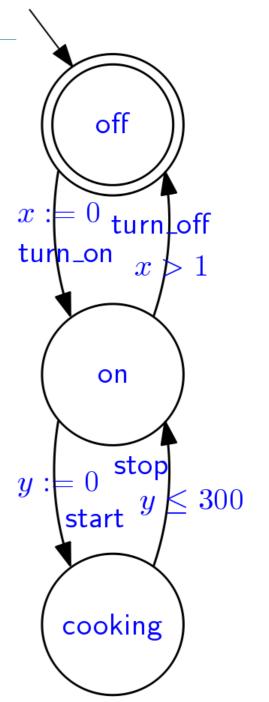
- Def. A timed word w = w(1) w(2) ... w(n) ∈ (Σ × N)* is a sequence of pairs [σ(i), t(i)] such that:
 - the sequence of timestamps t(1), t(2), ..., t(n) is increasing
 - $[\sigma(i), t(i)]$ represents the i-th character $\sigma(i)$ read at time t(i)
- Def. An accepting run of a TA A=[Σ, S, C, I, E, F] over input timed word w = [σ(1), t(1)] ... [σ(n), t(n)] ∈ (Σ × N)* is a sequence r = [s(0), v(0,1), ..., v(0,|C|)] ... [s(n), v(n,1), ..., v(n,|C|)] ∈ (S × N^{|C|})* of (extended) states such that:
 - it starts from an initial and ends in an accepting state: $s(0) \in I$, $s(n) \in F$
 - initially all clocks are reset to 0: v(0,k) = 0 for all $1 \le k \le |C|$
 - for every transition (0 ≤ i < n):
 [s(i) v(i,1) ... v(i,|C|)] --> [s(i+1) v(i+1,1) ... v(i+1,|C|)]
 some edge [s(i), σ(i+1), c, ρ, s(i+1)] in E is followed:
 - the clock values $v(i,1) + (t(i+1) t(i)) \dots v(i,|C|) + (t(i+1) t(i))$ satisfy the constraint c
 - $v(i+1,k) = if k-th clock is in \rho then 0 else v(i,k) + t(i+1) t(i)$

Def. Any TA $A=[\Sigma, S, C, I, E, F]$ defines a set of input timed words (A): $\langle A \rangle \triangleq \{ w \in (\Sigma \times N)^* | \text{ there is} \\ an accepting run of A$ $over w <math>\}$

 $\langle A \rangle$ is called the language of A

With regular expressions and arithmetic:

with
$$t_3 - t_2 \le 300$$
 and $t_4 - t_1 > 1$



Metric (Linear) Temporal Logic

<>[2,4) stop

"there is an occurrence of stop between 2 (included) and 4 (excluded) time units in the future"

- [any, t ≤ 1]* [stop, 2] [stop, 3] [any, 4] [any, 7] ...
- [any, t < 3]* [stop, 3] [any, 4] [any, t > 4] ...

[](2,4] start

"start holds between 2 (excluded) and 4 (included) time units in the future"

- [any, 0] [any, 1] [any, 2] [start, 3] [start, 4] [any, t > 4]*
- [any, 0] [any, 1] [any, 2] [start, 3] [any, t > 4]*
- [stop, 0] [stop, 1]

Metric (Linear) Temporal Logic

[] (start $\Rightarrow \leftrightarrow (3,10]$ stop)

"every occurrence of start is followed by an occurrence of stop between 3 (excluded) and 10 (included) time units in the future"

cook U(3,10] stop

"stop occurs between 3 (excluded) and 10 (included) time units in the future, and cook holds until then"

Metric (Linear) Temporal Logic: Syntax

Def. Propositional Metric Temporal Logic (MTL) formulae: F ::= p | ¬ F | F ^ G | F U<a,b> G

with **p** ∈ **P** any atomic proposition and <a,b> an interval of the time domain (w.l.o.g. with integer endpoints).

Temporal (modal) operators:

- next: $X F \triangleq True U[1,1] F$
- bounded until: F U<a,b> G
- bounded release: $F R < a,b > G \triangleq \neg (\neg F U < a,b > \neg G)$
- bounded eventually: <><a,b>F ≜ True U<a,b>F
- bounded always: []<a,b> F ≜ ¬ <><a,b> ¬F
- intervals can be unbounded; e.g., [3, ∞)
- intervals with pseudo-arithmetic expressions; e.g.:
 - ≥ 3 for [3, ∞)
 - = 1 for [1,1]
 - [0, ∞) is simply omitted

Metric Temporal Logic: Semantics

Def. A timed word w = [σ(1), t(1)] [σ(2), t(2)] ... [σ(n), t(n)] ∈ (P × N)* satisfies LTL formula F at position 1 ≤ i ≤ n, denoted w, i ⊧ F, when:
w, i ⊧ p iff p = σ(i)
w, i ⊧ ¬ F iff w, i ⊧ F does not hold
w, i ⊧ F ∧ G iff both w, i ⊧ F and w, i ⊧ G hold
w, i ⊧ F U<a,b>G iff for some i ≤ j ≤ n such that t(j) - t(i) ∈ <a,b> it is: w, j ⊧ G and for all i ≤ k < j it is w, k ⊧ F

• i.e., F holds until G will hold within <a, b>

For derived operators:

-w, i ⊨ <><a,b>F iff for some i ≤ j ≤ n such that t(j) - t(i) ∈ <a,b> it is: w, j ⊨ F

• i.e., F holds eventually within <a,b>

-w, i ⊨ []<a,b>F iff for all i ≤ j ≤ n such that t(j) - t(i) ∈ <a,b> it is: w, j ⊨ F

• i.e., F holds always within <a,b>

Def. Satisfaction:

$$w \models F \triangleq w, 1 \models F$$

i.e., timed word w satisfies formula F initially

Def. Any MTL formula F defines a set of timed words (F):
 (F) ≜ { w ∈ (P × N)* | w ⊧ F }
 (F) is called the language of F

Discrete Real-time Model-Checking

From Real-time to Untimed Model-Checking

Discrete-time Real-time Model Checking

An semantic view of the Real-time Model Checking problem:

Given: a timed automaton A and an MTL formula F

- if $\langle A \rangle \cap \langle \neg F \rangle$ is empty then every run of A satisfies F
- if $\langle A \rangle \cap \langle \neg F \rangle$ is not empty then some run of A does not satisfy F
 - any member of the nonempty intersection $\langle A \rangle \cap \langle \neg F \rangle$ is a counterexample

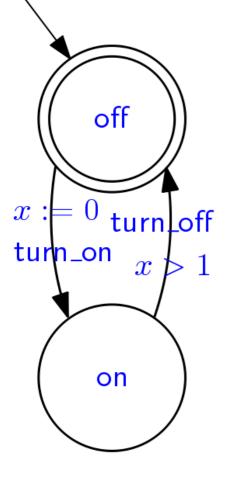
How to check $(A) \cap (\neg F) = \emptyset$ algorithmically (given A, F)?

For a discrete time domain we can reduce real-time model checking to (untimed) model-checking:

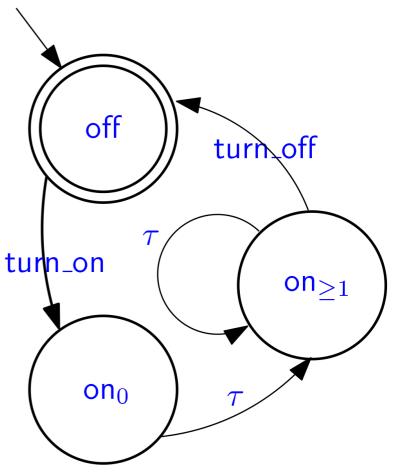
- Transform timed automaton A into finite-state automaton A'
- Transform MTL formula F into LTL formula F' $\langle A \rangle \cap \langle \neg F \rangle = \emptyset$ iff $\langle A' \rangle \cap \langle \neg F' \rangle = \emptyset$
- Re-use standard model-checking algorithms

Reduce discrete-time TAs to FSAs

Use states of an FSA to "count" discrete time steps according to the semantics of the TA



- transitions with special events T are time steps without events.
- on₀ represents location
 on with clock × = 0
- on ≥ 1 represents location on with clock $\times \geq 1$



- Use next operator X to "count" discrete time steps according to the semantics of the MTL formula
 - <>[1,3] p becomes Xp v XXp v XXXp
 - More compactly $X(p \lor X(p \lor Xp))$
 - []≥5 p becomes Х⁵ [](р ∨ т)
 - X⁵p is a shorthand for XXXXXp
 - The disjunction is needed because we may have time increments without events
 - The encoding for bounded until is a bit more complicated but not different in principle

Discrete-time Real-time MC: Complexity

- There is an exponential blow-up in complexity when switching from (untimed) linear-time model checking to discrete-time real-time model checking:
 - Discrete-time real-time MTL model checking: EXPSPACE-complete
 - in practice: double-exponential time
 - LTL model checking: PSPACE-complete
 - in practice: singly-exponential time
 - The blow up occurs only if the constants (in timed automata and MTL formulas) are encoded succinctly in binary
 - blow-up due to the "unrolling" of binary constants as FSA states or nested next operators

Dense Real-time Model-Checking

Timed Automata and Metric Temporal Logic

Dense Real-time Model-Checking

Dense real-time model checking considers the same model as discrete real-time model checking but with R₂O as time domain:

- A dense Timed Automaton (TA) models the system
- Dense-time Metric Temporal Logic (MTL) models the property
- The syntax of TA and MTL need not be changed for dense time
 - with the possible exception of allowing fractional time bounds
- The semantics of TA and MTL is also unchanged except that:
 - R≥0 replaces N as time domain
- As we did with untimed model checking, we will use finite-word finiteword models for automata and logic.
 - Unlike in untimed model checking, this choice affects some results. (We will mention some details only later for simplicity.)

Dense Real-time Model-Checking

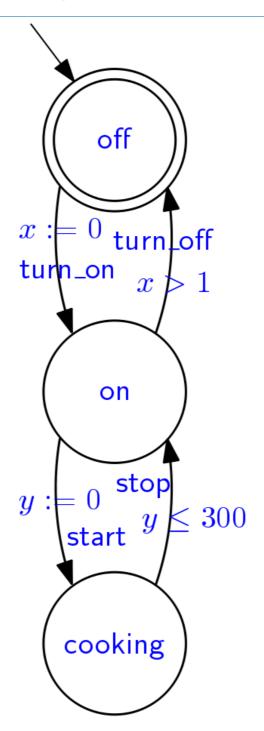
- Dense real-time model checking extends standard "untimed" model checking:
 - Timed Automata (TA) extend Finite-State Automata (FSA)
 - Metric Temporal Logic (MTL) extends Linear Temporal Logic (LTL)
- The Dense Real-time Model Checking problem:
- Given: a dense TA A and an MTL formula F
- Determine: if every run of A satisfies F or not

A ⊨ F

- if not, provide a counterexample: a run of A where F does not hold

•

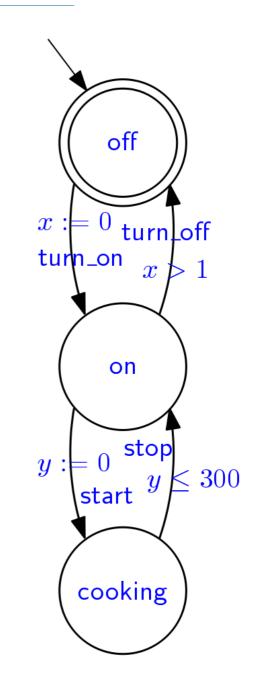
Timed Automata: Syntax



 \bigcirc

Timed Automata: Syntax

- Def. Nondeterministic Timed Automaton (TA): a tuple [Σ, S, C, I, E, F]:
 - Σ : finite nonempty (input) alphabet
 - S: finite nonempty set of locations (i.e., discrete states)
 - C: finite set of clocks
 - I, F: set of initial/final states
 - E: finite set of edges [s, σ, c, ρ, s']
 - $s \in S$: source location
 - $s' \in S$: target location
 - $\sigma \in \Sigma$: input character (also "label")
 - c: clock constraint in the form: c ::= x ≈ k | ¬ c | c1 ∧ c2
 - $x, y \in C$ are clocks
 - $k \in N$ is an integer constant
 - ≈ is a comparison operator among <, ≤, >, ≥, =
 - $\rho \subseteq C$: set of clock that are reset (to 0)

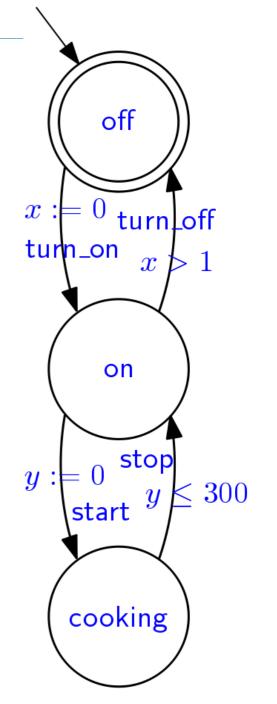


Accepting run:

 $r = [off, (x=0, y=0)] \\ [on, (x=0, y=3.2)] \\ [cooking, (x=8.5, y=0)] \\ [on, (x=81.7, y=73.2)] \\ [off, (x=84.91, y=76.41)] \end{cases}$

Over input timed word:

W = [turn_on, 3.2]
[start, 11.7]
[stop, 84.9]
[turn_off, 88.11]



Def. A timed word w = w(1) w(2) ... w(n) ∈ (Σ x R)* is a sequence of pairs [σ(i), t(i)] such that:

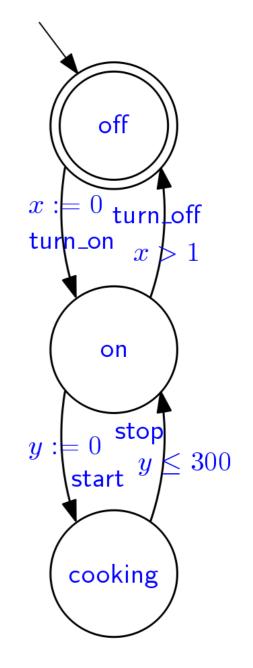
- the sequence of timestamps t(1), t(2), ..., t(n) is increasing
- $[\sigma(i), t(i)]$ represents the i-th character $\sigma(i)$ read at time t(i)

Def. An accepting run of a TA A=[Σ, S, C, I, E, F] over input timed word w = [σ(1), t(1)] ... [σ(n), t(n)] ∈ (Σ × R)* is a sequence r = [s(0), v(0,1), ..., v(0,|C|)] ... [s(n), v(n,1), ..., v(n,|C|)] ∈ (S × R^{|C|})* of (extended) states such that:

- it starts from an initial and ends in an accepting state: $s(0) \in I$, $s(n) \in F$
- initially all clocks are reset to 0: v(0,k) = 0 for all $1 \le k \le |C|$
- for every transition (0 ≤ i < n):
 [s(i) v(i,1) ... v(i,|C|)] --> [s(i+1) v(i+1,1) ... v(i+1,|C|)]
 some edge [s(i), σ(i+1), c, ρ, s(i+1)] in E is followed:
 - the clock values $v(i,1) + (t(i+1) t(i)) \dots v(i,|C|) + (t(i+1) t(i))$ satisfy the constraint c
 - $v(i+1,k) = if k-th clock is in \rho then 0 else v(i,k) + t(i+1) t(i)$

Def. Any TA A=[Σ, S, C, I, E, F] defines
a set of input timed words (A):
(A) ≜ { w ∈ (Σ × R)* | there is an accepting run of A over w }
(A) is called the language of A

With regular expressions and arithmetic:



Metric (Linear) Temporal Logic

<>[2,4) stop

- "there is an occurrence of stop between 2 (included) and 4 (excluded) time units in the future"
- [any, t < 2]* [stop, 2] [stop, 3] [any, 3.5] [any, 3.7] ...
- [any, t < 3.99]* [stop, 3.99] [any, 4] [any, t > 4] ...

[](2,4] start

"start holds between 2 (excluded) and 4 (included) time units in the future"

- [any, t ≤ 2] [start, 2.2] [start, 3] [start, 4] [any, t > 4] ...
- $[any, t \le 2] [start, 4] [any, t > 4] ...$
- [stop, 0] [stop, 0.3] [stop, 0.7]

(。)

Metric (Linear) Temporal Logic

[] (start $\Rightarrow \leftrightarrow (3,10]$ stop)

"every occurrence of start is followed by an occurrence of stop between 3 (excluded) and 10 (included) time units in the future"

cook U(3,10] stop

"stop occurs between 3 (excluded) and 10 (included) time units in the future, and cook holds until then"

Metric (Linear) Temporal Logic: Syntax

Def. Propositional Metric Temporal Logic (MTL) formulae: F ::= p | ¬F | F ∧ G | F U<a,b>G

with **p** ∈ P any atomic proposition and <a,b> an interval of the time domain (w.l.o.g. with integer endpoints).

Temporal (modal) operators:

- next: $X F \triangleq True U[1,1] F$
- bounded until: F U<a,b> G
- bounded release: $F R < a, b > G \triangleq \neg (\neg F U < a, b > \neg G)$
- bounded eventually: <><a,b>F ≜ True U<a,b>F
- bounded always: $[] < a,b > F \triangleq \neg < > < a,b > \neg F$
- intervals can be unbounded; e.g., $[3, \infty)$
- intervals with pseudo-arithmetic expressions; e.g.:
 - ≥ 3 for [3, ∞)
 - = 1 for [1,1]
 - $[0, \infty)$ is simply omitted

Metric Temporal Logic: Semantics

Def. A timed word w = [σ(1), t(1)] [σ(2), t(2)] ... [σ(n), t(n)] ∈ (P × R)* satisfies LTL formula F at position 1 ≤ i ≤ n, denoted w, i ⊧ F, when:

- w, i \models p iff p = $\sigma(i)$
- $w, i \models \neg F$ iff $w, i \models F$ does not hold
- $w, i \models F \land G$ iff both $w, i \models F$ and $w, i \models G$ hold
- w, i \models F U<a,b>G iff for some i $\leq j \leq n$ such that t(j) t(i) $\in \langle a,b \rangle$ it is: w, j \models G and for all i $\leq k < j$ it is w, k \models F

• i.e., F holds until G will hold within <a, b>

For derived operators:

-w, i $\models \leftrightarrow a,b \models F$ iff for some $i \le j \le n$ such that $t(j) - t(i) \in \langle a,b \rangle$ it is: w, $j \models F$

• i.e., F holds eventually within <a,b>

-w, i ⊨ []<a,b>F iff for all i ≤ j ≤ n such that t(j) - t(i) ∈ <a,b> it is: w, j ⊨ F

• i.e., F holds always within <a,b>

Def. Satisfaction: w ⊧ F ≜ w, 1 ⊧ F i.e., timed word w satisfies formula F initially

Def. Any MTL formula F defines a set of timed words (F):
(F) ≜ { w ∈ (P × R)* | w ⊧ F }
(F) is called the language of F

(。)

Dense Real-time Model-Checking

What's Decidable?

()

TAs not Closed under Complement

A: a dense TA $A \models F$ F: a dense-time MTL formula

= 0

x:

Fundamental problem:

Dense timed automata are not closed under complement

The complement of the language of this TA isn't accepted by any TA:

language of this TA:

"there exist two p's separated by one t.u."

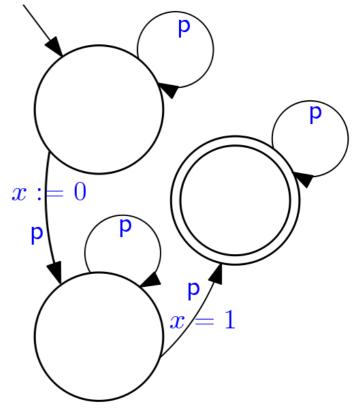
- complement language:
 "no two p's are separated by one t.u."
- intuition: need a clock for each p within the past time unit, but there can be an unbounded number of such p's because time is dense

(。)

TAs not Closed under Complement

Fundamental problem:

- Dense TAs are not closed under complement
- MTL is clearly closed under complement
 - Language of the TA: $(p \land (>=1 p))$
 - Complement language of the TA: $\neg \leftrightarrow (p \land \leftrightarrow = 1 p) = [] (p \Rightarrow \neg \leftrightarrow = 1 p)$
- Hence, automata-theoretic dense real-time model-checking is unfeasible (in general)



An even more fundamental problem:

The dense-time model-checking problem for MTL and TAs is undecidable (for infinite words)

 no approach is going to work, not just the automata-theoretic one

MTL and TAs are "too expressive" over dense time

(。)

What's Decidable about Timed Automata

Let's revisit the three algorithmic components of automata-theoretic model checking:

- MTL2TA: given MTL formula F build TA
 a(F) such that (F) = (a(F))
 - undecidable problem (for infinite words)
- TA-Intersection: given TAs A, B build TA C such that $\langle A \rangle \cap \langle B \rangle = \langle C \rangle$
 - decidable
- TA-Emptiness: given TA A check whether
 - $\langle A \rangle = \emptyset$ is the case
 - decidable!

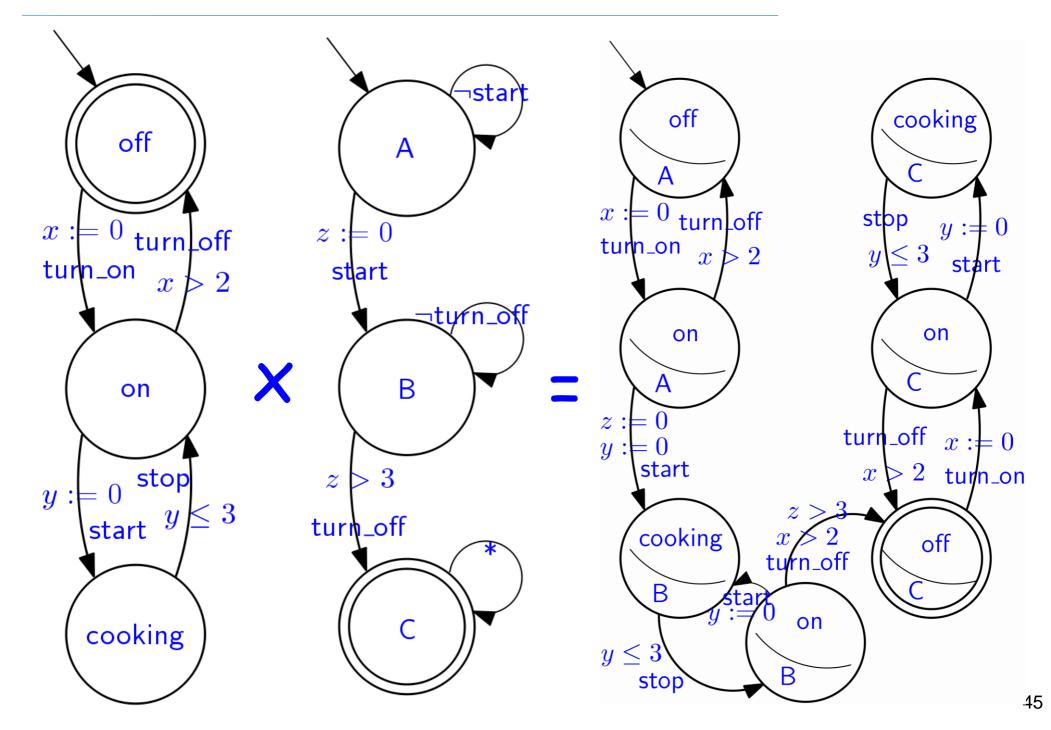
Dense Real-time Model-Checking

Intersection of Timed Automata

Given TAs A, B it is always possible to build automatically a TA C that accepts precisely the words that both A and B accept.

TA C represents all possible parallel runs of A and B where a timed word is accepted if and only if both A and B would accept it. The construction is called "product automaton".

TA-Intersection: Example



TA-Intersection: running TAs in parallel

- Def. Given TAs A=[Σ, S^A, C^A, I^A, E^A, F^A] and B=[Σ, S^B, C^B, I^B, E^B, F^B] let C ≜ A × B ≜ [Σ, S^C, C^C, I^C, E^C, F^C] be defined as:
 - $S^{C} \triangleq S^{A} \times S^{B}$
 - $C^{C} \triangleq C^{A} \cup C^{B}$ (assuming w.l.o.g. that they are disjoint sets)
 - $\mathbf{I}^{C} \triangleq \{ (s, t) \mid s \in \mathbf{I}^{A} \text{ and } t \in \mathbf{I}^{B} \}$
 - $[(s, t), \sigma, c^A \wedge c^B, \rho^A \cup \rho^B, (s', t')] \in E^C$ iff $[s, \sigma, c^A, \rho^A, s'] \in E^A$ and $[t, \sigma, c^B, \rho^B, t'] \in E^B$

•
$$F^{C} \triangleq \{ (s, t) \mid s \in F^{A} \text{ and } t \in F^{B} \}$$

```
Theorem.
\langle A \times B \rangle
=
\langle A \rangle \cap \langle B \rangle
```

(。)

Dense Real-time Model-Checking

Checking the Emptiness of Timed Automata

TA-Emptiness

Given a TA A it is always possible to check automatically if it accepts some timed word.

Outline of the algorithm:

- Assume that clock constraints involve integer constants only
- Define an equivalence relation over extended states (location + clocks)
- All extended states in the same equivalence class are equivalent w.r.t. satisfaction of clock constraints
 - The equivalence relation is such that there is a finite number of equivalence classes for any given TA
- Given a TA A, build an FSA reg(A) the "region automaton":
 - the states of reg(A) represent the equivalence classes of the extended states of any run of of A
 - the edges of reg(A) represent evolution of any extended state within the equivalence class over any run of A
- Checking the emptiness of reg(A) is equivalent to checking A's emptiness

Integer vs. Rational vs. Irrational

The domain for time is $R \ge 0$

What about the domain for time constraints?

- constants in clock constraints of TAs (e.g.: x < k)
- 1. Same as the domain for time: $R \ge 0$
 - e.g.: × < π
 - emptiness becomes undecidable!
- 2. Discrete time domain: integers Z
 - e.g.: x < 5
 - emptiness fully decidable (see algorithm next)
- 3. Dense but not continuous: rationals Q≥0
 - e.g.: x < 1/3
 - emptiness is reducible to the integer case

Dense but not continuous: rationals $Q \ge 0$

- Let A be a TA with rational constants
 - let m be the least common multiple of denominators of all constants appearing in the clock constraints of A
 - let A*m be the TA obtained from A by multiplying every constants in the clock constraints by m
 - A*m has only integers constants in its clock constraints
- A accepts any timed word
 [σ(1), t(1)] [σ(2), t(2)] ... [σ(n), t(n)]
 iff A*m accepts the "scaled" timed word
 [σ(1), m*t(1)] [σ(2), m*t(2)] ... [σ(n), m*t(n)]
- Hence checking the emptiness of A^*m is equivalent to checking the emptiness of A

Equivalence Relation over Extended States

Let us fix a TA A = $[\Sigma, S, C, I, E, F]$ with C = [x(1), ..., x(n)]

- For any clock x(i) in C let M(i) be the largest constant involving clock x(i) in any clock constraint in E
- Let [v(1), ..., v(n)] ∈ R≥0ⁿ denote a "clock evaluation" representing any assignment of values to clocks
- Equivalence of two clock evaluations:
 [v(1), ..., v(n)] ~ [v'(1), ..., v'(n)] iff all of the following hold:
 - 1. For all $1 \le i \le n$: int(v(i)) = int(v'(i)) or v(i), v'(i) > M(i)
 - For all 1 ≤ i,j ≤ n such that v(i) ≤ M(i) and v(j) ≤ M(j): frac(v(i)) ≤ frac(v(j)) iff frac(v'(i)) ≤ frac(v'(j))
 - 3. For all $1 \le i \le n$ such that $v(i) \le M(i)$: frac(v(i)) = 0 iff frac(v'(i)) = 0
- Note: int(x) is the integer part of x; frac(x) is the fractional part of x

Clock Regions

Def. A clock region is an equivalence class of clock evaluations induced by the equivalence relation ~

- For a clock evaluation v = [v(1), ..., v(n)] ∈ R≥0ⁿ,
 [[v]] denotes the clock region v belongs to
- As a consequence of the definition of ~, any clock region can be uniquely characterized by a finite set of constraints on clocks
 - v = [0.4; 0.9; 0.7; 0] for 4 clocks w, x, y, z
 - [[v]] is z = 0 < w < y < x < 1
- Fact: clock regions are always in finite number

More systematically:

- given a set of clocks C = [x(1), ..., x(n)]
- with M(i) the largest constant appearing in constraints on clock x(i)

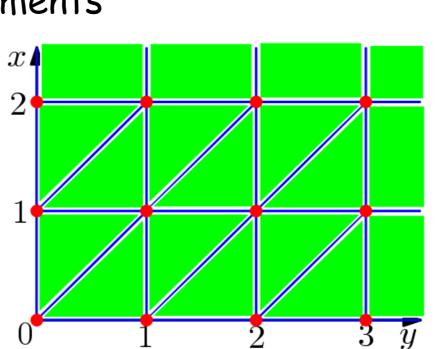
a clock region is uniquely characterized by

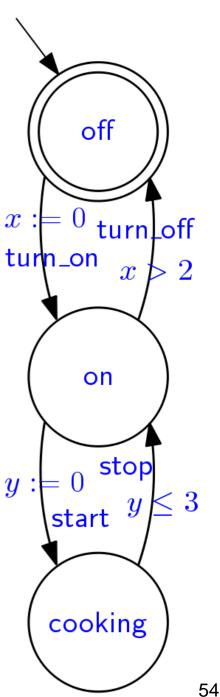
- For each clock x(i) a constraint in the form:
 - -x(i) = c with c = 0, 1, ..., M(i); or
 - c 1 < x(i) < c with c = 1, ..., M(i); or
 - x(i) > M(i)
- For each pair of clocks x(i), x(j) a constraint in the form
 - frac(x(i)) < frac(x(j))</pre>
 - frac(x(i)) = frac(x(j))
 - frac(x(i)) > frac(x(j))

(These are unnecessary if x(i) = c, x(j) = c, x(i) > M(i), or x(j) > M(j))

Clock Regions: Example

- Clocks C = [x, y]
- M(x) = 2; M(y) = 3
- All 60 possible clock regions:
 - 12 corner points
 - 30 open line segments
 - 18 open regions





Time-successors of Regions

Fact: a clock evaluation v satisfies a clock constraint c iff every other clock evaluation in [[v]] satisfies c

Hence, we can say that a "clock region satisfies a clock constraint"

Def. The time successor time-succ(R) of a clock region R is the set of all clock regions (including R itself) that can be reached from R by letting time pass (i.e., without resetting any clock).

Given a clock region R it is always possible to compute all other clock regions that can be reached from R by letting time pass (i.e., without resetting any clock)

Graphically:

the time-successors of a region R are the regions that can be reached by moving along a line parallel to the diagonal in the upward direction, starting from any point in R

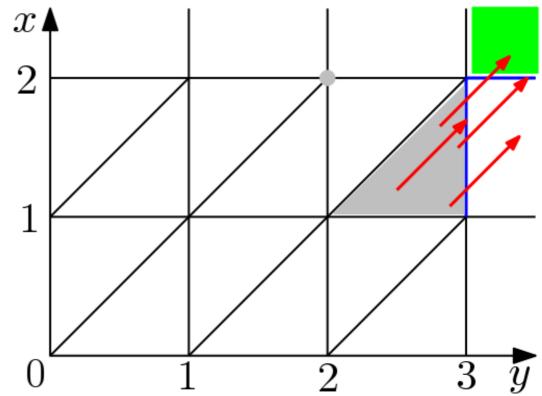
(For a precise definition see e.g.: Alur & Dill, 1994)

Time-successors of Regions: Example

Graphically: the time-successors of a region R are the regions that can be reached by moving along a line parallel to the diagonal in the upward direction, starting from any point in R

Example:

- successors of region
 2 < y < 3; 1 < x < y-1
 (other than the region itself):
 - y > 3; 1 < x < 2
 - y > 3; x = 2
 - y = 3; 1 < x < 2
 - y > 3; x > 2
- successors of region
 y = 2; x = 2 (other than the region itself):



Region Automaton Construction

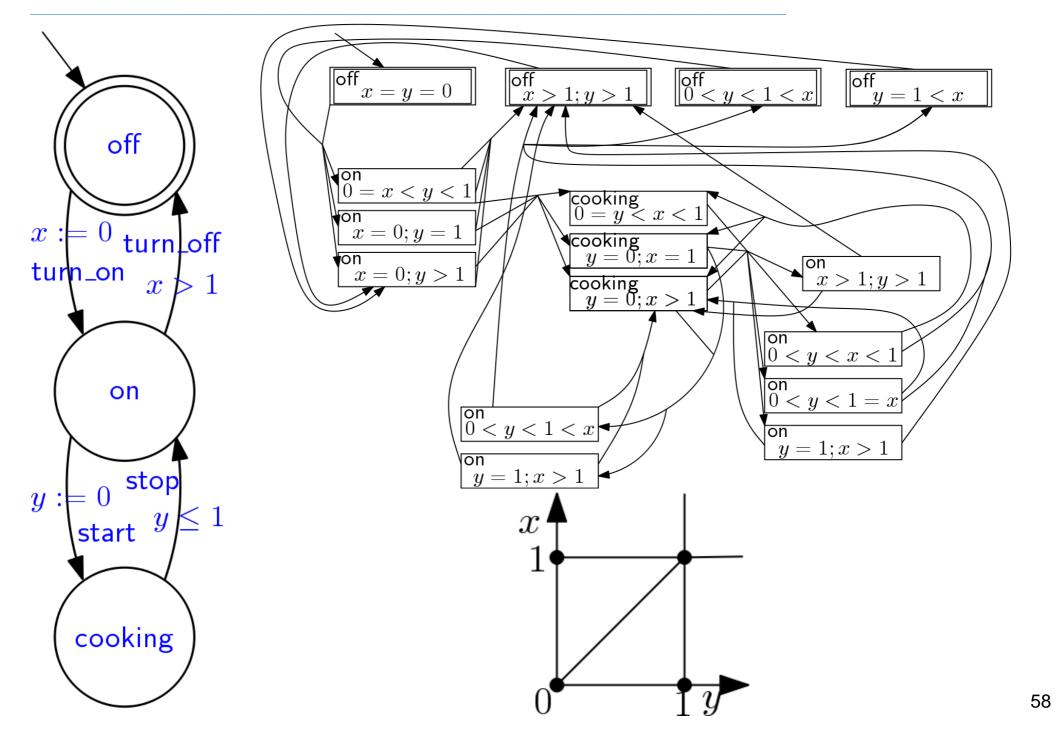
For a timed automaton A it is always possible to build an FSA reg(A) (the "region automaton" of A) such that: $\langle A \rangle = \emptyset$ iff $\langle reg(A) \rangle = \emptyset$

- Def. Given a TA A = $[\Sigma, S, C, I, E, F]$ its region automaton reg(A) $\triangleq [\Sigma, rS, rI, rE, rF]$ is defined as:
 - $rS \triangleq \{ (s, r) \mid s \in S \text{ and } r \text{ is a clock region } \}$
 - $rI \triangleq \{ (s, [[0, 0, ..., 0]]) | s \in I \}$

- the clock region where all clocks are reset to 0

- rE(σ, [s, r]) ≜ { (s', r') | [s, σ, c, ρ, s'] ∈ E and there exists a region r''∈ time-succ(r) such that r'' satisfies c, and r' is obtained from r'' by resetting all clocks in ρ to 0 }
- rF ≜ { (s, r) | s ∈ F }

Region Automaton: Example



Dense Real-time Model-Checking

Complexity, Variants, and Tools

Complexity of Emptiness Checking for TAs

- Building the region automaton and checking its emptiness takes time exponential in the size of the clock constraints
- Checking emptiness of a TA is a PSPACE-complete problem
 - Hence the region-automaton algorithm is worstcase optimal
- However, variants of the emptiness checking algorithm can achieve better performances in practice
 - mostly by using ad hoc data structures and symbolic representations of regions that can be manipulated efficiently

Variants of TA Emptiness Checking

Variants of the Emptiness Checking Algorithm are typically based on more efficient (on average) representations of regions

- Representatives
 - a clock region is represented by a concrete extended state that belongs to it
 - the concrete state is a "representative" of the region
 - if it is suitably chosen, manipulating it is equivalent to manipulating the whole region
- Clock constraints (a.k.a. zones)
 - a region is represented symbolically as a Boolean combination of clock constraints
 - successors are computed symbolically directly on the Boolean expression
- Other equivalence relations (e.g., bisimulation)
 - they can produce fewer equivalence classes

•

Tools for the Analysis of TAs

- Uppaal (Larsen, Petterson, Yi et al., ~1995)
- Kronos (Tripakis, Yovine et al., ~1995)
- HyTech (Henzinger et al., ~1994)
- PHAVer (Frehse, ~2005)

Remark: emptiness checking is also called "reachability analysis"

the language of a TA A is empty iff the accepting states of A cannot be reached in any computation

Dense Real-time Model-Checking

Getting Back Decidability

Decidable Dense Real-time MC

Model checking is undecidable over dense-time infinite words for TAs and MTL formulas

As usual, we can trade-off some expressiveness in exchange for decidability.

In particular, not mutually exclusively:

- Syntactic restrictions: use a real-time temporal logic with less expressiveness
- Semantic restrictions: restrict (the density of) the time domain in some way
 - discretization
 - finite words
 - bounded variability
 - bounded time

Reducing the Expressiveness of MTL

There exist different real-time temporal logics for which dense-time model checking is decidable.

Some examples:

- Strict subsets of MTL:
 - MITL: MTL without punctual (i.e., singleton) intervals (Alur, Henzinger; Hirshfeld, Rabinovich et al.)
 - BMTL, SMTL, ...
 (Ouaknine, Worrell et al.)
- Branching-time real-time logics:
 - TCTL (Henzinger, Nicollin, Sifakis, Yovine, et al.)

(。)

Build approximations of TAs and MTL dense-time semantics over discrete time, such that some results of the discrete-time analysis apply to the dense-time semantics as well.

In general these approaches are incomplete, that is they can't be applied to certain classes of formulas or they ignore certain classes of dense timed word.

- Digitization (Henzinger, Manna, Pnueli, 1992)
- Sampling (F., 2006)

6

Restrict the Semantics to Finite Words

Real-time model-checking of TAs and MTL is undecidable for infinite timed words

- infinite sequences of timestamped input symbols

It is decidable for finite words (which we used in defining formally the semantics)

This result came somewhat unexpectedly in ~2005 (Ouaknine & Worrell) and it contradicted the "folk belief" that the undecidability for infinite words carries over to finite words

•)