m Ziirich

Chair of Software Engineering

Java and C# in depth

Carlo A. Furia, Marco Piccioni, Bertrand Meyer

Java: reflection

i “)
Outline

Introductory detour: quines
Basic reflection
= Built-in features
= Introspection
= Reflective method invocation

Dynamic proxies

Reflective code-generation

Java and C# in depth

2

What's reflection? “

A language feature that enables a program to examine itself at
runtime and possibly change its behavior accordingly

= It may be cumbersome in imperative programming
paradigms

= traditional architectures distinguish between data and
iInstructions

= instructions are executed, while data is modified

= this distinction is, however, purely conventional, as both
are stored in memory

= The usage of metadata is the key to reflection

Java and C# in depth

3

m Ziirich

Chair of Software Engineering

Java and C# in depth

Carlo A. Furia, Marco Piccioni, Bertrand Meyer

Introductory detour: quines

An introductory detour: quines

A quine is a program that outputs its own source code

= named after the philosopher Willard Van Orman Quine
and his studies of self-reference

= it is an example of reflection

In pseudocode, the basic algorithm for a quine is:

Print the following sentence twice, the second time between quotes.
“Print the following sentence twice, the second time between quotes.”

Can you write a quine in Java?

Java and C# in depth

Java gquine

= From: http://www.nyx.net/~gthompso/self java.txt
= Author: Bertram Felgenhauer

class S{
public static void main(String[]a) {

String s='"class S{public static void

main (String[]a) {String s=;char c=34;
System.out.println(s.substring(0,52)+c+s+c
+s.substring(52));}}";

char c=34;

System.out.println(s.substring(0,52) +c+s+c
+s.substring (52)) ;

)

Java and C# in depth

m Ziirich

Chair of Software Engineering

Java and C# in depth

Carlo A. Furia, Marco Piccioni, Bertrand Meyer

Basic mechanisms for reflection

i O]
Normal vs. reflective at a glance

Creating an instance of MyClass and invoking public method
myMethod is normally straightforward:

MyClass o = new MyClass(); o.myMethod() ;

Reflection makes things a bit harder:
Class<?> c = Class.forName (“mypkg.MyClass");//1

Object o = c.newInstance();//2

//if the type is known statically we can cast
MyClass o = (MyClass)c.newInstance();//2bis

//27¢ argument: formal arg. list for myMethod
Method m=c.getMethod (“myMethod”, (Class<?>)null);//3
//27¢ argument: actual arg. list to invoke myMethod
m.invoke (o, (Object[]) null);//4

Java and C# in depth

8

Small quiz: methods with parameters 7

Let's assume that myMethod takes a String and an int:

MyClass o = new MyClass(); o.myMethod(“x”, 1)

How does the reflective code changes?

Class<?> c = Class.forName (“mypkg.MyClass") ;
Object o = c.newInstance();

//27¢ argument: formal arg. list for myMethod
Method m=c.getMethod (“myMethod”, //what here?) ;
//27¢ argument: actual arg. list to invoke myMethod

m.invoke (o, //what here?);

Java and C# in depth

9

Small quiz: methods with parameters

©

Let's assume that myMethod takes a String and an int:

MyClass o = new MyClass(); o.myMethod(“x”, 1)

How does the reflective code changes?

Class<?> c = Class.forName (“mypkg.MyClass") ;
Object o = c.newlInstance() ;

//27¢ argument: formal arg. list for myMethod

Method m=c.getMethod (“myMethod”, String.class,
int.class);

//27¢ argument: actual arg. list to invoke myMethod
m.invoke (o, new Object[] {new String(“x”),1});

Java and C# in depth

10

Exceptions thrown by reflective code 7

try{
Class<?> c = Class.forName (“mypkg.MyClass");//1

Object o = c.newInstance();//2

Method m=c.getMethod (“myMethod”, (Class<?>)null);//3
m.invoke (o, (Object[]) null);//4}

//these are only the checked exceptions thrown
catch {ClassNotFoundException e} {////thrown by 1}
catch {InstantiationException e} {//thrown by 2}
catch {IllegalAccessException e} {//thrown by 2,4}
catch {NoSuchMethodException e} {//thrown by 3}
catch {IllegalArgumentdException e} {//thrown by 4}
catch {InvocationTargetException e} {//thrown by 4}

Some unchecked exceptions and errors are also thrown...

Java and C# in depth

11

Built-in reflection ©

Operator instanceof
= example: overriding equals ()

public boolean equals (Object obj) {
// Querying for a type at runtime
if (! (obj instanceof IntendedType) {

return false;

Java and C# in depth

12

Getting a Class object 7

* java.lang.Class<T> is the entry point
= represents the meta-info for classes

= How can | get a Class object?
= from an object reference
Class<?> cl
= from any type (including primitive types)

myOb-j .getClass () ;

Class<?> c2 = int.class;

= from a primitive type, through the wrapper
Class<?> c3 Integer.TYPE;

= from a (fully-qualified) class name

Class<?> c4 = Class.forName (“
ch.ethz.inf.se.java.reflect.myClassName”) ;

Java and C# in depth

13

Introspecting a class

©

Class objects provide information about:
= Modifiers: int getModifiers()

= access (visibility) modifiers: abstract, public,
static, final, ... encoded as an integer

» use static method Modifier.toString(int mod) to
get a textual representation

Generic type parameters:

TypeVariable<Class<?>>[] getTypeParameters ()
Implemented interfaces: Class[] getInterfaces()
Inheritance hierarchy: Class[] getClasses()
Annotations: Annotation[] getAnnotations|()

Java and C# in depth

14

Introspecting public class members

©

Class Objects provide information about public members:

= Fields:
Field[] getFields()
Field getField(String fieldName)
» Methods:
Method[] getMethods ()
Method getMethod (String methodName,
Class<?>..paramTypes)
= Constructors:

Constructor<?>[] getConstructors()

Constructor<?> getConstructor (String
constructorName, Class<?>.paramTypes)

Java and C# in depth

15

. O]
Introspecting all class members

= Fields:

Field[] getDeclaredFields()

Field getDeclaredField(String fieldName)
= Methods:

Method[] getDeclaredMethods ()

Method getDeclaredMethod (String methodName,
Class<?>.paramTypes)

= Constructors:
Constructor<?>[] getDeclaredConstructors ()

Constructor<?>
getDeclaredConstructor (Class<?>..paramTypes)

To make a non-visible field accessible via reflection, invoke:
f.setAccessible (true) //what’s the type of £?

Java and C# in depth

16

Reflection and security X

= Method setAccessible (boolean flag) In classes
Field and Method toggles runtime access checking

= The security manager of the JVM can disable
setAccessible altogether

= The default security manager allows setAccessible
on members of classes loaded by the same class loader
as the caller

Java and C# in depth

17

Reflection and exceptions 7

Besides the already mentioned checked exceptions, reflection
may trigger the following un-checked exceptions and errors:

= SecurityException
= NullPointerException
= ExceptionInInitializerError

= LinkageError

While we don’t have to handle these exceptions and errors, we
do have to handle the checked ones, bloating the code even
more

Java and C# in depth

18

m Ziirich

Chair of Software Engineering

Java and C# in depth

Carlo A. Furia, Marco Piccioni, Bertrand Meyer

Dynamic proxies

Dynamic proxies

The idea comes from the Proxy design pattern (GoF):

Allows for object level access control by acting as a pass
through entity or a placeholder object

Dynamically created classes that implement some interfaces

= Typical usage of dynamic proxy objects: intercept calls to
objects of different classes implementing the same
interfaces

= Standard Java approach to Aspect Oriented

Programming (AOP): cross-cutting concerns are
centralized

Java and C# in depth

20

. “
Proxy sequence diagram

:Proxy ‘InvocationHandler :Method .target

4___—

Java and C# in depth

21

java.lang.reflect.Proxy

©

Java’ s dynamic proxy factory:

= The factory produces objects of classes extending
class Proxy

= They also implement the proxied interfaces and
associate an InvocationHandler object

Object newProxylInstance (ClassLoader loader,
Class<?>[] interfaces, InvocationHandler h)

» InvocationHandler is an interface to wrap objects

providing methods that can handle method calls to proxy
iInstances

= The handler object holds a reference to the target object

Java and C# in depth

22

Example: a proxy for shapes

public interface IDrawable ({
public void draw() ;

public class Shape implements IDrawable ({
public void draw () {
//draw a shape

Java and C# in depth

23

A factory for shapes 7

The clients gets an IDrawable object:
public class DrawablesFactory({

public static IDrawable getDrawable () {
Shape s = new Shape() ;

return Proxy.newProxyInstance (
this.getClass () .getClassLoader(),
new Class|[] {IDrawable.class},

new CustomInvocationHandler (s)) ;

Java and C# in depth

24

Sample invocation handler

class CustomInvocationHandler
implements InvocationHandler {
private proxied;
public CustomInvocationHandler (Shape s) {

proxied = s; }

public Object invoke (Object proxy, Method m,
Object[] args) throws Throwable{

// Pre-processing here
Object result = m.invoke (proxied, args);
// Post-processing here

return result;

Java and C# in depth

25

O]
Proxy usage: example

/* If the client does not know which
specific type comes from the factory */

IDrawable s =
DrawablesFactory.getDrawable () ;

/* If the client wants to use other
features of Shape as well*/

Shape s = (Shape)
DrawablesFactory.getDrawable() ;

s.draw() ;

Java and C# in depth

26

Dynamic Proxies hints and tips 7

= You can only proxy for an interface, not for a
class

» Use handlers to process requests

» instanceof can be used on proxy objects

= Casting works with proxy objects

27

What is a Class Loader “

= For every class in the system, the JVM maintains a copy of
the class code in the form of an instance of
java.lang.Class

= the class attribute of any Object returns it

= Every class is loaded in the JVM by an instance of
java.lang.ClasslLoader

= reflection is really built-in the JVM

= Within the JVM, a class is uniquely defined by:
= its fully-qualified name (i.e., including the package name)
= and the instance of the class loader that loaded it

» User-defined class loaders may make different usages of
the same class incompatible (if loaded by unrelated class
loaders)

Java and C# in depth

28

Possible usages of class loaders

= | oad resources bundled in JARSs
» Load, unload, update modules at runtime
= Use different versions of a library at the same time

= |solate different applications running within the
same VM (static variables could be a problem
otherwise)

= EXxercise control over where the code comes from
(e.g. a network)

Java and C# in depth

29

m Ziirich

Chair of Software Engineering

Java and C# in depth

Carlo A. Furia, Marco Piccioni, Bertrand Meyer

Reflective code-generation

Reflective code generation

> Basic Java reflection is limited

» Dynamic proxies are more powerful, but their level of
granularity is the method

> We may need to change the behavior of a method at
runtime

> Code generation is a solution

> Class-to-class transformation is an example of code
generation

Java and C# in depth

31

Class-to-class transformation

> Input: a class

> Output: another class, obtained by transforming the input

> Use reflection to examine the input class (no parser
needed)

> Load generated classes dynamically at runtime

Java and C# in depth

32

Generating static HelloWorld (1/2)

class HelloGenerator {

public static void main(String[] args)
throws Exception {

// Step 1l: generate class text on file

PrintWriter pw = new PrintWriter(new
FileOutputStream(“Hello.java')) ;

pw.println(“... class text here ...");
// Step 2: compile .java file into bytecode
Process p = Runtime.getRuntime () .exec(

new String[]{“javac”,”Hello.java’}) ;
p.waitFor () ;
// continues on next slide

Java and C# in depth

33

Generating static HelloWorld (2/2)

// continues from previous slide

// If compilation went fine...

if (p.exitValue() == 0) {

// now the runtime knows about the Hello class

// Step 3: use dynamically generated class

Class<?> helloObj = Class.forName (“Hello”) ;

Method m = helloObj.getMethod (“main”, String[].class);

// null target because ‘main’ is static
m.invoke (null, new Object[] {new String[]{}})

}
else{ /* handle I/O errors */ }

Java and C# in depth

