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Motivation

» Programming Is not just about writing code
Find errors
Fix errors

» Automating these steps is helpful
Automatic testing tools help finding errors
What about fixing them?



Background
» AutoTest

B. Meyer, A. Fiva, I. Ciupa, A. Leitner, Y. Wei, E. Stapf (2009)
Automated Testing Framework

Paper will be presented in this seminar

» Pachika
V.Dallmeier, A. Zeller, B.Meyer (2009)

Tool to generate potential fixes for bugs
Used with failing testcases for Java Programs



AutoFix-E

» Find fixes using
Contracts
Boolean Query Abstraction

» Plan:
1) Assess Object State
2) Construct Fault Profile and Behavioral Model
3) Generate Candidate Fixes
4) Validate Fixes



Example
» TWO WAY SORTED SET

duplicate (n: INTEGER):1ike Current
local
pos: CURSOR
counter: INTEGER
do

item has precondition

pOsS := cursor
Result := new chain not before and not
Result.finish after
Result.forth
from
until

(counter = n) or else afte

loop

Result.put left (Ltem
forth
counter := counter + 1
end
go_to (pos)
end




Workflow

non-valid fixes
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Object State

» Predicate set P
Boolean queries
Complex predicates (implications)

is empty > after

Mutations of complex predicates

A 2> B
e VT
- A 2 B A 2> - B - A 2> = B

» Collectionn =P U{notp |p € P}
» Remove redundancies in P using Z3



Fault Protile

» State invariant
I, = {plp € I Ap holds at location ¢}

» Consider all passing runs
Infer state invariant I, for each location ¢

» Consider all failing runs
Infer state invariant I,” for each location ¢

Only up to location of failure



Fault Profile: Example

» Construct fault profile
o, = {plpe L, Ap & I,7}
Use tool called Daikon

» Example:

before and off hold only in failing runs

l

before implies not off Fault Profile



Behavioral Model

» Finite-state automaton representing class’ behaviour

pre routine m post
state state

» Extract model from passing runs

Sequence

» ldea
Failed of mutators Fixed
Sstate state




Behavioral Model: |

is empty

before
not after

not is empty

—
ixample
forth 1s empty
not before
after
forth not is empty

not before

before
not after
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not after



Candidate Fixes

» Put everything together
» Predefined templates:

(a) snippet (b) if fail then
old stmt snippet
end
old stmt
(c) 1f not fail then (d) 1f fail then
old stmt snippet
end else
old stmt

end
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Candidate Fixes: |

Lxample

duplicate (n: INTEGER) :1ike Current

from
until
(counter = n) or else after
loop
Result.put left (item)
forth
counter := counter + 1
end
go_to (pos)
end
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Candidate Fixes: Example

duplicate (n: INTEGER) :1ike Current

from

until
(counter = n) or else after
loop
~ if before then
forth
else
snippet - Result.put left (item)
forth
counter := counter + 1
- end
end
go_to (pos)
end
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Fix Validation

» Run all testcases on fixes
A fix is valid if it passes all failing and passing runs

» Additionally: Ranking

Static metrics
Textual change
Branches introduced

Dynamic metrics
Runtime behaviour
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Improvement

» Linearly constrained assertions
E.Q.

i > 1 and 1 < count

Require special techniques for fix generation

Specific schema for candidate fixes

if not constraint then new stmt else old stmt end
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~valuation

Experimental |

» 42 Faults from EiffelBase and Gobo

Type of fault # Faults # Fixed # Proper
Precondition 24 11 (46%) 11 (46%)
Postcondition 8 0 0
Check 1 1(100%) O
Class invariant 9 4 (44%) 2 (22%)
Total 42 16(38%) 13(30%)

» Average fixing time: 2.6 minutes
» Small study with programmers

4 of 6 proposed valid fixes were same as programmers’
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Future Work

mprove behavior model
Different fault types

~ind faults in contracts
_anguages without contracts
mproving ranking metric

v VvV Vv VvV Vv ©Y
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Conclusion

» Limitation: all classes used data structure related

» Status from 2010
New Version of AutoFix developed in 2011
Different approach: code-based instead of model-based

» Still an open field of research
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