
Automated Fixing of Programs with

Contracts

Yi Wei, Yu Pei, Carlo A. Furia, Lucas S. Silva, Stefan Buchholz,
Bertrand Meyer, Andreas Zeller

Presented by Christine Zeller

Motivation

 Programming is not just about writing code

 Find errors

 Fix errors

 Automating these steps is helpful

 Automatic testing tools help finding errors

 What about fixing them?

2

Background

3

 AutoTest
 B. Meyer, A. Fiva, I. Ciupa, A. Leitner, Y. Wei, E. Stapf (2009)

 Automated Testing Framework

 Paper will be presented in this seminar

 Pachika
 V.Dallmeier, A. Zeller, B.Meyer (2009)

 Tool to generate potential fixes for bugs

 Used with failing testcases for Java Programs

AutoFix-E

4

 Find fixes using

 Contracts

 Boolean Query Abstraction

 Plan:

 1) Assess Object State

 2) Construct Fault Profile and Behavioral Model

 3) Generate Candidate Fixes

 4) Validate Fixes

Example

5

 TWO_WAY_SORTED_SET
duplicate(n: INTEGER):like Current

 local

 pos: CURSOR

 counter: INTEGER

 do

 pos := cursor

 Result := new_chain

 Result.finish

 Result.forth

 from

 until

 (counter = n) or else after

 loop

 Result.put_left(item)

 forth

 counter := counter + 1

 end

 go_to(pos)

 end

item has precondition

not before and not

after

Workflow

6

Eiffel

Class

Test

Suite

AutoTest

Fault

Profile

Behavioral

Model
Candidate

Fixes
Valid

Fixes

non-valid fixes

AutoFix-E

Object State

7

 Predicate set P

 Boolean queries

 Complex predicates (implications)

 Mutations of complex predicates

 Collection Π = P ∪ not p p ∈ 𝑃

 Remove redundancies in P using Z3

is_empty  after

A  B

¬ A  B ¬ A  ¬ B A  ¬ B

Fault Profile

8

 State invariant

 Consider all passing runs

 Infer state invariant 𝐼ℓ
+ for each location ℓ

 Consider all failing runs

 Infer state invariant 𝐼ℓ
− for each location ℓ

 Only up to location of failure

𝐼ℓ = 𝑝 𝑝 ∈ Π ∧ 𝑝 ℎ𝑜𝑙𝑑𝑠 𝑎𝑡 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 ℓ

Fault Profile: Example

9

 Construct fault profile

 Use tool called Daikon

 Example:

Φℓ = 𝑝 𝑝 ∈ 𝐼ℓ
+ ∧ 𝑝 ∉ 𝐼ℓ

−

before and off

before implies not off

hold only in failing runs

Fault Profile

Behavioral Model

10

 Finite-state automaton representing class’ behaviour

 Extract model from passing runs

 Idea

pre

state

post

state

routine m

Failed

state

Fixed

state

Sequence

of mutators

Behavioral Model: Example

11

is_empty

before

not after

is_empty

not before

after

forth

not is_empty

before

not after

not is_empty

not before

not after

forth

Candidate Fixes

12

 Put everything together

 Predefined templates:

(a) snippet

 old_stmt
(b) if fail then

 snippet

 end

 old_stmt

(c) if not fail then

 old_stmt

 end

(d) if fail then

 snippet

 else

 old_stmt

 end

Candidate Fixes: Example

13

duplicate(n: INTEGER):like Current

 ...

 from

 until

 (counter = n) or else after

 loop

 Result.put_left(item)

 forth

 counter := counter + 1

 end

 go_to(pos)

 end

Candidate Fixes: Example

14

duplicate(n: INTEGER):like Current

 ...

 from

 until

 (counter = n) or else after

 loop

 if before then

 forth

 else

 Result.put_left(item)

 forth

 counter := counter + 1

 end

 end

 go_to(pos)

 end

snippet

Fix Validation

15

 Run all testcases on fixes

 A fix is valid if it passes all failing and passing runs

 Additionally: Ranking

 Static metrics

 Textual change

 Branches introduced

 Dynamic metrics

 Runtime behaviour

Improvement

16

 Linearly constrained assertions

 E.g.

 Require special techniques for fix generation

 Specific schema for candidate fixes

i > 1 and i < count

if not constraint then new_stmt else old_stmt end

Experimental Evaluation

17

 42 Faults from EiffelBase and Gobo

 Average fixing time: 2.6 minutes

 Small study with programmers

 4 of 6 proposed valid fixes were same as programmers’

Future Work

18

 Improve behavior model

 Different fault types

 Find faults in contracts

 Languages without contracts

 Improving ranking metric

 ...

Conclusion

19

 Limitation: all classes used data structure related

 Status from 2010

 New Version of AutoFix developed in 2011

 Different approach: code-based instead of model-based

 Still an open field of research

