Automated Fixing of Programs with
Contracts

Yi Wei, Yu Pei, Carlo A. Furia, Lucas S. Silva, Stefan Buchholz,
Bertrand Meyer, Andreas Zeller

Presented by Christine Zeller




Motivation

» Programming Is not just about writing code
Find errors
Fix errors

» Automating these steps is helpful
Automatic testing tools help finding errors
What about fixing them?



Background
» AutoTest

B. Meyer, A. Fiva, I. Ciupa, A. Leitner, Y. Wei, E. Stapf (2009)
Automated Testing Framework

Paper will be presented in this seminar

» Pachika
V.Dallmeier, A. Zeller, B.Meyer (2009)

Tool to generate potential fixes for bugs
Used with failing testcases for Java Programs



AutoFix-E

» Find fixes using
Contracts
Boolean Query Abstraction

» Plan:
1) Assess Object State
2) Construct Fault Profile and Behavioral Model
3) Generate Candidate Fixes
4) Validate Fixes



Example
» TWO WAY SORTED SET

duplicate (n: INTEGER):1ike Current
local
pos: CURSOR
counter: INTEGER
do

item has precondition

pOsS := cursor
Result := new chain not before and not
Result.finish after
Result.forth
from
until

(counter = n) or else afte

loop

Result.put left (Ltem
forth
counter := counter + 1
end
go_to (pos)
end




Workflow

non-valid fixes

Behavioral
Model :
Candidate
Fixes
Fault
Profile
k \ )
I |
AutoTest AutoFix-E



Object State

» Predicate set P
Boolean queries
Complex predicates (implications)

is empty > after

Mutations of complex predicates

A 2> B
e VT
- A 2 B A 2> - B - A 2> = B

» Collectionn =P U{notp |p € P}
» Remove redundancies in P using Z3



Fault Protile

» State invariant
I, = {plp € I Ap holds at location ¢}

» Consider all passing runs
Infer state invariant I, for each location ¢

» Consider all failing runs
Infer state invariant I,” for each location ¢

Only up to location of failure



Fault Profile: Example

» Construct fault profile
o, = {plpe L, Ap & I,7}
Use tool called Daikon

» Example:

before and off hold only in failing runs

l

before implies not off Fault Profile



Behavioral Model

» Finite-state automaton representing class’ behaviour

pre routine m post
state state

» Extract model from passing runs

Sequence

» ldea
Failed of mutators Fixed
Sstate state




Behavioral Model: |

is empty

before
not after

not is empty

—
ixample
forth 1s empty
not before
after
forth not is empty

not before

before
not after

11

not after



Candidate Fixes

» Put everything together
» Predefined templates:

(a) snippet (b) if fail then
old stmt snippet
end
old stmt
(c) 1f not fail then (d) 1f fail then
old stmt snippet
end else
old stmt

end

12



Candidate Fixes: |

Lxample

duplicate (n: INTEGER) :1ike Current

from
until
(counter = n) or else after
loop
Result.put left (item)
forth
counter := counter + 1
end
go_to (pos)
end

13



Candidate Fixes: Example

duplicate (n: INTEGER) :1ike Current

from

until
(counter = n) or else after
loop
~ if before then
forth
else
snippet - Result.put left (item)
forth
counter := counter + 1
- end
end
go_to (pos)
end

14



Fix Validation

» Run all testcases on fixes
A fix is valid if it passes all failing and passing runs

» Additionally: Ranking

Static metrics
Textual change
Branches introduced

Dynamic metrics
Runtime behaviour

15



Improvement

» Linearly constrained assertions
E.Q.

i > 1 and 1 < count

Require special techniques for fix generation

Specific schema for candidate fixes

if not constraint then new stmt else old stmt end

16



~valuation

Experimental |

» 42 Faults from EiffelBase and Gobo

Type of fault # Faults # Fixed # Proper
Precondition 24 11 (46%) 11 (46%)
Postcondition 8 0 0
Check 1 1(100%) O
Class invariant 9 4 (44%) 2 (22%)
Total 42 16(38%) 13(30%)

» Average fixing time: 2.6 minutes
» Small study with programmers

4 of 6 proposed valid fixes were same as programmers’

17



Future Work

mprove behavior model
Different fault types

~ind faults in contracts
_anguages without contracts
mproving ranking metric

v VvV Vv VvV Vv ©Y

18



Conclusion

» Limitation: all classes used data structure related

» Status from 2010
New Version of AutoFix developed in 2011
Different approach: code-based instead of model-based

» Still an open field of research

19



