
Simplifying
Loop Invariant Generation
Using Splitter Predicates

R. Sharma, I. Dillig, T. Dillig, A. Aiken

Presented by Raphael Fuchs

 2

● Context: (Automatic) Program Verification
– Floyd-Hoare logic {P} S {Q}

– Often no specification given except for procedure
pre-/postcondition

– Encode program as logical formula, use SMT solvers
to check consistency with specification

● Problem: Loops need invariants
– Programmers might write them

– Invariant generation preferable

– Many tools and techniques exist

– Here: Static code analysis

Background

 3

Motivation
● Disjunctive invariants are difficult to infer!

x = 0;
y = 50;
while (x < 100) {

//
x = x + 1;
if (x > 50)

y = y + 1;
}
assert (y == 100);

● OpenSSH study: ~10% of loops require
disjunctive invariants

 4

Multi-phase loops
● Loops with conditions (if-statements)
● Fixed number of phase transitions

– Phase: sequence of iterations where condition
evaluates to same value

– Often 2 phases are enough, e.g. special first or last
iteration.

● Common cause for disjunctive invariants

 5

Contribution
● Idea: Transform loop to equivalent code with

conjunctive invariants only.
● Then apply existing invariant generators

x = 0; y = 50;
while (x <= 49) {
 //
 x = x + 1;
}
while (x < 100 && x > 49) {
 //
 x = x + 1;
 y = y + 1;
}
assert (y == 100);

x = 0;
y = 50;
while (x < 100) {

x = x + 1;
if (x > 50)

y = y + 1;
}
assert (y == 100);

 6

(Phase) Splitter Predicates
Technique: We identify phase transitions with a
phase splitter predicate Q with special
properties:

1) Q must split loop into two

2) When Q is true (false) at entry,
conditional C must always be true (false)

 7

Checking Splitter Predicates

● Theorem: Q is a phase splitter predicate for a
loop if the following holds:

while (x < 100) {
x = x + 1;
if (x > 50)

y = y + 1;
}

while (P) {
B
if (C)

y = y + 1;
}

B

 8

Splitting Algorithm

1. Find a candidate Q for some conditional C
Q = WP(B, C) = WP(x=x+1, x > 50) =x > 49

2. Check validity of

3. Check

4. Split loop if successful or try another conditional

 9

Example: Result
P = x < 100
B = x = x + 1
C = x > 50
Q = WP(B, C) = x > 49

x = 0; y = 50;
while (P && !Q) {
 x = x + 1;
}
while (P && Q) {
 x = x + 1;
 y = y + 1;
}
assert (y == 100);

x = 0;
y = 50;
while (x < 100) {

x = x + 1;
if (x > 50)

y = y + 1;
}
assert (y == 100);

 10

Example: Result
P = x < 100
B = x = x + 1
C = x > 50
Q = WP(B, C) = x > 49

x = 0; y = 50;
while (x < 100 && x <= 49) {
 x = x + 1;
}
while (x < 100 && x > 49) {
 x = x + 1;
 y = y + 1;
}
assert (y == 100);

x = 0;
y = 50;
while (x < 100) {

x = x + 1;
if (x > 50)

y = y + 1;
}
assert (y == 100);

 11

Implementation
● Prototype using SAIL program analysis front-end,

subset of C
● MISTRAL SMT solver: theory of linear arithmetic

over integers
● 13 benchmarks from papers+tools run by

INTERPROC and INVGEN generators
– with and without this technique

#Verified Before After

INTERPROC 3 12

INVGEN 8 13

 12

Questions?

 13

Limitations
x=0;
while(x<n) {
 //
 x++;
}
if(n>0)
 assert(x==n);

● Disjunctive invariant,
no nested “if”

● Not all loops with if-statements are multi-phase
– But in case the if-condition relates to the

iteration they often are!

● Efficiency? Many “C”s may be tried

