
Programs that test
themselves

Bertrand Meyer, ETH Zurich and Eiffel Software
Arno Fiva, Ilinca Ciupa, Andreas Leitner, and Yi Wei, ETH Zurich
Emmanuel Stapf, Eiffel Software

Presenter: Papastergiou Christos

Introduction

 Modern engineering products continuously test themselves

 They are designed for testability

 Software design pays little attention to testing needs

Idea: Design software for testability

Autotest

 Autotest is a set of components that
 automates testing process
 relies on programs with contracts
 is integrated into the EiffelStudio

 Components
 test generation
 test extraction
 integration of manual tests

Automated testing

 Levels of automation:
 test execution (JUnit, PHPunit …)
 regression testing
 resilience
 test case generation
 test oracles
 minimization

 Most frameworks support only the first three

 Autotest innovates also on the last three

Test generation

 The unit of a generated test is a failed routine call
 Each routine is exercised with different targets and arguments
 Use contracts as oracles
 Log results
 Create minimized tests for the failed routines

 Exercising a routine (1)

 Objects are needed for target and possibly for arguments

 When an object T is needed, Autotest decides:
 to create a new one
 to use an existing one

 To create a new object Autotest
 selects a constructor
 makes sure invariant holds

Exercising a routine(2)

 The arguments of a routine might be of primitive types.
Autotest decides:
 random selection from the domain
 selection from preset values for each type

 Random but still powerful

Contracts as oracles

 Contracts in the code serve as oracles

 A contract violation signals a flaw either in:
 the caller of a routine or
 in the routine itself

 Benefits
 software is tested as it is
 no further programming skills needed

Optimizations

 Adaptive random testing
 use values equally spaced out across a domain
 introduction of a distance metric for objects
 complements rather than replaces the random algorithm

 Routine exercising
 using ART

 ba3.transfer(ba1, i5)
 ba1.transfer(ba4, i2)
 ba2.transfer(ba2, i4)
 …

Objects pool

Minimization

 Keeping the whole failed test is impractical
 Keep only the instructions that involve the target and the

arguments of the failing routine
 statically analyze the failed test
 calculate backward slice
 use the slice as the failed test

 Initial test Minimized test

Test generation results

 Autotest was experimented on classes with different
semantics and sizes

Tested library Faults Percent failing

routines
Percent failed

tests

EiffelBase 127 6.4 (127/1984) 3.8 (1513/39615)

Gobo libraries 26 4.4 (26/585) 3.7 (2.928/79886)

Specification
library

72 14.1 (72/510) 49.6
(12860/25946)

Test extraction

 Failed runs are candidate test cases

 Autotest can turn a failure into a test by

1. creating a trace abstraction of the debugger (a called_by tree
with <invocation,context> nodes)

2. selecting the invocation that received the failure
3. extracting a snapshot of the state that is required for this

invocation

Demo

Conclusions

 Advantages
 nice features on automatized testing
 discovers unfound software failures
 helps investigate questions
 does not require extra knowledge
 all tests are treated the same regardless of their origin

 Disadvantages
 cannot guarantee absence of faults
 not suitable for integration testing
 generated and extracted tests less robust and readable

Manual tests should still form the majority of your testing
suite!

Questions?

Demo – Bank Account Class

Demo – Manual Test Case

Demo – Test Execution

Demo – Application Class

Demo – Failed Execution

Demo – Test Extraction

Demo – Extracted Test

Demo – Test Generation

Demo – Generated Test

	Programs that test themselves
	Introduction
	Autotest
	Automated testing
	Test generation
	 Exercising a routine (1)
	Exercising a routine(2)
	Contracts as oracles
	Optimizations
	Minimization
	Test generation results
	Test extraction
	Demo
	Conclusions
	Questions?
	Demo – Bank Account Class
	Demo – Manual Test Case
	Demo – Test Execution
	Demo – Application Class
	Demo – Failed Execution
	Demo – Test Extraction
	Demo – Extracted Test
	Demo – Test Generation
	Demo – Generated Test

