
Programs that test 
themselves 
 
Bertrand Meyer, ETH Zurich and Eiffel Software 
Arno Fiva, Ilinca Ciupa, Andreas Leitner, and Yi Wei, ETH Zurich 
Emmanuel Stapf, Eiffel Software 
 

Presenter:  Papastergiou Christos 
 
 
 
 



Introduction 

 Modern engineering products continuously test themselves  
 
 They are designed for testability 

 
 Software design pays little attention to testing needs 
 
Idea: Design software for testability 



Autotest 

 Autotest is a set of components that 
  automates testing process 
 relies on programs with contracts 
 is integrated into the EiffelStudio 

 
 Components 
 test generation 
 test extraction 
 integration of manual tests 
         



Automated testing 

 Levels of automation: 
 test execution (JUnit, PHPunit …) 
 regression testing 
 resilience 
 test case generation 
 test oracles 
 minimization 

 
 Most frameworks support only the first three 
 
 Autotest innovates also on the last three 



Test generation  

 The unit of a generated test is a failed routine call 
 Each routine is exercised with different targets and arguments 
 Use contracts as oracles 
 Log results 
 Create minimized tests for the failed routines 

 
 



 Exercising a routine (1) 

 Objects are needed for target and possibly for arguments 
 
 When an object T is needed, Autotest decides: 
 to create a new one  
 to use an existing one 
 

 To create a new object Autotest 
 selects a constructor 
 makes sure invariant holds  
 



Exercising a routine(2) 

 The arguments of a routine might be of primitive types. 
Autotest decides: 
 random selection from the domain 
 selection from  preset values for each type 

 
 Random but still powerful 



Contracts as oracles 

 Contracts in the code serve as oracles 
 
 A contract violation  signals a flaw either in: 
 the caller of a routine or 
 in the routine itself 
 

 Benefits 
 software is tested as it is 
 no further programming skills needed 



Optimizations 

 Adaptive random testing 
 use values equally spaced out across a domain 
 introduction of a distance metric for objects 
 complements rather than replaces the random algorithm 

 
                                                                           
 
                Routine exercising  
                using ART 
               
                 ba3.transfer(ba1, i5) 
                 ba1.transfer(ba4, i2) 
                 ba2.transfer(ba2, i4) 
                 …   
        
       
    
Objects pool 

 



Minimization 

 Keeping the whole failed test is impractical 
 Keep only the instructions that involve the target and the 

arguments of the failing routine 
 statically analyze the failed test 
 calculate backward slice 
 use the slice as the failed test  

 
 
 
 
 

 
       Initial test                                Minimized test 

 



Test generation results 

 Autotest was experimented on classes with different 
semantics and sizes 

 
Tested library Faults Percent failing 

routines 
Percent failed 

tests 

EiffelBase 127 6.4 (127/1984) 3.8 (1513/39615) 

Gobo libraries 26 4.4 (26/585) 3.7 (2.928/79886) 

Specification 
library 

72 14.1 (72/510) 49.6 
(12860/25946) 



Test extraction 

 Failed runs are candidate test cases 
 
 Autotest can turn a failure into a test by 

1. creating a trace abstraction of the debugger (a called_by tree 
with <invocation,context> nodes) 

2. selecting the invocation that received the failure 
3. extracting a snapshot of the state that is required for this 

invocation  
 
 

 



Demo 



Conclusions 

 Advantages 
 nice features on automatized testing 
 discovers unfound software failures 
 helps investigate questions 
 does not require extra knowledge 
 all tests are treated the same regardless of their origin 

 Disadvantages 
 cannot guarantee absence of faults 
 not suitable for integration testing 
 generated and extracted tests less robust and readable    

 
Manual tests should still form the majority of your testing 
suite! 



Questions? 

 



Demo – Bank Account Class 



Demo – Manual Test Case 



Demo – Test Execution 
 



Demo – Application Class 



Demo – Failed Execution 



Demo – Test Extraction 



Demo – Extracted Test 



Demo – Test Generation 



Demo – Generated Test 


	Programs that test themselves
	Introduction
	Autotest
	Automated testing
	Test generation 
	 Exercising a routine (1)
	Exercising a routine(2)
	Contracts as oracles
	Optimizations
	Minimization
	Test generation results
	Test extraction
	Demo
	Conclusions
	Questions?
	Demo – Bank Account Class
	Demo – Manual Test Case
	Demo – Test Execution
	Demo – Application Class
	Demo – Failed Execution
	Demo – Test Extraction
	Demo – Extracted Test
	Demo – Test Generation
	Demo – Generated Test

