Programs that test
themselves

Bertrand Meyer, ETH Zurich and Eiffel Software
Arno Fiva, llinca Ciupa, Andreas Leitner, and Yi Wei, ETH Zurich
Emmanuel Stapf, Eiffel Software

Presenter: Papastergiou Christos




Introduction

* Modern engineering products continuously test themselves
" They are designed for testability
= Software design pays little attention to testing needs

Idea: Design software for testability




Autotest

= Autotest is a set of components that
automates testing process
relies on programs with contracts
is integrated into the EiffelStudio

= Components
test generation
test extraction
integration of manual tests




Automated testing

= Levels of automation:
test execution (JUnit, PHPunit ...)
regression testing
resilience
test case generation
test oracles
minimization

= Most frameworks support only the first three

= Autotest innovates also on the last three




Test generation

The unit of a generated test is a failed routine call

Each routine is exercised with different targets and arguments
= Use contracts as oracles

Log results
= Create minimized tests for the failed routines

Generate Run test

and select tasecwith
selected inputs TC1: 101010110
TC2: 0011101000
TC3: 1110100101
Interpret
results (pass/fail)
Minimize

Log failing
(€ \, results  —> "\ testcases Regression
L > :
TQ N —P| Logfiles test suite
16 X




Exercising a routine (1)

" Objects are needed for target and possibly for arguments

= When an object T is needed, Autotest decides:
to create a new one
to use an existing one

" To create a new object Autotest
selects a constructor
makes sure invariant holds




Exercising a routine(2)

* The arguments of a routine might be of primitive types.
Autotest decides:

random selection from the domain
selection from preset values for each type

* Random but still powerful




Contracts as oracles

= Contracts in the code serve as oracles

= A contract violation signals a flaw either in:
the caller of a routine or
in the routine itself

= Benefits
software is tested as it is
no further programming skills needed




Optimizations

= Adaptive random testing

use values equally spaced out across a domain
introduction of a distance metric for objects
complements rather than replaces the random algorithm

bal: BANK_ ACCOUNT. bal .owner="A". bal .balance=675234  Routine exercising

ba2: BANK_ACCOUNT. ba2.owner="B", ba2.balance=10 using ART

ba3: BANK_ACCOUNT, ba3.owner="0", ba3.balance=99

f?ffi ;N‘;(EEER oo ba3.transfer(bal, i5)
. L= :
i2: INTEGER, i2 = 284749 bal.transfer(bad, !2)
i3: INTEGER. i3 =0 ba2.transfer(ba2, i4)
i4: INTEGER, i4 = —36452

i5: INTEGER, i5=1

Objects pool




Minimization

= Keeping the whole failed test is impractical
= Keep only the instructions that involve the target and the
arguments of the failing routine
statically analyze the failed test
calculate backward slice
use the slice as the failed test

67 v_nﬁf . forget_right
68 create {PRIMES} v_62
6 v_63 = v_62.lower_prime ({INTEGER_32} 2)

70 create {STRING_8} v_64.make_from_c (itp_default_pointer 68 create {PRIMES} v 62
) 69 v_63 := v_62.lower_prime ({INTEGER_32} 2)
148 create {RANDOMY} v_[35.5et_seed (v_63)

146 create {ARRAY2 [ANY]}v_I34.make ({INTEGER 32} 7, 149 v 136 = v_135.real item

INTEGER_32} 6)
147 v_I34.enter (v_45, v_I131)
148 create {RANDOM} v_135.5et_seed (v_63)
149 v_136 := v_I135.real_item

Initial test Minimized test




Test generation results

= Autotest was experimented on classes with different
semantics and sizes

Tested library Percent failing Percent failed
routines tests

FiffelBase 6.4 (127/1984) 3.8 (1513/39615)
Gobo libraries 26 4.4 (26/585) 3.7 (2.928/79886)
Specification 72 14.1 (72/510) 49.6

library (12860/25946)




Test extraction

= Failed runs are candidate test cases

= Autotest can turn a failure into a test by

creating a trace abstraction of the debugger (a called_by tree
with <invocation,context> nodes)

selecting the invocation that received the failure

extracting a snapshot of the state that is required for this
invocation




Demo




Conclusions

= Advantages

nice features on automatized testing

discovers unfound software failures

helps investigate questions

does not require extra knowledge

all tests are treated the same regardless of their origin
= Disadvantages

cannot guarantee absence of faults

not suitable for integration testing

generated and extracted tests less robust and readable

Manual tests should still form the majority of your testing
suite!




Questions?




Demo - Bank Account Class

Ehank_tsl [ban lang
File Edit View Favorites Project Execution Refactor Tools Window Help
BME T o]k DR RSserch| @ - - 7 Compile- (DB |GG X@| pRun-|=
i = |§;] @ @ (4 bank_test T .

ifi

4@l oL Class  BANK_ACCOUNT ~ Feature withdraw g
@ BANK_ACCOUNT 33|
redefine
default_create
end
feature
default create
do
balance := 0
end

balance: INTEGER

deposit (an_amount: INTEGER)
== Deposit “an_amount'.
require
amount_ large encugh: an amount > 0

do
balance := balance - an_amount;
ensure
balance increased: balance > old balance
deposited: balance = old balance + an amount
and

withdraw (an amount: INTEGER)
-— Withdraw “an amount’.
require
amount_ large encugh: an amount > 0
amount_vwalid: balzance >= an_amount

do
balance := balance +| an_amount
ensure
balance_decreased: balance < old balance
withdrawn: balance = old balznce - an_amount
end
invariant

balance_not_negative: balance >= 0
end




Demo - Manual Test Case

—
bank_test - [tests] {TEST_BANK_ACCOUNT} (chusers\christiano\d t \tests\test_bank
File Edit Wiew Favorites Project Execution Refactor Tools Window Help
[;E g

2ME h‘:|'.|.,,j JERE ,_1|c*gearch|[a . Ev.iCompiIEvLi}E|QﬁQﬁ| b Run -
a |,.:ﬂ-. Class TEST_BAME_ACCOUMNT * Feature * View @Iﬁ |§] fﬁ @'@

= |

@ TEST_BANK_ACCOUNT 2

note
description: "[
Eiffel tests that can be executed by testing tool.
1™
suthor: "EiffelStudioc test wizard™
date: "siDates"
revision: "FRevisions"”

testing: "type/manual”

claaa
TEST_BRNE RCCOUNT

inherit
EQR TEST SET

feature -- Test routines

test_deposit_ 1
-— Hew test routine
local
1 ba: BRNE ZCCOUNT
do
create 1 ba
1 ba.deposit (500)

frm mlockarn frm rlaced frm fasbie=al - B B ™M 0




Demo - Test Execution

hank_test—[tesls] | » c\users\christiano\docun k_te \testsitest_bank_accou
File Edit View Favorites Project Execution Refactor Tools Window Help

B0 o] kD0 Qs | @ . F- 7 comple- OB GG X@| P ron-

&) |2 Class  TESTBANKACCOUNT = Feature - View [ @)

2 | tests ME
@ TEST_BANK_ACCOUNT 23| = O] AutoTest grox
e BICRI. B
description: "[
E el tests that can be executed by testing tool. Filter *class - 9
i
author: "EiffelStudic test wizard" Tests Status  Last executed
date: "$Dates"
- . <] class
revision: "Revisions”
testing: "type/manusl" B gbank_test
L =] Dtests
clasa 1 Dtests
TEST_BENE_ACCOUNT
inherit
EQA TEST SET
feature -- Test routines
test_depositc 1
—-- New test routine
local i
1 ba: BENE_ACCOUNT :p Run: 1/1 Unresolved: 0 ) Fail:1
do =~
create l_h..a i g .- @
1 ba.deposit (500)
end atest_depcsit_l (TEST_BANE_ACCOUNT) balance_increased [0.0140s]
end =
Outputs [ ]
Output: [% Testing '] Q@ | | g
test routine: excepticnal (Postconditicn vielation in BANK_RCCOUNT.deposit) s
on_clean: ok
kxecm:iun complete
o
@ CFassqu Feature |@ Outpulslm Error List | + AutoTest Results

| & Diagram| |=P Dependency| Metncs| @Inf0|




emo - Application Class

bank_test - [bank_test] {APPLICA
File Edit View Favorites Tools Window Help
BME G0 o] % | Rsearch | B - G- 7 Compile - G
. 4l |k Class APPLICATION
@ APPLICATION €3|

claas

(C:A\Uszers\Christianc'\Docume
Project Execution Refactor

* Feature

APPLICATION

inherit
ARCEUMENTS

create

make

feature {NONE} -- Initislization

make

—— Run application.

do
create my account
my account.deposit (5000
my account.withdraw (100)
end

my account: BANE ACCOUNT

end

Outputs

Qutput: ’@ Eiffel Compilation 'l Q |
Degree 1l: Generating Metadata

Melting System Changes

Iiiffel Compilation Succeeded

@ CFa-ssI.'.E Feature |ﬁ0utpuis|m Error List I .+ AutoTest Results

| r 4 Diagraml |=I* D‘ependency| Metricsl@lnfo|




Demo - Failed Execution

Outputs B 2 mﬁads\bank_test\applicaﬁon.e) m '—I A | =] 3 ‘
(=] Debugger V] Ck

Launching system -
- directory = ‘C:\Users‘\ChristiznciDocumentsEZiffel User Filas\

Qutput:

i
f
=

|SSEQ@ M PRo-@M I EE L|E
System is running g =il @“E bank_test v| >

brplication launched = EI‘ Call Stack HOWe v 3 80

Status = Implicit exception pending
bank_test BANK_ACCOUNT withdraw < [» R O i
Ij balance_decreased: POSTCOMNDITIOMN_VIOL | &
In Feature In Class From Cl
o | | B withdraw & BANK_ACCOUNT BAMK_A|
| | & make APPLICATION APPLICA
'S B
AL EiffelStudio Warning ===
| ]
o do Contract violation occurred. Do you want to =
balance := balance + an_amount - [oreak] into debugger,
& Emu:a1 nce decreased: balamce < old bald - or [continue] to let the application handle the violation
9] withdragn- balance = old balance — an - or [ignore] the violation and continue as if it was not violated?
O end
Mate: You can always ignore contract violation later using the drop down menu from L3
"Run” button.
[7] Do not show again (always break into debugger on contract violation.)
& Fea‘ture| @ Cfassi
| Break i [ Continue I [ Ignore
Objects {BANKY e - - nE R0
Mame Value Type ress ression alue ype
EH_B Exception raised balance_decreased: POST..
© Message balance_decreased
O Code 4 L
Q Type POSTCOMNDITION_VIOLAT...
© Exception object balance_decreased: POST... Exception data 02034 C10
=~ Current object <0x2094 CO8> BANK_ACCOUNT 0x2094C08
! balance 600 INTEGER_32
&4 Once routines < i, | AN L] | +
=4 Arguments - | R Watchl@ Threads ||ﬁ Breakpoints ‘ % Call Stack AutoTest | ] Favorites |

| r 4 Diagram| |=b Dependency| Metric;‘ |B Error L\st| i+ AutoTest Results




Demo - Test Extraction

e - 4 o]
= Btract Tests it MR S & & & o)
R Test Extractiol
n
- | P-CE-E
Create Manual Test... -
Generate tests for open classes... ccuted Stack frames to extract
ST I B T Gy (e Feature In Class From Class @
Extract tests from debugger... withdraw BANK_ACCOUNT BAMK_ACCOUNT 4 )
Dreferences.. APPLICATION APPLICATION 3
]
zp Run:1/1 /A Unresolved: 0 @ Faik 0 |
| I
B- e M | i
o test_deposit 1 (TEST_BANK_ACCOUNT) [0.00&0s] Options
MNumber of extracted stack frames selected by default 5 EI
Back | [ Mext ] [ Cancel ] [ Launch ]
[ T o
4% Call Stack | Auto'l'esl| (] Favorites |




emo - Extracted Test

BANK_ACCOUNT 002) (c: e rojects\bank_test\tests\tests\test_bank_account_002.e)
File Edit Wiew Favorites Project Execution Refactor Tools Window Help
BME G0 0% B0 serch | @ - [+ 7 Compile - D B|FE XE| P Rune| (2=
48] | Class  TEST_BANK ACCOUNT 002 ~ Feature - View @I;'f 2 8 & 08 tests = -
‘@ TEST BANK_ACCOUN... 57|
note
description: "Regression tests reproducing application state of a previous execution.”™
zuthor: "Testing tool™
claaa
TEST BRNE RCCOUNI 002
inherit
EQA_EXIRACIED_IESI_SEI‘I
feature —-—- Test routines
test_withdraw
note
testing: "type/extracted”
testing: "covers/{BANE RCCOUNT} . withdraw"
do
run_extracted test lagent {BANE_ACCOUNT}.withdraw, ["#1", {INTEGER_3Z} 1001}
end
feature {[HONEZ} -- Access
context: RRRAY [TUFLE [type: TYPE [&NY]; attributes: TUFLE; inwv: BOOLERN]]
—— <Precursor>
do
Regult = <<
[ {BANK_ACCOUNT}, [
"balance™,
1, Falsze]
E
end
end

{INTEGER_32Z} =00

| 4 Diagram| |=P Dependency| Metricslmlnfol




Demo - Test Generation

4 i}
2ro= Generate Tests . L] E

G-l p-E-@

Create Manual Test... i Test Ge tio

neral n

Generate tests for open classes... Lcuted

Generate tests for custom types...

Extract tests from debugger... Types to test

Preferences... Class or type name

[+ )
zp Run:1/2 /i Unresolved: 0 O Fail:0 Ooti
ptions
I S

2 v| e M Cutoff (minutes) 0 E [¥] Slice minimization

|| Groups |-" Features | AutoTest | [1] Favorites |

Cutoff (invocations)

Random seed

200 E| ["] DDMin for minimization
E [T]HTML statistics

Routine timeout (seconds) 10

> H

Back || MNet | | Cancel |

I Launch I




Demo - Generated Test

Qutputs f

‘@ TEST BANK_ACCOUN... 5
Output: ’ Testing '] bl Q | @ = = i
194: BANE RCCOUNT . deposit (passed) inherit
192: create BANE ACCOUNT .default create (passed) EQE_GENERAIED_IESI_SEI
152: BARNE ARCCOUNT.balance (passed)
191: BANE RCCOUNT.default_create (passed) feature -- Test routines

150: create BANE RCCOUNT.defzult_create (passed)
185: BANE ARCCOUNT.withdraw (invalid test)

188: BANE ACCOUNT.deposit (invalid test) generated test 1
187: BANE ACCOUNT.withdraw (invalid test)

186: BANE RCCOUNT.defsult create (passed) note
185: BANK ACCOUNT balznce (passed) testing: "type/gensrated”
124: BANE RCCOUNT.deposit (invalid test) testing: "cowvers/{BRMNE LCCOUNT} .withdraw"™
183: BRNE RCCOUNT.defsult create (passed) 1 ll -
18Z: BANE ACCOUNT.balance ipassed.‘ll ees
= | I | v Z2Z: BANE RCCOUNT
@@ Class| 4 Feature Qutputs Error List AutoTest Results T - -
# puts| (2 - v_23: INTEGER 32

v_27: detachable ANY
w_40: INTEGER_32Z
v_T75: detachable ANY
w_10&: INTEGER 3Z
do
execute safe (agent: BANE RCCOOUNT
do
create [BANE RCCOUNT} Result
end)
check attached [BaMNE ACCOUNT} last_cbject as 1_otl then
v_2Z2 = 1 otl
end
w_223 = [INTEGER_ 22} &
execute_ safe {(agent w_Z2 deposit (v_23))
execute_safe lagent v_2ZZ _balance)
v_27 = last_cobject
v_40 = {INTEEER_3Z} 5
execute_safe (agent v 22 _deposit (v_40))
execute_ safe {agent w_Z2 . balance)
v_75 = last_object
v_10& := {[INIEGER 3Z} &

—— Final routine call
set_is_recovery enabled (False)
execute safe l(agent v 22 . withdraw (v 108))




	Programs that test themselves
	Introduction
	Autotest
	Automated testing
	Test generation 
	 Exercising a routine (1)
	Exercising a routine(2)
	Contracts as oracles
	Optimizations
	Minimization
	Test generation results
	Test extraction
	Demo
	Conclusions
	Questions?
	Demo – Bank Account Class
	Demo – Manual Test Case
	Demo – Test Execution
	Demo – Application Class
	Demo – Failed Execution
	Demo – Test Extraction
	Demo – Extracted Test
	Demo – Test Generation
	Demo – Generated Test

