Dynamic Invariant Analysis

- Dynamic Discovery of Program Invariants
 - Execute Program on a set of inputs
 - Infer Invariants using obtained traces

- Useful in
 - Program Documentation
 - Refactoring
 - Debugging
 - Verification
Dynamic Invariant Analysis

- Daikon is widely used for such analysis
 - Supports only a limited subset of Linear Relations
 - No support for Nonlinear Relations
 - Limited support for Array Invariants

- Contribution from the Paper
 - Polynomial (Nonlinear) Invariants
 - Linear Array Invariants
 - Simple
 - Nested
Polynomial Invariants

- Polynomial Equalities
 - Solve using Linear Algebra

- Polynomial Inequalities
 - Use Polyhedra
 - Deduction from Loop Conditions
Terminology

- V = Set of Instrumented Variables at a Location
- D = Maximum Degree of Polynomial
- T = Set of Terms over V with Maximum degree D
Polynomial Equalities

```
x := a
i := 1
while (i <= n){
  // Inv: x = i * a
  x := x + a
  i := i + 1
}
```

- $V = \{x, i, a\}$
- $D = 2$
- $T = \{1, x, i, a, xi, xa, ia, x^2, i^2, a^2\}$
- Linear Equation Template:
 \[c_1 + c_2x + c_3i + c_4a + \ldots + c_{10}a^2 = 0\]
 instantiated per Trace
- Complexity of solving this Linear System is $O(|T|^3)$
Polynomial Inequalities

- $V = \{x, n, a\}$
- $D = 2$
- $T = \{1, x, n, a, xn, xa, na, x^2, n^2, a^2\}$
- Construct $|T|$ dimensional points from traces and build Bounded Convex Polyhedron that covers all trace points
- Boundary of Polyhedron satisfies $c_1 + c_2x + c_3n + c_4a + \ldots + c_{10}a^2 \geq 0$
- The Complexity of building Polyhedron with k points in n dimensions has upper bound $O(k^{\lfloor n/2 \rfloor})$
Deduction From Loop Conditions

```
x := a
i := 1
while (i <= n) {
  // Inv: x <= n * a
  x := x + a
  i := i + 1
}
```

- Combine inequalities at loop head with found equalites
- $x \leq n * a$ can be deduced from $i \leq n$ and $x = i * a$
- $O(|T|^3)$ Complexity but can only deduce Inequalities derivable from Loop Conditions and Found Equalities
Linear Array Invariants

- Simple Array Relations
 - $D = 1$
 - Relations Among Array Elements
 - Relations Among Array Indices

- Nested Array Relations
 - Reachability Analysis
 - Satisfiability Problem Formulation
 - Functions
Simple Array Relations

- Expand set V of array variables to V' representing elements of arrays in V
- Find Set of Linear Equalities R between variables in V' from traces of the form

\[
\begin{align*}
A_0 + b_0 B_{j_0} + c_0 &= 0 \\
A_1 + b_1 B_{j_1} + c_1 &= 0 \\
A_2 + b_2 B_{j_2} + c_2 &= 0 \\
&\quad \vdots \\
A_m + b_m B_{j_m} + c_m &= 0
\end{align*}
\]

A is pivot as c_i, b_i and j_i are expressed in terms of indices of A
Simple Array Relations

- \(b_i, c_i \) and \(j_i \) are linear relations ranging over indices of \(A \)
 \[
 A[i] = (p_0i + q_0)B[p_1i + q_1] + (p_2i + q_2)
 \]

- The Coefficients are determined using information from \(R \)

- The Complexity of the procedure is \(O(|V'|^3) \)
Nested Array Relations

- Reachability Analysis
- Satisfiability Problem Formulation
- Functions
Elements of A reach elements of C through elements of B

$$A[i] = B[C[pi + q]]$$

- Elements of A are subset of elements of B
- Indices of B are subset of elements of C
- The Time Complexity of Reachability Analysis is Exponential in Nesting Depth
Satisfiability Problem Formulation

- Encode finding Nested Array Relations into a CNF formula f
- We can pose

$$A[i] = B[C[pi + q]]$$

as a CNF formula f:

$$(1 = q) \land (2 = p + q \lor 3 = p + q) \land (5 = 2p + q)$$

- Use SMT Solver to find Solution of f
- Same Worst Case Complexity
- Improves Performance of Reachability Analysis compared to Original method
Functions

- Consider user defined functions
 \[A[i] = f(C[i], g(D[i])) \]

- Consider a function \(f \) with \(n \) arguments as an \(n \) dimensional array \(F \)
 \[F[i_1] \ldots [i_n] = f(i_1 \ldots i_n) \]

- Enforce finite depth in Nested Array Relations by disallowing a function to appear in scope of one of its arguments
Prototype tool *invgen* in python uses *Sage* mathematical environment and *Z3* as SMT solver

Available at https://code.google.com/p/invgen/

Evaluation on Nonlinear Arithmetic (NLA) test suite containing simple algorithms and an implementation of AES

Can find all the documented invariants for NLA test suite and 57% of the documented invariants for AES
NLA

- Cohencu
- Cohendiv
- Dijkstra
- Euclidex
- Fermat
- Freire
- LCM
- MannaDiv
- Sqrt
- Wensley

More Info about functions can be found [here](#)
AES

- AddRoundKey
- RotWord
- ShiftRows
- Block2State
- KeySetupEnc
- SubBytes
- Mul
- Xor
- SubBytes
- SubWord
Conclusion

Pros

- Extends current Dynamic Analysis Techniques
- Loop Invariant Inference
- Can be applied in Verification of Complex Numeric Algorithms

Cons

- May not scale well for large programs
- Effectiveness depends on quality of traces
- Does not consider certain forms of Array Invariants like

\[A[i] = 2B[100C[\ldots]] \]