
VCC: A Practical System for Verifying Concurrent C

Ernie Cohen1, Markus Dahlweid2, Mark Hillebrand3, Dirk Leinenbach3,
Michal Moskal2, Thomas Santen2, Wolfram Schulte4 and Stephan

Tobies2

1Microsoft Corporation, Redmond, WA, USA
2European Microsoft Innovation Center, Aachen, Germany

3German Research Center for Artificial Intelligence (DFKI), Saarbrucken, Germany
4Microsoft Research, Redmond, WA, USA

May 6, 2013

Pavol Bielik

Introduction

I VCC stands for Verifying C Compiler

I deductive verifier for concurrent C code

I performs static modular analysis and sound verification
of functional properties of low-level concurrent C code

I VCC translates annotated C code into BoogiePL
I Boogie translates BoogiePL into verification conditions
I Z3 solves them or gives couterexamples

Pavol Bielik Research Topics in Software Engineering May 6, 2013 2 / 27

Motivation

I driven by the verification of the Microsoft Hyper-V hypervisor

I the hypervisor turns a single real multi-processor x64 machine into a
number of virtual multiprocessor x64 machines

I own concurrency control primitives, complex data structures and
dozens of tricky optimizations

I written in no verification in mind (100KLOC of C, 5KLOC of
assembly)

I performance was of a great importance

Pavol Bielik Research Topics in Software Engineering May 6, 2013 3 / 27

Function Contracts

Specification (Contract) consisting of four kinds of clauses

I preconditions: (requires P)

I postconditions: (ensures Q)

I writes clause: (writes S)

I termination: (decreases T)

Modular – only looks at function specification

Pavol Bielik Research Topics in Software Engineering May 6, 2013 4 / 27

Function Contracts

int min(int a, int b)

_(requires \true)

_(ensures \result <= a && \result <= b)

_(ensures \result == a || \result == b)

{

if (a <= b)

return a;

else return b;

}

Pavol Bielik Research Topics in Software Engineering May 6, 2013 5 / 27

Pure functions

_(pure) int min(int a, int b) ...

I no side effects on programs state

I not allowed to allocate memory

I can only write to local variables

I can be called within VCC annotations

However:

I empty writes clause ; pure

Pavol Bielik Research Topics in Software Engineering May 6, 2013 6 / 27

Pure Ghost functions

I used only in specification

I along with other annotations removed before compilation by
preprocessor

_(def \bool sorted(int *arr , unsigned len) {

return \forall unsigned i, j;

i <= j && j < len ==> arr[i] <= arr[j];

})

void sort(int *arr , unsigned len)

_(writes \array_range(arr , len))

_(ensures sorted(arr , len))

Pavol Bielik Research Topics in Software Engineering May 6, 2013 7 / 27

Type Invariants

I object invariants can be associated with compound types (structs and
unions)

I support for both single and two-state predicates

#define SSTR_MAXLEN 100

typedef struct SafeString {

unsigned len;

char content[SSTR_MAXLEN + 1];

_(invariant \this ->len <= SSTR_MAXLEN)

_(invariant content[len] == ’\0’)

} SafeString;

Pavol Bielik Research Topics in Software Engineering May 6, 2013 8 / 27

Type Invariants

I object invariants cannot hold at all times, e.g.:
I initialization
I destruction
I updates

I an object can be in two states controlled by \closed ghost field

I closed – invariant holds but non-volatile fields can not be changed
I open – invariant can not be assumed, but fields can be changed

I closedness is manipulated using \wrap and \unwrap helper methods

I type invariants are coupled with ownership

Pavol Bielik Research Topics in Software Engineering May 6, 2013 9 / 27

Ownership

I ownership is expressed by adding a ghost field to every object and
making it point to object owner

I the roots of trees in the ownership forest are objects representing
threads of execution.

I threads are always closed, and own themselves

I the set of objects directly or transitively owned by an object is called
the ownership domain of that object

Pavol Bielik Research Topics in Software Engineering May 6, 2013 10 / 27

Ownership

I type invariants are coupled with ownership

I if an object is owned by a thread, only that thread can change its
(nonvolatile) fields (and then only if the object is open), wrap or
unwrap it, or change its owner to another object

mu t ab le

!closed(o)
owner(o)==me()

w r ap p ed 0

closed(o)
owner(o)==me()

nest ed

closed(o)
owner(o)==o'
o' !=me()

wrap(o)

unwrap(o)

unwrap(o') where
o ∈owns(o') or

giveup closed owner(o,o')

wrap(o') where
o ∈owns(o') or

set closed owner(o,o')

Pavol Bielik Research Topics in Software Engineering May 6, 2013 11 / 27

Wrapping & Unwrapping Example

1 void sstr_append(struct SafeString *s, char c)

2 _(maintains \wrapped(s))

3 _(requires s->len < SSTR_MAXLEN)

4 _(ensures s->len == \old(s->len) + 1)

5 _(ensures s->content [\old(s->len)] == c)

6 ...

7 _(writes s)

8 {

9 _(unwrap s)

10 s->content[s->len ++] = c;

11 s->content[s->len] = ’\0’;

12 _(wrap s)

13 }

Pavol Bielik Research Topics in Software Engineering May 6, 2013 12 / 27

Verifying Concurrent Programs

I coarse-grained concurrency - ownership based

I fine-grained concurrency - atomic actions on volatile fields

Pavol Bielik Research Topics in Software Engineering May 6, 2013 13 / 27

Volatile fields

C meaning:

I value can be changed from “outside”

I prevents compiler from storing value in registers

VCC meaning:

I field can be modified while the object is closed, as long as the update
occurs inside an explicit atomic action that preserves the object
invariant

I thread forgets the values of these fields when it makes an impure
function call and just before an atomic action

Pavol Bielik Research Topics in Software Engineering May 6, 2013 14 / 27

Spin-lock

I ownership used to control access to shared resource

1 _(volatile_owns) struct Lock {

volatile int locked;

_(ghost \object protected_obj ;)

_(invariant locked == 0 ==> \mine(protected_obj))

5 };

Pavol Bielik Research Topics in Software Engineering May 6, 2013 15 / 27

Spin-lock - Initialization

1 void InitializeLock(struct Lock *l

_(ghost \object obj))

_(requires \wrapped(obj))

_(ensures \wrapped(l) && l->protected_obj == obj)

5 _(ensures \nested(obj))

_(writes \span(l), obj)

{

l->locked = 0;

_(ghost {

10 l->protected_obj = obj;

l->\owns = {obj};

_(wrap l)

})

}

Pavol Bielik Research Topics in Software Engineering May 6, 2013 16 / 27

Spin-lock - Acquire

void Acquire(struct Lock *l)

_(maintains \wrapped(l))

_(ensures l->locked == 1)

_(ensures \wrapped(l->protected_obj) && \fresh(l->protected_obj))

{

int stop = 0;

do {

_(atomic l) {

stop = InterlockedCompareExchange (&l->locked , 1, 0) == 0;

_(ghost if (stop) l->\owns -= l->protected_obj)

}

} while (!stop);

}

Pavol Bielik Research Topics in Software Engineering May 6, 2013 17 / 27

Spin-lock - Release

void Release(struct Lock *l)

_(maintains \wrapped(l))

_(requires l->locked == 1)

_(requires \wrapped(l->protected_obj))

_(ensures l->locked == 0

_(ensures \nested(l->protected_obj))

_(writes l->protected_obj)

{

_(atomic l) {

l->locked = 0;

_(ghost l->\owns += l->protected_obj)

}

}

Pavol Bielik Research Topics in Software Engineering May 6, 2013 18 / 27

Spin-lock - Problems

I acquire and release require that the lock is closed

void Acquire(struct Lock *l)

_(requires \wrapped(l)) ...

I definition of wrapped:

\bool \wrapped (\ object o)

_(ensures \result <==> o->\owner == \me && o->\closed)

I o → \owner == \me is satisfiable by only single thread

Pavol Bielik Research Topics in Software Engineering May 6, 2013 19 / 27

Claims

1 _(ghost typedef struct {

\ptrset claimed;

_(invariant \forall \object o; o \in claimed ==> o->\closed)

} \claim;)

I Ownership meta-states updated:

mu t ab le

!closed(o)
owner(o)==me()
ref_cnt(o)==0

w r ap p ed 0

closed(o)
owner(o)==me()
ref_cnt(o)==0

w r ap p ed

closed(o)
owner(o)==me()
ref_cnt(o)==1

nest ed

closed(o)
owner(o)==o'
o' !=me()

ref_cnt(o)==0

nest ed

closed(o)
owner(o)==o'
o' !=me()

ref_cnt(o)==1

wrap(o)

unwrap(o)

claim(o,)

unclaim(,o,)

.

.

.

.

.

.

claim(o,)

unclaim(,o,)

unwrap(o') where
o ∈owns(o') or

giveup closed owner(o,o')

wrap(o') where
o ∈owns(o') or

set closed owner(o,o')

C on cu r r en tSequ en t i al

Pavol Bielik Research Topics in Software Engineering May 6, 2013 20 / 27

Spin-lock revisited

1 void Release(struct Lock *l _(ghost \claim c))

_(maintains \wrapped(c) && \claims_object(c, l))

_(requires l->locked == 1)

_(requires \wrapped(l->protected_obj))

5 _(ensures l->locked == 0)

_(ensures \nested(l->protected_obj))

_(writes l->protected_obj)

{

_(atomic c, l) {

10 l->locked = 0;

_(ghost l->\owns += l->protected_obj)

}

}

Pavol Bielik Research Topics in Software Engineering May 6, 2013 21 / 27

Invariant contraints

I what part of state are invariants allowed to mention
I how to make sure that updates dont break out of scope invariants?
I VCC allows invariants to mention arbitrary parts of the state, but

requires them to be admissible
I VCC checks that no object invariant can be broken by

invariant-preserving changes to other objects

struct Counter {

int n;

_(invariant n = old(n) ||

n = old(n) + 2)

};

struct Low {

Counter cnt;

int floor;

_(invariant floor <= cnt.n)

};

struct High {

Counter cnt;

int ceiling;

_(invariant cnt.n <= ceiling)

};

Pavol Bielik Research Topics in Software Engineering May 6, 2013 22 / 27

Locally checked invariant

I VCC enforces that all invariants are reflexive.

refl(τ) ≡ ∀p, ho , h.type(p) = τ ∧ invτ (ho , h, p)⇒ invτ (h, h, p)

I an action is legal iff it preserves the invariants of updated objects

legal(ho , h) ≡ safe(ho)⇒ ∀p.ho [p] = h[p] ∨ inv(ho , h, p)

I a stable invariant is one that cannot be broken by legal actions

stable(τ) ≡ ∀p, hoh.type(p) = τ∧safe(ho)∧legal(ho , h)⇒ invτ (ho , h, p)

I An admissible invariant is one that is stable and reflexive

adm(τ) ≡ stable(τ) ∧ refl(τ)

Pavol Bielik Research Topics in Software Engineering May 6, 2013 23 / 27

VCC Workflow

Annotate C code

Compile with regular C
compiler

Verify with VCC

 erified Executable Error

Inspect counterexample
with Model Viewer

Fix code or specs
with VCC VS plugin

 Timeout

Inspect Z3 log
with Z3 Visualizer

source: http://research.microsoft.com/en-us/projects/vcc/
Pavol Bielik Research Topics in Software Engineering May 6, 2013 24 / 27

Microsoft Hyper-V hypervisor Experience

I implementation of the SPT algorithm contains ≈ 700 lines of C code

I ≈ 4000 lines of the annotations

I overall proof time is ≈ 18 hours on one core of 2GHz Intel Core 2
Duo machine

I most functions in 0.5 to 500 seconds with an average of ≈ 25 seconds

I estimated person effort is ≈ 1.5 person-years, including VCC learning
period

Pavol Bielik Research Topics in Software Engineering May 6, 2013 25 / 27

Conclusion

I VCC follows largely the design of Spec#

I expressive enough for industrial program verification

I lot’s of helper methods

I up to the user to guarantee that access annotated as \atomic is
indeed atomic

I assumes sequential consistency

Future work

I incorporate x86 memory model

I annotation overhead

I performance

Pavol Bielik Research Topics in Software Engineering May 6, 2013 26 / 27

References

Ernie Cohen, Markus Dahlweid, Mark Hillebrand, et. al.,
“VCC: A practical system for verifying concurrent C,”
Artificial Intelligence, vol. 5674, no. 1753, pp. 23–42, 2009.

Ernie Cohen, Micha l Moskal, Wolfram Schulte, and Stephan Tobies,
“Local Verification of Global Invariants in Concurrent Programs,”
Innovation, vol. 6174, pp. 480–494, 2010.

Ernie Cohen and Mark A Hillebrand,
“The VCC Manual & Verifying C Programs : A VCC Tutorial,”
Tech. Rep., 2012.

Ernie Cohen, Micha l Moskal, Stephan Tobies, and Wolfram Schulte,
“A precise yet efficient memory model for C,”
Electron. Notes Theor. Comput. Sci., vol. 254, pp. 85–103, Oct. 2009.

Pavol Bielik Research Topics in Software Engineering May 6, 2013 27 / 27

	Introduction
	Verifying Sequential Programs
	VCC Experience

