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Introduction

I VCC stands for Verifying C Compiler

I deductive verifier for concurrent C code

I performs static modular analysis and sound verification
of functional properties of low-level concurrent C code

I VCC translates annotated C code into BoogiePL
I Boogie translates BoogiePL into verification conditions
I Z3 solves them or gives couterexamples
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Motivation

I driven by the verification of the Microsoft Hyper-V hypervisor

I the hypervisor turns a single real multi-processor x64 machine into a
number of virtual multiprocessor x64 machines

I own concurrency control primitives, complex data structures and
dozens of tricky optimizations

I written in no verification in mind (100KLOC of C, 5KLOC of
assembly)

I performance was of a great importance
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Function Contracts

Specification (Contract) consisting of four kinds of clauses

I preconditions: (requires P)

I postconditions: (ensures Q)

I writes clause: (writes S)

I termination: (decreases T )

Modular – only looks at function specification
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Function Contracts

int min(int a, int b)

_(requires \true)

_(ensures \result <= a && \result <= b)

_(ensures \result == a || \result == b)

{

if (a <= b)

return a;

else return b;

}
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Pure functions

_(pure) int min(int a, int b) ...

I no side effects on programs state

I not allowed to allocate memory

I can only write to local variables

I can be called within VCC annotations

However:

I empty writes clause ; pure
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Pure Ghost functions

I used only in specification

I along with other annotations removed before compilation by
preprocessor

_(def \bool sorted(int *arr , unsigned len) {

return \forall unsigned i, j;

i <= j && j < len ==> arr[i] <= arr[j];

})

void sort(int *arr , unsigned len)

_(writes \array_range(arr , len))

_(ensures sorted(arr , len))
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Type Invariants

I object invariants can be associated with compound types (structs and
unions)

I support for both single and two-state predicates

#define SSTR_MAXLEN 100

typedef struct SafeString {

unsigned len;

char content[SSTR_MAXLEN + 1];

_(invariant \this ->len <= SSTR_MAXLEN)

_(invariant content[len] == ’\0’)

} SafeString;

Pavol Bielik Research Topics in Software Engineering May 6, 2013 8 / 27



Type Invariants

I object invariants cannot hold at all times, e.g.:
I initialization
I destruction
I updates

I an object can be in two states controlled by \closed ghost field

I closed – invariant holds but non-volatile fields can not be changed
I open – invariant can not be assumed, but fields can be changed

I closedness is manipulated using \wrap and \unwrap helper methods

I type invariants are coupled with ownership
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Ownership

I ownership is expressed by adding a ghost field to every object and
making it point to object owner

I the roots of trees in the ownership forest are objects representing
threads of execution.

I threads are always closed, and own themselves

I the set of objects directly or transitively owned by an object is called
the ownership domain of that object
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Ownership

I type invariants are coupled with ownership

I if an object is owned by a thread, only that thread can change its
(nonvolatile) fields (and then only if the object is open), wrap or
unwrap it, or change its owner to another object

mu t ab le

!closed(o)
owner(o)==me()

w r ap p ed 0

closed(o)
owner(o)==me()

nest ed

closed(o)
owner(o)==o'
o' !=me()

wrap(o)

unwrap(o)

unwrap(o' ) where
o ∈owns(o' ) or

giveup closed owner(o,o' )

wrap(o' ) where
o ∈owns(o' ) or

set closed owner(o,o' )
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Wrapping & Unwrapping Example

1 void sstr_append(struct SafeString *s, char c)

2 _(maintains \wrapped(s))

3 _(requires s->len < SSTR_MAXLEN)

4 _(ensures s->len == \old(s->len) + 1)

5 _(ensures s->content [\old(s->len)] == c)

6 ...

7 _(writes s)

8 {

9 _(unwrap s)

10 s->content[s->len ++] = c;

11 s->content[s->len] = ’\0’;

12 _(wrap s)

13 }
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Verifying Concurrent Programs

I coarse-grained concurrency - ownership based

I fine-grained concurrency - atomic actions on volatile fields
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Volatile fields

C meaning:

I value can be changed from “outside”

I prevents compiler from storing value in registers

VCC meaning:

I field can be modified while the object is closed, as long as the update
occurs inside an explicit atomic action that preserves the object
invariant

I thread forgets the values of these fields when it makes an impure
function call and just before an atomic action
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Spin-lock

I ownership used to control access to shared resource

1 _(volatile_owns) struct Lock {

volatile int locked;

_(ghost \object protected_obj ;)

_(invariant locked == 0 ==> \mine(protected_obj ))

5 };
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Spin-lock - Initialization

1 void InitializeLock(struct Lock *l

_(ghost \object obj))

_(requires \wrapped(obj))

_(ensures \wrapped(l) && l->protected_obj == obj )

5 _(ensures \nested(obj))

_(writes \span(l), obj)

{

l->locked = 0;

_(ghost {

10 l->protected_obj = obj;

l->\owns = {obj};

_(wrap l)

})

}
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Spin-lock - Acquire

void Acquire(struct Lock *l)

_(maintains \wrapped(l))

_(ensures l->locked == 1)

_(ensures \wrapped(l->protected_obj) && \fresh(l->protected_obj ))

{

int stop = 0;

do {

_(atomic l) {

stop = InterlockedCompareExchange (&l->locked , 1, 0) == 0;

_(ghost if (stop) l->\owns -= l->protected_obj)

}

} while (!stop);

}
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Spin-lock - Release

void Release(struct Lock *l)

_(maintains \wrapped(l))

_(requires l->locked == 1)

_(requires \wrapped(l->protected_obj ))

_(ensures l->locked == 0

_(ensures \nested(l->protected_obj ))

_(writes l->protected_obj)

{

_(atomic l) {

l->locked = 0;

_(ghost l->\owns += l->protected_obj)

}

}
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Spin-lock - Problems

I acquire and release require that the lock is closed

void Acquire(struct Lock *l)

_(requires \wrapped(l)) ...

I definition of wrapped:

\bool \wrapped (\ object o)

_(ensures \result <==> o->\owner == \me && o->\closed)

I o → \owner == \me is satisfiable by only single thread
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Claims

1 _(ghost typedef struct {

\ptrset claimed;

_(invariant \forall \object o; o \in claimed ==> o->\closed)

} \claim; )

I Ownership meta-states updated:

mu t ab le

!closed(o)
owner(o)==me()
ref_cnt(o)==0

w r ap p ed 0

closed(o)
owner(o)==me()
ref_cnt(o)==0

w r ap p ed

closed(o)
owner(o)==me()
ref_cnt(o)==1

nest ed

closed(o)
owner(o)==o'
o' !=me()

ref_cnt(o)==0

nest ed

closed(o)
owner(o)==o'
o' !=me()

ref_cnt(o)==1

wrap(o)

unwrap(o)

claim(o,)

unclaim( ,o,)

.

.

.

.

.

.

claim(o,)

unclaim( ,o,)

unwrap(o' ) where
o ∈owns(o' ) or

giveup closed owner(o,o' )

wrap(o' ) where
o ∈owns(o' ) or

set closed owner(o,o' )

C on cu r r en tSequ en t i al
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Spin-lock revisited

1 void Release(struct Lock *l _(ghost \claim c))

_(maintains \wrapped(c) && \claims_object(c, l))

_(requires l->locked == 1 )

_(requires \wrapped(l->protected_obj ))

5 _(ensures l->locked == 0 )

_(ensures \nested(l->protected_obj ))

_(writes l->protected_obj)

{

_(atomic c, l) {

10 l->locked = 0;

_(ghost l->\owns += l->protected_obj)

}

}
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Invariant contraints

I what part of state are invariants allowed to mention
I how to make sure that updates dont break out of scope invariants?
I VCC allows invariants to mention arbitrary parts of the state, but

requires them to be admissible
I VCC checks that no object invariant can be broken by

invariant-preserving changes to other objects

struct Counter {

int n;

_(invariant n = old(n) ||

n = old(n) + 2)

};

struct Low {

Counter cnt;

int floor;

_(invariant floor <= cnt.n)

};

struct High {

Counter cnt;

int ceiling;

_(invariant cnt.n <= ceiling)

};
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Locally checked invariant

I VCC enforces that all invariants are reflexive.

refl(τ) ≡ ∀p, ho , h.type(p) = τ ∧ invτ (ho , h, p)⇒ invτ (h, h, p)

I an action is legal iff it preserves the invariants of updated objects

legal(ho , h) ≡ safe(ho)⇒ ∀p.ho [p] = h[p] ∨ inv(ho , h, p)

I a stable invariant is one that cannot be broken by legal actions

stable(τ) ≡ ∀p, hoh.type(p) = τ∧safe(ho)∧legal(ho , h)⇒ invτ (ho , h, p)

I An admissible invariant is one that is stable and reflexive

adm(τ) ≡ stable(τ) ∧ refl(τ)

Pavol Bielik Research Topics in Software Engineering May 6, 2013 23 / 27



VCC Workflow

Annotate C code 

Compile with regular C 
compiler 

Verify with VCC 

       erified Executable            Error 

Inspect counterexample  
with Model Viewer 

Fix code or specs 
with VCC VS plugin 

      Timeout 

Inspect Z3 log 
with Z3 Visualizer 

source: http://research.microsoft.com/en-us/projects/vcc/
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Microsoft Hyper-V hypervisor Experience

I implementation of the SPT algorithm contains ≈ 700 lines of C code

I ≈ 4000 lines of the annotations

I overall proof time is ≈ 18 hours on one core of 2GHz Intel Core 2
Duo machine

I most functions in 0.5 to 500 seconds with an average of ≈ 25 seconds

I estimated person effort is ≈ 1.5 person-years, including VCC learning
period
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Conclusion

I VCC follows largely the design of Spec#

I expressive enough for industrial program verification

I lot’s of helper methods

I up to the user to guarantee that access annotated as \atomic is
indeed atomic

I assumes sequential consistency

Future work

I incorporate x86 memory model

I annotation overhead

I performance
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