
ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Assignments
Fall 2013

Solution 7: Inheritance and polymorphism

ETH Zurich

1 Polymorphism and dynamic binding

Task 1

create warrior.make (”Thor”)
warrior.level up

Does the code compile? � Yes � No
“Thor is now a level 2 warrior”.
Task 2

create hero.make (”Althea”)
hero.level up

Does the code compile? � Yes � No
Creation instruction applies to target of a deferred type.
Task 3

create warrior.make (”Thor”)
create healer.make (”Althea”)
warrior.do action (healer)

Does the code compile? � Yes � No
Class WARRIOR does not have a feature do action.
Task 4

create {HEALER} warrior.make (”Diana”)
warrior.level up

Does the code compile? � Yes � No
Explicit creation type HEALER does not conform to the target type WARRIOR.
Task 5

create {WARRIOR} hero.make (”Thor”)
hero.do action (hero)
create {HEALER} hero.make (”Althea”)
hero.do action (hero)

Does the code compile? � Yes � No
“Thor attacks Thor. Does 5 damage
Althea heals Althea by 0 points”.
Task 6

create {WARRIOR} hero.make (”Thor”)
warrior := hero
warrior.attack (hero)

1



ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Assignments
Fall 2013

Does the code compile? � Yes � No
The source of assignment (of type HERO) does not conform to target (of type WARRIOR).

2 Ghosts in Zurich

Listing 1: Class GHOST

note
description: ”Ghost that flies around a station.”

class
GHOST

inherit
MOBILE

create
make

feature {NONE} −− Initialization

make (a station: STATION; a radius: REAL 64)
−− Create ghost flying around ‘a station’ at distance ‘a radius’.

require
station exists: a station /= Void
radius positive: a radius > 0.0

do
station := a station
radius := a radius

ensure
station set: station = a station
radius set: radius = a radius

end

feature −− Access

position: VECTOR
−− Current position in the city.

do
Result := station.position + create {VECTOR}.make polar (radius, angle)

end

station: STATION
−− Station around which the ghost flies.

radius: REAL 64
−− Distance from ‘station’.

speed: REAL 64 = 10.0
−− Motion speed (meters/second).

feature {NONE} −− Movement

2



ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Assignments
Fall 2013

angle: REAL 64
−− Angle of the current position (with respect to eastwards direction).

move distance (d: REAL 64)
−− Move by ‘d’ meters.

do
angle := angle + d / radius

end

invariant
station exists: station /= Void
radius positive: radius > 0.0
circular trajectory: approx equal (position.distance (station.position), radius)

end

Listing 2: Class GHOST INVASION

note
description: ”Adding ghost to Zurich.”

class
GHOST INVASION

inherit
ZURICH OBJECTS

feature −− Explore Zurich

invade
−− Add ghosts to random stations.

local
i: INTEGER
cursor: like Zurich.stations.new cursor
random: V RANDOM

do
from

i := 1
cursor := Zurich.stations.new cursor
create random

until
i > 10

loop
cursor.go to (random.bounded item (1, Zurich.stations.count))
random.forth
add ghost (cursor.item, random.bounded item (10, 100))
random.forth
i := i + 1

end
Zurich map.animate

end

add ghost (a station: STATION; a radius: REAL 64)
−− Add a ghost going around ‘a station’.

3



ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Assignments
Fall 2013

require
a station exists: a station /= Void
a radius positive: a radius > 0.0

local
ghost: GHOST

do
create ghost.make (a station, a radius)
Zurich.add custom mobile (ghost)
Zurich map.update
Zurich map.custom mobile view (ghost).set icon (”../image/ghost.png”)

end

end

3 Code review

There is no master solution for this task.

4 Board game: Part 3

You can download a complete solution from
http://se.inf.ethz.ch/courses/2013b_fall/eprog/assignments/07/board_game_solution.zip.

Below you will find listings of classes that changed since assignment 6.

Listing 3: Class SQUARE

class
SQUARE

inherit
ANY

redefine
out

end

feature −− Basic operations

affect (p: PLAYER)
−− Apply square’s special effect to ‘p’.

require
p exists: p /= Void

do
−− For a normal square do nothing.

end

feature −− Output

out: STRING
−− Textual representation.

do
Result := ”.”

end

4

http://se.inf.ethz.ch/courses/2013b_fall/eprog/assignments/07/board_game_solution.zip


ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Assignments
Fall 2013

end

Listing 4: Class BAD INVESTMENT SQUARE

class
BAD INVESTMENT SQUARE

inherit
SQUARE

redefine
affect,
out

end

feature −− Basic operations

affect (p: PLAYER)
−− Apply square’s special effect to ‘p’.

do
p.transfer (−5)

end

feature −− Output

out: STRING
−− Textual representation.

do
Result := ”#”

end

end

Listing 5: Class LOTTERY WIN SQUARE

class
LOTTERY WIN SQUARE

inherit
SQUARE

redefine
affect,
out

end

feature −− Basic operations

affect (p: PLAYER)
−− Apply square’s special effect to ‘p’.

do
p.transfer (10)

end

feature −− Output

5



ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Assignments
Fall 2013

out: STRING
−− Textual representation.

do
Result := ”$”

end

end

Listing 6: Class BOARD

class
BOARD

inherit
ANY

redefine
out

end

create
make

feature {NONE} −− Initialization
make
−− Initialize squares.

local
i: INTEGER

do
create squares.make (1, Square count)
from

i := 1
until

i > Square count
loop

if i \\ 10 = 5 then
squares [i] := create {BAD INVESTMENT SQUARE}

elseif i \\ 10 = 0 then
squares [i] := create {LOTTERY WIN SQUARE}

else
squares [i] := create {SQUARE}

end
i := i + 1

end
end

feature −− Access
squares: V ARRAY [SQUARE]
−− Container for squares

feature −− Constants
Square count: INTEGER = 40
−− Number of squares.

6



ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Assignments
Fall 2013

feature −− Output
out: STRING

do
Result := ””
across

squares as c
loop

Result.append (c.item.out)
end

end

invariant
squares exists: squares /= Void
squares count valid: squares.count = Square count

end

Listing 7: Class PLAYER

class
PLAYER

create
make

feature {NONE} −− Initialization

make (n: STRING; b: BOARD)
−− Create a player with name ‘n’ playing on board ‘b’.

require
name exists: n /= Void and then not n.is empty
board exists: b /= Void

do
name := n.twin
board := b
position := b.squares.lower

ensure
name set: name ∼n
board set: board = b
at start: position = b.squares.lower

end

feature −− Access
name: STRING
−− Player name.

board: BOARD
−− Board on which the player in playing.

position: INTEGER
−− Current position on the board.

money: INTEGER

7



ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Assignments
Fall 2013

−− Amount of money.

feature −− Moving
move (n: INTEGER)
−− Advance ‘n’ positions on the board.

require
not beyond start: n >= board.squares.lower − position

do
position := position + n

ensure
position set: position = old position + n

end

feature −− Money
transfer (amount: INTEGER)
−− Add ‘amount’ to ‘money’.

do
money := (money + amount).max (0)

ensure
money set: money = (old money + amount).max (0)

end

feature −− Basic operations
play (d1, d2: DIE)
−− Play a turn with dice ‘d1’, ‘d2’.

require
dice exist: d1 /= Void and d2 /= Void

do
d1.roll
d2.roll
move (d1.face value + d2.face value)
if position <= board.squares.upper then

board.squares [position].affect (Current)
end
print (name + ” rolled ” + d1.face value.out + ” and ” + d2.face value.out +

”. Moves to ” + position.out +
”. Now has ” + money.out + ” CHF.%N”)

end

invariant
name exists: name /= Void and then not name.is empty
board exists: board /= Void
position valid: position >= board.squares.lower −− Token can go beyond the finish position,

but not the start
money non negative: money >= 0

end

Listing 8: Class GAME

class
GAME

create

8



ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Assignments
Fall 2013

make

feature {NONE} −− Initialization

make (n: INTEGER)
−− Create a game with ‘n’ players.

require
n in bounds: Min player count <= n and n <= Max player count

local
i: INTEGER
p: PLAYER

do
create board.make
create players.make (1, n)
from

i := 1
until

i > players.count
loop

create p.make (”Player” + i.out, board)
p.transfer (Initial money)
players [i] := p
print (p.name + ” joined the game.%N”)
i := i + 1

end
create die 1.roll
create die 2.roll

end

feature −− Basic operations

play
−− Start a game.

local
round, i: INTEGER

do
from

winners := Void
round := 1
print (”The game begins.%N”)
print board

until
winners /= Void

loop
print (”%NRound #” + round.out + ”%N%N”)
from

i := 1
until

winners /= Void or else i > players.count
loop

players [i].play (die 1, die 2)
if players [i].position > board.Square count then

9



ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Assignments
Fall 2013

select winners
end
i := i + 1

end
print board
round := round + 1

end
ensure

has winners: winners /= Void and then not winners.is empty
winners are players: across winners as w all players.has (w.item) end

end

feature −− Constants

Min player count: INTEGER = 2
−− Minimum number of players.

Max player count: INTEGER = 6
−− Maximum number of players.

Initial money: INTEGER = 7
−− Initial amount of money of each player.

feature −− Access

board: BOARD
−− Board.

players: V ARRAY [PLAYER]
−− Container for players.

die 1: DIE
−− The first die.

die 2: DIE
−− The second die.

winners: V LIST [PLAYER]
−− Winners (Void if the game if not over yet).

feature {NONE} −− Implementation
select winners
−− Put players with most money into ‘winners’.

local
i, max: INTEGER

do
create {V LINKED LIST [PLAYER]} winners
from

i := 1
until

i > players.count
loop

10



ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Assignments
Fall 2013

if players [i].money > max then
max := players [i].money
winners.wipe out
winners.extend back (players [i])

elseif players [i].money = max then
winners.extend back (players [i])

end
i := i + 1

end
ensure

has winners: winners /= Void and then not winners.is empty
winners are players: across winners as w all players.has (w.item) end

end

print board
−− Output players positions on the board.

local
i, j: INTEGER

do
io.new line
print (board)
io.new line
from

i := 1
until

i > players.count
loop

from
j := 1

until
j >= players [i].position

loop
print (” ”)
j := j + 1

end
print (i)
io.new line
i := i + 1

end
end

invariant
board exists: board /= Void
players exist: players /= Void
all players exist: across players as p all p.item /= Void end
number of players consistent: Min player count <= players.count and players.count <=

Max player count
dice exist: die 1 /= Void and die 2 /= Void

end

We introduced class BOARD because in the new version of the game the board has a more
complicated structure (arrangement of squares of different kinds).

11



ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Assignments
Fall 2013

We went for a flexible solution that introduces class SQUARE and lets squares affect
players that land on them in an arbitrary way. Classes BAD INVESTMENT SQUARE and
LOTTERY WIN SQUARE define specific effects. This design would be easily extensible if
other types of special squares are added, that affect not only the player’s amount of money, but
also other properties (e.g. position).

A simpler solution would be not to create class SQUARE; instead of array of squares in
class BOARD introduce an array of integers that represent how much money a square at certain
position gives to a player. This solution is not flexible with respect to adding other kinds of
special squares.

Another simpler solution would be to add a procedure affect (p: PLAYER) directly to class
BOARD (instead of creating a class SQUARE and an array of squares):

affect (p: PLAYER)
require

p exists: p /= Void
do

if p.position \\ 10 = 5 then
p.transfer (−5)

elseif p.position \\ 10 = 0 then
p.transfer (10)

end
end

The disadvantage of this approach is that the logic behind all different kinds of special squares
is concentrated in a single feature; it isn’t decomposed. Adding new kinds of special squares
will make this feature large and complicated.

5 MOOC: Single Inheritance

The order in which the questions and the answers appear here in the solution may vary because
they are randomly shuffled at each attempt.

Single Inheritance Quiz

• Assume classes MAMMAL and REPTILE inheriting from a class VERTEBRATE. Fur-
thermore assume the following declarations:

v: VERTEBRATE
m: MAMMAL
r: REPTILE

Assuming that every reference above is attached to an object of the exact same type, the
corresponding snippets compile:

v := m
v := r

• Assume concrete classes CAT and DOG inheriting from deferred class MAMMAL. Further-
more assume the following declarations (implementation of routine print info is omitted):

m: MAMMAL
c: CAT
d: DOG
print info (mam: MAMMAL) do ... end

12



ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Assignments
Fall 2013

The following are true: I can pass to routine print info an object of type CAT attached
to m; I can pass to routine print info an object of type DOG attached to m; I can pass to
routine print info an object of type CAT attached to c; I can pass to routine print info an
object of type DOG attached to d.

• Assume concrete classes CAT and DOG inheriting from deferred class MAMMAL. Fur-
thermore assume the following declarations:

m: MAMMAL
c: CAT
d: DOG

The code snippets that compile are:

create {DOG}m
create {DOG}d
create {CAT}m

• Assume classes MAMMAL and CAT as follows:

deferred class
MAMMAL

feature
eat

do
print (”Mammal eating.”)

end
end

class
CAT

inherit
MAMMAL

redefine
eat end

feature
eat

do
print (”Cat eating.”)

end
end

Assume the following references have been defined:

m: MAMMAL
c: CAT

The code snippets that compile and print the suggested text at the console are:

create {CAT}m
m.eat
−−Prints ”Cat eating.”

create {CAT}c
c.eat
−−Prints ”Cat eating.”

13



ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Assignments
Fall 2013

• Assume classes MAMMAL and CAT as follows:

deferred class
MAMMAL

feature
eat

do
print (”Mammal eating.”)

end
end

class
CAT

inherit
MAMMAL

redefine
eat end

feature
eat

do
Precursor
print (”Cat eating.”)

end
end

Assume the following references have been defined:

m: MAMMAL
c: CAT

The code snippets that compile and print the suggested text at the console are

create {CAT}m
m.eat
Prints ”Mammal eating.Cat eating.”
create {CAT}c
c.eat
Prints ”Mammal eating.Cat eating.”

14


	Polymorphism and dynamic binding
	Ghosts in Zurich
	Code review
	Board game: Part 3
	MOOC: Single Inheritance

