
ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Assignments
Fall 2013

Assignment 9: Data structures

ETH Zurich

handout: 18 November 2013
Due: 27 November 2013

Tree c© Randall Munroe (http://xkcd.com/835/)

Goals

• Figure out when to use which data structure.

• Practice using data structures.

• Practice implementing your own data structures.

1 Choosing data structures

In the lecture you have learnt that different data structures can represent different kinds of
information and support efficient implementation of different operations.

To do

For each of the use cases below pick a data structure (from the ones you have seen in the lecture)
that is best suited for that use case, and explain your choice. If you think there is more than
one suitable data structure, briefly discuss the trade-offs.

1

http://xkcd.com/835/


ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Assignments
Fall 2013

Example. You want to store the names of weekdays and access them by the number of a day
within the week.

Answer. An array, because the number of weekdays is fixed, and access by index has to be
efficient.

1. You want to store the stations of a public transportation line. New stations can be added
to both ends of the line, but not between existing stations. You should be able to traverse
the line in both directions.

2. You want to store a phone book, which supports looking up a phone number by name, as
well as adding and removing entries.

3. You are looking for a way out of a maze, and you are not allowed to use recursion. You have
to store the path you are currently exploring, and be able to go back one step whenever
you find yourself in a dead-end and explore a new possibility from there.

4. You want to store a sorted list of strings and support the operation of merging two sorted
lists into one, in place (without creating a copy of the lists).

5. You are writing software for a call center. When a client calls, his call should be stored
until there is a free operator to pick it up. Calls should be processed in the same order
they are received.

To hand in

Hand in your answers for questions 1–5.

2 Short trips: take two

In the previous assignment you had to implement a feature that highlights all the stations that
are reachable from a given station in two minutes or less. If your implementation is similar
to the master solution, then it doesn’t keep track of the stations it already visited and keeps
visiting the same stations again and again. As a result, highlighting the short-trip range for
stations with a lot of connections (for example, Bürkliplatz) takes a long time.

Note that it is incorrect to simply stop the search whenever the next station you are about
to visit is already highlighted: the route you had found the first time around could be longer
than the one you are currently building, and thus you could miss some reachable stations.

In this task you have to find a way to make highlight short distance more efficient by keeping
track of the state of traversal using an appropriate data structure.

To do

1. You can start either from your own solution to “Short trips” from the previous as-
signment or from the master solution: http://se.inf.ethz.ch/courses/2013b_fall/eprog/

assignments/09/traffic.zip.

2. What kind of information do you have to keep track of, so that the traversal does not miss
reachable stations, but also does not visit the same station unnecessarily many times?
Choose an appropriate data structure class from the EiffelBase2 library (see Table 1) to
store this kind of information, and introduce an attribute of the corresponding type into
SHORT TRIPS. Modify your implementation of highlight reachable to make use of the
introduced data structure.

2

http://se.inf.ethz.ch/courses/2013b_fall/eprog/assignments/09/traffic.zip
http://se.inf.ethz.ch/courses/2013b_fall/eprog/assignments/09/traffic.zip


ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Assignments
Fall 2013

Data structure Concrete implementations Description

V ARRAY V ARRAY Arrays: elements are indexed with integers
from a continuous interval

V LIST V ARRAYED LIST,
V LINKED LIST

Lists: elements can be inserted and removed
at any position

V TABLE V HASH TABLE,
V SORTED TABLE

Tables: values are indexed by keys; key-value
pairs can be updated, added and removed

V SET V HASH SET,
V SORTED SET

Sets: elements are unique and lookup is effi-
cient

V STACK V LINKED STACK Stacks: last in first out policy
V QUEUE V LINKED QUEUE Queues: first in first out policy

Table 1: Data structure classes in EiffelBase2

3. Compare the performance of highlight short distance before and after the modification
(the difference is especially clear if you change the initial time interval from two to three
minutes).

To hand in

Hand in the code of SHORT TRIPS.

3 Bags

A bag (also called multiset) is a generalization of a set, where elements are allowed to appear
more than once. For example, the bag {a, a, b} consists of two copies of a and one copy of b.
However, a bag is still unordered, so the bags {a, b, a} and {a, a, b} are equivalent.

In this task you have to implement some features for a linked representation of bags. This
representation is very similar to a regular singly-linked list, except for the following:

• In addition to the value and the reference to the next cell, each bag cell stores the number
of copies of its value (see Figure 1), which is always positive.

• For a given value, at most one cell storing that value should appear in the data structure.

Figure 1: A possible linked representation of the bag {a, a, b}.

To do

1. Download http://se.inf.ethz.ch/courses/2013b_fall/eprog/assignments/09/bag.zip un-
zip it and open linked bag.ecf. Open class LINKED BAG.

2. Fill in the implementations of the following features:

3

http://se.inf.ethz.ch/courses/2013b_fall/eprog/assignments/09/bag.zip


ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Assignments
Fall 2013

• add (v: G; n: INTEGER), which adds n copies of v to the bag.

• remove (v: G; n: INTEGER), which removes as many copies of v as possible, up to
n. For example, removing one copy of a from the bag {a, a, b} will result in a bag
{a, b}, while removing two copies of c from the same bag will not change it.

• subtract (other: LINKED BAG [G]), which removes all elements of other from the
current bag. For example, taking the bag {a, a, b} and subtracting {a, b, c} from it
will yield the bag {a}.

Your implementation should satisfy the provided contracts.

3. Run the program: this will test your implementation on a simple example. Make sure the
test does not fail.

To hand in

Hand in the code of LINKED BAG.

4 MOOC: Genericity, Data Structures

To do

1. Access the main MOOC course web page at http://se.ethz.ch/mooc/programming.

2. Listen to lecture number 11 “Genericity’ and take the corresponding quiz.

3. Listen to lecture number 14 “Data structures”, and take the corresponding quiz.

Your goal is to provide all correct answers to the quizzes. You can take the quizzes as many
times as you want. If you succeed, you will be awarded a badge for each correctly solved quiz.

4

http://se.ethz.ch/mooc/programming

	Choosing data structures
	Short trips: take two
	Bags
	MOOC: Genericity, Data Structures

