
ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Assignments
Fall 2013

Solution 10: Agents and board games

ETH Zurich

1 Navigating in Zurich

Listing 1: Class NAVIGATOR

note
description: ”Finding routes in Zurich.”

class
NAVIGATOR

inherit
ZURICH OBJECTS

feature −− Explore Zurich

add event handlers
−− Add handlers to mouse−click events on stations
−− to allow the user to select start and end points of his route.

do
across

Zurich.stations as i
loop

Zurich map.views [i.item].on left click no args.extend back (agent set origin (i.item))
Zurich map.views [i.item].on left click no args.extend back (agent show route)
Zurich map.views [i.item].on right click no args.extend back (agent set destination (i.

item))
Zurich map.views [i.item].on right click no args.extend back (agent show route)

end
end

feature −− Access

origin: STATION
−− Currently selected start point.
−− (Void if no start point selected).

destination: STATION
−− Currently selected end point.
−− (Void if no end point selected).

last route: ROUTE
−− Route calculated by the latest call to ‘show route’.

1



ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Assignments
Fall 2013

finder: ROUTE FINDER
−− Route finder.

once
create Result.make (Zurich)

end

feature {NONE} −− Implementation

set origin (s: STATION)
−− Set ‘origin’ to ‘s’.

do
origin := s

ensure
origin set: origin = s

end

set destination (s: STATION)
−− Set ‘destination’ to ‘s’.

do
destination := s

ensure
destination set: destination = s

end

show route
−− If both ‘origin’ and ‘destination’ are set, show the route from ‘origin’ to ‘destination

’ on the map
−− and output directions to the console.
−− Otherwise do nothing.

local
i: INTEGER

do
if origin /= Void and destination /= Void then

if last route /= Void then
Zurich.remove route (last route)

end
last route := finder.shortest route (origin, destination)
Zurich.add route (last route)
Zurich map.update

Console.output (”From ” + origin.name + ” to ” + destination.name + ”:”)
from

i := 1
until

i > last route.lines.count
loop

Console.append line (”Take ” + last route.lines[i].kind.name + ” ” + last route.
lines[i].number.out +

” until ” + last route.stations[i + 1].name)
i := i + 1

end
end

2



ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Assignments
Fall 2013

ensure
last route exists: origin /= Void and destination /= Void implies last route /= Void

end

invariant
finder exists: finder /= Void

end

2 Home automation

Listing 2: Class TEMPERATURE SENSOR

class
TEMPERATURE SENSOR

inherit
ANY

redefine
default create

end

feature {NONE}−− Initialization

default create
−− Initialize the set of observers.

do
create {V HASH SET [PROCEDURE [ANY, TUPLE [REAL 64]]]} observers

ensure then
no observers: observers.is empty

end

feature −− Access

temperature: REAL 64
−− Temperature value in degrees Celcius.

feature −− Status report

valid temperature (a value: REAL 64): BOOLEAN
−− Is ‘a value’ a valid temperature?

do
Result := a value >= −273.15

end

feature −− Basic operations

set temperature (a temperature: REAL 64)
−− Set ‘temperature’ to ‘a temperature’ and notify observers.

require
valid temperature: valid temperature (a temperature)

do
temperature := a temperature

3



ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Assignments
Fall 2013

across
observers as c

loop
c.item.call ([temperature])

end
ensure

temperature set: temperature = a temperature
end

feature −− Subscription

subscribe (an observer: PROCEDURE [ANY, TUPLE [REAL 64]])
−− Add ‘an observer’ to observers list.

do
observers.extend (an observer)

ensure
present: observers.has (an observer)

end

unsubscribe (an observer: PROCEDURE [ANY, TUPLE [REAL 64]])
−− Remove ‘an observer’ from observers list.

do
observers.remove (an observer)

ensure
absent: not observers.has (an observer)

end

feature {NONE} −− Implementation

observers: V SET [PROCEDURE [ANY, TUPLE [REAL 64]]]
−− Set of observing agents.

invariant
valid temperature: valid temperature (temperature)
observers exists: observers /= Void
all observers exist: not observers.has (Void)

end

Listing 3: Class APPLICATION

class
APPLICATION

create
make

feature {NONE} −− Initialization
make
−− Run application.

local
s: TEMPERATURE SENSOR
d: DISPLAY
c: HEATING CONTROLLER

4



ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Assignments
Fall 2013

do
create s
create d
create c.set goal (21.5)

s.subscribe (agent d.show)
s.subscribe (agent c.adjust)

s.set temperature (22)
s.set temperature (22.8)
s.set temperature (20.0)

s.set temperature (−273.14276764)
s.set temperature (1000)
s.set temperature (0)

end
end

3 The final project. Board game: part 4

You can download a complete solution from http://se.inf.ethz.ch/courses/2013b_fall/eprog/

assignments/10/board_game_solution.zip.

4 MOOC: Selective exports, multiple inheritance, and
agents

Selective exports and deferred classes

• Suppose to have the following class ITEM:

class
ITEM

feature −− Basic operations

set price (p: INTEGER)
−− Set price for current object.

do
price := p

end

feature {STATS, ORDER\ LINE} −− Access

description: STRING
−− Item description.

price: INTEGER
−− Item price.

end

The true statements are: features description and price are available to classes STATS,
ORDER LINE, and their descendants; feature set price is available to all classes.

5

http://se.inf.ethz.ch/courses/2013b_fall/eprog/assignments/10/board_game_solution.zip
http://se.inf.ethz.ch/courses/2013b_fall/eprog/assignments/10/board_game_solution.zip


ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Assignments
Fall 2013

• Suppose to have the following class ITEM:

class
ITEM

create {ORDER\ LINE}
set description

feature {NONE} −− Initialition

set description (d: STRING)
−− Set description for current object.

do
description := d

end

feature −− Basic operations

set price (p: INTEGER)
−− Set price for current object.

do
price := p

end

feature −− Access

description: STRING
−− Item description.

price: INTEGER
−− Item price.

end

The true statements are: Objects of class ITEM can be created from within objects of class
ORDER LINE; Feature set description can be used as a creation procedure, but cannot
be invoked normally (that is, not as a creation procedure) on an object of type ITEM
from another class.

• Suppose to have the following class ITEM:

class
ITEM

create
set description

feature {NONE} −− Initialition

set description (d: STRING)
−− Set description for current object.

do
description := d

end

6



ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Assignments
Fall 2013

feature −− Basic operations

set price (p: INTEGER)
−− Set price for current object.

do
price := p

end

feature −− Access

description: STRING
−− Item description.

price: INTEGER
−− Item price.

end

The true statements are: Objects of class ITEM can be created from within another
class; Feature set description can be used as a creation procedure, but cannot be invoked
normally on an object of type ITEM from another class.

• Suppose to have the following class ITEM:

class
ITEM

feature −− Basic operations

set price (p: INTEGER)
−− Set price for current object.

do
price := p

end

feature {ITEM, ORDER\ LINE} −− Access

description: STRING
−− Item description.

price: INTEGER
−− Item price.

end

The true statements are: features description and price are available to classes ITEM,
ORDER LINE, and their descendants; Making features description and price available to
class ITEM means that I can use them from within a class different from ITEM, when
applying features description and price to objects of type ITEM.

• Which of the following sentences about deferred (abstract) classes is true (more answers
are possible)? You can have a deferred class whose features are all implemented; Deferred
classes are useful when designing an object-oriented system; You can have a deferred class
whose features are all deferred; To be useful, a deferred class has to be inherited from.

• A deferred class can have non-deferred ancestor classes: true.

7



ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Assignments
Fall 2013

• If you write a deferred feature in a non-deferred class you will get a compilation error:
true.

Multiple inheritance

• Assume the following code:

class A
feature

f
do
−− implementation omitted

end
g

do
−− implementation omitted

end
end
class B
feature

f
do
−− implementation omitted

end
h

do
−− implementation omitted

end
end

Assume that in class C (inheriting from both classes A and B) you want to keep the im-
plementation of f coming from B. Which of the following class C implementations provides
the correct answer?

class C
inherit

A
undefine f
end

B
end

• What does it mean that a class C inherits from A and, in a non-conforming way, from
B? That you can declare a reference of type B and attach to it an object of type C; That
polymorphism does not apply when there is a reference of type B to which there is an
object of type C attached.

• Assume the following code:

class A
feature

f
do
−− implementation omitted

8



ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Assignments
Fall 2013

end
g

do
−− implementation omitted

end
end

class B
feature

f
do
−− implementation omitted

end
h

do
−− implementation omitted

end
end

Assume to have class C inheriting from both classes A and B. Which of the following class
implementations correctly compile?

class C
inherit

A
rename f as a f

end
B

end

class C
inherit

A
B

rename f as b f
end

end

class C
inherit

A
rename f as a f

B
rename f as b f

end
end

• Assume the following code:

deferred class A
feature

f
do

9



ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Assignments
Fall 2013

−− implementation omitted
end

g
deferred
end

end

deferred class B
feature

f
deferred
end

h
do
−− implementation omitted

end
end

Assume to have class C inheriting from both classes A and B. Which of the following class
implementations correctly compile?

deferred class C
inherit

A
B

end

class C
inherit

A
B

rename f as b f
end

feature
g

do
−− implementation omitted

do
b f

do
−− implementation omitted

do
end

class C
inherit

A
rename f as a f

B
rename f as b f

end
feature

g

10



ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Assignments
Fall 2013

do
−− implementation omitted

do
b f

do
−− implementation omitted

do
end

• Assume the following code:

class A
feature

f
do
−− implementation omitted

end
g

do
−− implementation omitted

end
end
class B
feature

f
do
−− implementation omitted

end
h

do
−− implementation omitted

end
end

Assume to have class C inheriting from both classes A and B. Which of the following class
implementations correctly compile?

class C
inherit

A
rename f as a f redefine a f
end

B
feature

a f
do
−− implementation omitted.

end
end

class C
inherit

A

11



ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Assignments
Fall 2013

rename f as a f redefine a f,g
end

B
feature

g
do
−− implementation omitted.

end

a f
do
−− implementation omitted.

end
end

class C
inherit

A
rename f as a f
end

B
redefine h end

feature

h
do
−− implementation omitted.

end
end

• In a multiple inheritance scenario, indicate a case in which it makes sense to inherit twice
from the same class. Answer: When the ancestor has an implemented feature whose im-
plementation we want to preserve, while at the same time provide another implementation
of the same feature in the descendant.

• Assume the following code:

deferred class A
feature

f
deferred
end

end

class B
inherits

A
feature

f
do
−− implementation omitted

end

12



ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Assignments
Fall 2013

end

class C
inherits

A
rename f as c f end

feature
c f

do
−− implementation omitted

end
end

Assume to have the following declarations:

a: A
d: D

Assume further that the following code is executed:

create d
a := d
a.f

Which of the following declarations for class D works (more answers possible)?

class D
inherit

B

C
select c f
end

end

class D
inherit

B
select f
end

C
end

Agents

• The true statements about the Model View Controller (MVC) pattern are the following:
it should be straightforward to switch between views in an application using MVC; It
should be straightforward to switch between models in an application using MVC; An
application using two different databases, an HTML view and a command-line view can
be an example of an application that can benefit from MVC; The computer memory can
be an example of a model in the MVC.

• Complete the code of the following class implementing part of the observer pattern by
choosing the correct instructions.

13



ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Assignments
Fall 2013

deferred class
SUBSCRIBER

feature −− Basic operations

subscribe (p: NEWS BROADCASTER)
−− Subscribe to ‘p’.

require
p exists: p /= Void

do
p.attach (Current)

end

unsubscribe (p: NEWS BROADCASTER)
−− Unsubscribe to ‘p’.
require

p exists: p /= Void
do

p.detach (Current)
end

feature {NEWS BROADCASTER} −− Implementation

update (s: STRING)
−− Action triggered by broadcaster.

deferred
end

end

• Complete the code of the following class implementing part of the observer pattern by
choosing the correct instructions.

deferred class
NEWS BROADCASTER

feature −− Initialization

make
−− Initialize Current.

do
create subscribers.make

end

feature {SUBSCRIBER} −− Addition

attach (s: SUBSCRIBER)
−− Subscribe ‘s’.
require

s exists: s /= Void
do

if not subscribers.has (s) then subscribers.extend (s) end
end

14



ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Assignments
Fall 2013

feature {SUBSCRIBER} −− Removal

detach (s: SUBSCRIBER)
−− Unsubscribe ‘s’.

require
s exists: s /= Void

do
subscribers.start
subscribers.search(s)
if not subscribers.after then subscribers.remove end

end

feature −− Basic operations

publish
−− Publish news to subscribers.

deferred
end

feature {NONE} −− Implementation

subscribers: LINKED LIST [SUBSCRIBER]

invariant
subscribers exist: subscribers /= Void

end

• Complete the code of the following class implementing part of the observer pattern by
choosing the correct instructions.

class
EVENT MANAGER [EVENT DATA −> TUPLE]

create
make

feature −− Initialization

make
−− Initialize Current.

do
create subscribers.make

end

feature −− Basic operations

publish (args: EVENT DATA)
−− Trigger an event of this type.

do
from

subscribers.start

15



ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Assignments
Fall 2013

until
subscribers.after

loop
subscribers.item.call (args)
subscribers.forth

end
end

subscribe (action: PROCEDURE [ANY, EVENT DATA])
−− Register ‘action’ to be executed for events of this type.

require
action exists: action /= Void

do
if not subscribers.has (action) then

subscribers.extend (action)
end

ensure
action added: subscribers.has (action)

end

unsubscribe (action: PROCEDURE [ANY, EVENT DATA])
−− Deregister ‘action’ to be executed for events of this type.

do
subscribers.compare objects
subscribers.start
subscribers.search(action)
if not subscribers.after then subscribers.remove end

ensure
action removed: not subscribers.has (action)

end

feature {NONE} −− Implementation

subscribers: LINKED LIST [PROCEDURE [ANY, EVENT DATA]]

invariant
subscribers exist: subscribers /= Void

end

class
INDIVIDUAL

create
make

feature {NONE} −− Initialization

make (n: STRING)
−− Initialization for ‘Current’.

require
n exists: n /= Void and not n.is empty

do

16



ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Assignments
Fall 2013

name := n
ensure

name set: name = n
end

feature −− Access

name: STRING
−− Subscriber’s name

reaction behavior
−− Individual’s reaction behavior.

do
print (name + ” is reacting.”)

end
end

class
APPLICATION
create

make

feature {NONE} −− Initialization

make
−− Run application.

local
i: INDIVIDUAL
p: EVENT MANAGER [TUPLE []]

do
create i.make (”Ted”)
create p.make
p.subscribe (agent i.reaction behavior)

end

17


	Navigating in Zurich
	Home automation
	The final project. Board game: part 4
	MOOC: Selective exports, multiple inheritance, and agents

