
Chair of Software Engineering

Einführung in die Programmierung
Introduction to Programming

Prof. Dr. Bertrand Meyer!

Exercise Session 7

2

News (Reminder)

Mock exam next week!
Ø  Attendance is highly recommended (and worth one
point!)
Ø  The week after we will discuss the results
Ø  Assignment 7 due on November 13

3

Today

Ø  Inheritance
Ø  Genericity

4

Inheritance

Principle:
Describe a new class as extension or specialization of an
existing class

 (or several with multiple inheritance)

If B inherits from A :

Ø  As modules: all the services of A are available in B
 (possibly with a different implementation)

Ø  As types: whenever an instance of A is required, an
 instance of B will be acceptable
 (“is-a” relationship)

5

Let's play Lego!

BRICK

LEGO_BRICK

LEGO_BRICK_WITH_HOLE LEGO_BRICK_SLANTED

6

Class BRICK

deferred class
 BRICK

feature

 width: INTEGER
 depth: INTEGER
 height: INTEGER
 color: COLOR

 volume: INTEGER
 deferred
 end

end

7

Class LEGO_BRICK

class
 LEGO_BRICK

inherit

 BRICK

feature

 number_of_nubs : INTEGER

 volume: INTEGER
 do
 Result := ...
 end

end

Inherit all features of
class BRICK.

New feature, number
of nubs

Implementation of
volume.

8

Class LEGO_BRICK_SLANTED

The feature volume is
going to be redefined

(=changed). The feature
volume comes from

LEGO_BRICK

class
 LEGO_BRICK_SLANTED

inherit

 LEGO_BRICK
 redefine
 volume
 end

feature

 volume: INTEGER
 do
 Result := ...
 end

end

9

Class LEGO_BRICK_WITH_HOLE

class
 LEGO_BRICK_WITH_HOLE

inherit

 LEGO_BRICK
 redefine
 volume
 end

feature

 volume: INTEGER
 do
 Result := ...
 end

end

The feature volume is
going to be redefined

(=changed). The feature
volume comes from

LEGO_BRICK

10

Inheritance Notation

volume++

BRICK

LEGO_BRICK

LEGO_BRICK_WITH_HOLE LEGO_BRICK_SLANTED

+

+ +

volume*

volume+

*

volume++

Notation:

 Deferred *

 Effective +

 Redefinition ++

11

Deferred

Ø  Deferred
Ø  Deferred classes can have deferred features.
Ø  A class with at least one deferred feature must

be declared as deferred.
Ø  A deferred feature does not have an

implementation yet.
Ø  Deferred classes cannot be instantiated and

hence cannot contain a create clause.

Can we have a deferred class with no deferred
features?

12

Effective

Ø  Effective
Ø  Effective classes do not have deferred features

(the Aþstandard caseAÿ).
Ø  Effective routines have an implementation of

their feature body.

13

Precursor

Ø  If a feature was redefined, but you still wish to call
the old one, use the Precursor keyword.

volume: INTEGER

 do
 Result := Precursor - ...
 end

14

A more general example of using Precursor

 -- Class A
 routine (a_arg1 : TYPE_A): TYPE_R
 do É end

 -- Class C
 routine (a_arg1 : TYPE_A): TYPE_R
 local
 l_loc : TYPE_R
 do
 -- pre-process
 l_loc := Precursor {B} (a_arg1)
 -- Not allowed: l_loc := Precursor {A} (a_arg1)
 -- post-process
 end

routine + + A

routine ++ + B

routine ++ + C

+ D

15

Today

Ø  Inheritance
Ø  Genericity

16

Genericity - motivation

Ø  Assume we want to create a list class capable of
storing objects of any type.

 class
 LIST -- First attempt

feature

 put: (a_item : ANY)
 do
 -- Add item to the list
 end

 item: ANY
 do
 -- Return the first item in the list
 end

 -- More feature for working with the list

end

We could choose ANY
as the item type

17

Working with this list – first attempt

 insert_strings (a_list_of_strings : LIST)
 do
 a_list_of_strings.put (AþfooAÿ)
 a_list_of_strings.put (12);
 a_list_of_strings.put (AþfooAÿ)
 end

 print_strings (a_list_of_strings : LIST)
 local
 l_printme: STRING
 do
 across a_list_of_strings as l loop
 l_printme := l.item
 io.put_string (l_printme)
 end
 end

Here we are inserting
an INTEGER

Compile error: cannot
assign ANY to STRING

18

Working with this list – the right way

 insert_strings (a_list_of_strings : LIST)
 do
 a_list_of_strings.put (AþfooAÿ)
 a_list_of_strings.put (12);
 a_list_of_strings.put (AþfooAÿ)
 end

 print_strings (a_list_of_strings : LIST)
 local
 l_current_item: ANY
 do
 across a_list_of_strings as l loop
 l_current_item := l.item
 if attached {STRING} l_current_item as itemstring then
 io.put_string (itemstring)
 else
 io.put_string (AþThe list contains a non-string item! Aÿ)
 end
 end

 end

Correct. This
synctactical construct
is called ‘object test’.

Still nobody detects
this problem

This solution works, but
wouldn’t it be nice to detect
this mistake at compile time?

19

Genericity

Ø  Genericity lets you parameterize a class. The
parameters are types. A single class text may be
reused for many different types.

20

Genericity

LIST_OF_
CARS

SET_OF_
CARS

LINKED_LIST _
OF_CARS

LIST_OF_
CITIES

LIST_OF_
PERSONS

Abstraction

Specialization

Type parameterization Type parameterization

Genericity

Inheritance

21

A generic list Formal generic parameter

Actual generic parameter

class LIST [G] feature

 extend (x : G) ...
 last : G ...

end

To use the class: obtain a generic derivation, e.g.

cities : LIST [CITY]

Query last returns an
object of type G

In the class body, G
is a valid type name

22

] -> RESOURCE

A generic list with constraints

class
 STORAGE [G

inherit

 LIST [G]

feature

 consume_all
 do

 from start until after
 loop
 item.consume
 forth
 end
 end

end

constrained generic parameter

The feature item is
checked for

conformance with
RESOURCE. We can

assume this.

The feature item is
of type G. We cannot

assume consume.

23

Type-safe containers

Ø  Using genericity you can provide an implementation of
type safe containers.

 x: ANIMAL
 animal_list: LINKED_LIST [ANIMAL]
 a_rock: MINERAL

 animal_list.put (a_rock) -- Does this rock?

Compile error!

24

Definition: Type

We use types to declare entities, as in

x : SOME_TYPE

With the mechanisms defined so far, a type is one of:

Ø  A non-generic class e.g. METRO_STATION

Ø  A generic derivation, i.e. the name of a class
followed by a list of types , the actual generic
parameters, in brackets (also recursive)
 e.g. LIST [ARRAY [METRO_STATION]]

LIST [LIST [CITY]]
TABLE [STRING, INTEGER]

25

So, how many types can I possibly get?

Two answers, depending on what we are talking about:

Ø  Static types
 Static types are the types that we use while writing
Eiffel code to declare types for entities (arguments,
locals, return values)

Ø  Dynamic types
 Dynamic types on the other hand are created at run-
time. Whenever a new object is created, it gets assigned
to be of some type.

26

Static types

class EMPLOYEE
feature

 name: STRING
 birthday : DATE

end

class DEPARTMENT
feature

 staff : LIST [EMPLOYEE]
end

bound by the program text:
EMPLOYEE
STRING
DATE
DEPARTMENT
LIST[G]

becomes LIST[EMPLOYEE]

27

Object creation, static and dynamic types

class TEST_DYNAMIC _CREATION
feature

 ref_a : A; ref_b : B
 -- Suppose B, with creation feature make_b,
 -- inherits from A, with creation feature make_a

 do_something
 do
 create ref_a.make_a
 -- Static and dynamic type is A

 create {B} ref_a.make_b
 -- Static type is A, dynamic type is B

 create ref_b.make_b
 ref_a := ref_b
 end

end

28

Dynamic types: another example

class SET[G] feature
 powerset: SET[SET[G]] is
 do
 create Result

 -- More computation…
 end

 i_th_power (i: INTEGER): SET[ANY]
 require i >= 0
 local n: INTEGER
 do
 Result := Current
 from n := 1 until n > i loop
 Result := Result.powerset
 n := n + 1

 end
 end
end

Dynamic types from i_th_power :
SET[ANY]

SET[SET[ANY]]

SET[SET[SET[ANY]]]

É

From http://www.eiffelroom.com/article/fun_with_generics

