ETHZ D-INFK Prof. Dr. B. Meyer, Dr. C.A. Furia, Dr. S. Nanz

Software Verification (Fall 2013)
Course Project

Hand-out date: 9 October 2013
Team registration: 14 October 2013
Due date: 28 November 2013

1. Summary

The project consists of implementing a basic list data structure and a sorting algorithm operating on it,
and of specifying and proving the implementation as much as possible. The initial implementation is in
Eiffel for AutoProof. Then you will switch to Boogie to have a more expressive language for
specification, and have more control on what you can prove correct. Your activities, experiences,
design choices, and evaluations will be documented in a report.

2. Teams

You can work in teams of up to three persons. Please send an email to the assistant
(chris.poskitt@inf.ethz.ch) to register your team. The due date for the registration is indicated at the top
of this assignment.

3. Project description

3.1. Deliverables

We require two deliverables:

e Verified implementations of the required data structure and sorting algorithms in Eiffel and
Boogie.

e A report fully describing your design choices, experiences, and evaluations of the tools in the
context of your specifications and implementations.

The following two subsections express several requirements and tasks which must be addressed in the
implementations, verification activities, and the report.

The report should be written as an academic report, i.e., sensibly structured, well written, with your
activities fully documented, discussed, and evaluated. Submitting verified implementations alone is not
enough to get full credit in this assessment; the report is an important component and the weighting of
the marks reflects this (see the following subsections).


mailto:chris.poskitt@inf.ethz.ch

3.2. Requirements

We provide a single-class implementation SV_LIST of lists of integers, implemented using arrays in
Eiffel. Class SV_LIST includes two publicly visible constant parameters declared statically:

® Max count: INTEGER

The maximum number of elements stored by the list (a positive number).
e N:INTEGER

An arbitrary positive number, whose use is described below.

The API of SV_LIST includes the following features:

e empty: BOOLEAN
True iff the list is empty.
e count: INTEGER
The number of elements stored in the list.
e gt (k: INTEGER): INTEGER
The element stored at position £.
e put (k: INTEGER, val: INTEGER)
Store value val at position £.
o sequence: ARRAY [INTEGER]
An array of integer, representing the current content of the list.

Note: a skeleton API is provided as a starting point on the course webpage.

You can add other features to SV_LIST’s API, which you may also use in the implementation or in the
specification.

Class SV_LIST also includes a routine named sort which sorts the list content in ascending order, using
a combination of two different algorithms as follows:

e [f the list stores at least Max count/2 elements and all of them are between -3N and +3A, then
it uses sort uses Bucket Sort [1,3] (with 3 buckets) to sort the list .
e Otherwise, it uses Merge Sort [2,3] to sort the list.

The implementation of Bucket Sort can recursively call Merge Sort to sort each sublist in a “bucket”.
3.3. Tasks

1. Eiffel implementation (2 points). Implement the class SV_LIST with the features described
above. Discuss any implementation choice that you evaluated at this point.

2. Eiffel specification (4 points). Add specification to all features of the class as embedded
contracts (pre- and postconditions, class invariants, loop invariants, and possibly intermediate
check assertions). Describe which aspects of an ideally complete specification you were able to



express, and which you couldn’t express.

3. Eiffel testing (2 points). Provide a TEST class which shows that your implementation works
correctly (with respect to the contracts you wrote). TEST should include test cases consisting of
calls to sort on a given unsorted list; some test cases must activate your implementation of
Bucket Sort and other test cases must directly trigger Merge Sort.

4. Eiffel verification (6 points). Using AutoProof, verify as many features of SV_LIST as
possible. Describe if there were any aspects of the implementation or of the specification you
had to change to make them easier to verify. Describe which parts of the specification you could
not verify, and what were the limitations that prevented you from doing it. Discuss if and how
the behavior of AutoProof is affected by specific choices for the constant parameters
Max_count and N.

5. Boogie implementation (2 points). Reimplement the functionalities of class SV_LIST in
Boogie, as a collection of global variables, functions, and procedures. Instead of Eiffel arrays,
you will use maps in Boogie as basic data structure for the implementation. Describe which
aspects, if any, of the Eiffel implementation or specification you had to adapt to express them in
Boogie.

6. Boogie specification (3 points). Improve the specification with some of the aspects you could
not express as Eiffel contracts but you can express using Boogie’s first-order specification
language. Discuss these additions and mention possible other aspects you still could not readily
express.

7. Boogie verification (8 points). Verify your Boogie program using Boogie. To this end, you
are encouraged to use Boogaloo to find potential inconsistencies in your implementation or
specification by “testing” them. Report any significant problem you encountered, for example
which procedures you could verify and which ones you could not. Describe if there were any
aspects of the implementation or of the specification you had to change to make them easier to
verify. Describe which parts of the specification you could not verify, and what were the
limitations that prevented you from doing it.

3.4. Structure and writing

For reports that are well structured, well written, with good spelling and grammar, we will award up to
2 points.

4. Submission

Please submit a zip file containing the source code and the report, in PDF format, by email to the
assistant by the due date. Your zip file should contain two folders: a folder (named ‘source’) for source
code, and a folder (named ‘report’) for the PDF version of your final report.

5. Support

You can ask questions about the project at the exercise sessions on Wednesday. Additionally, you can
arrange a meeting with the assistant by email.



References

[1] Wikipedia: Bucket sort. http://en.wikipedia.org/wiki/Bucket sort

[2] Wikipedia: Merge sort. http://en.wikipedia.org/wiki/Merge sort

[3] Cormen et al.: Introduction to Algorithms. MIT Press, 3rd edition, 2009.

[4] AutoProof. http://se.inf.ethz.ch/courses/2013b_fall/sv/exercises/problems2.pdf
[5] Boogaloo. http://cloudstudio.ethz.ch/comcom/#Boogaloo and
https://bitbucket.org/nadiapolikarpova/boogaloo/wiki/Home

[6] Boogie. http://rise4fun.com/boogie and
http://research.microsoft.com/en-us/um/people/leino/papers/krml178.pdf



http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FBucket_sort&sa=D&sntz=1&usg=AFQjCNEke6wMefdLTZ02HldH-TpynQN0oQ
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FMerge_sort&sa=D&sntz=1&usg=AFQjCNF_Zl0LszER_QQOwGWZyMigU4-Bsg
http://www.google.com/url?q=http%3A%2F%2Fse.inf.ethz.ch%2Fcourses%2F2013b_fall%2Fsv%2Fexercises%2Fproblems2.pdf&sa=D&sntz=1&usg=AFQjCNFuOuaNPtz9LqOtDTuTa1_oOvCHlw
http://www.google.com/url?q=http%3A%2F%2Fcloudstudio.ethz.ch%2Fcomcom%2F%23Boogaloo&sa=D&sntz=1&usg=AFQjCNE9FzE2-dOKRKNDIN2v2vjFVKonfg
https://www.google.com/url?q=https%3A%2F%2Fbitbucket.org%2Fnadiapolikarpova%2Fboogaloo%2Fwiki%2FHome&sa=D&sntz=1&usg=AFQjCNFh1qt-YoAf8aX2j5f4cZna7bwo3A
http://www.google.com/url?q=http%3A%2F%2Frise4fun.com%2Fboogie&sa=D&sntz=1&usg=AFQjCNE-eWYw0sH8dH0Bqm24P5i_hNULaQ
http://www.google.com/url?q=http%3A%2F%2Fresearch.microsoft.com%2Fen-us%2Fum%2Fpeople%2Fleino%2Fpapers%2Fkrml178.pdf&sa=D&sntz=1&usg=AFQjCNGWt5eyyeZ-J7zKjRhQLxRMxahuTg

