
ETHZ D-INFK
Prof. Dr. B. Meyer Software Verification – Exam

Software Verification

ETH Zürich

14 December 2009

Surname, first name: ...

Student number: ..

I confirm with my signature, that I was able to take this exam under regular
circumstances and that I have read and understood the directions below.

Signature: ...

Directions:

• Exam duration: 1 hour 45 minutes.

• Except for a dictionary you are not allowed to use any supplementary
material.

• All solutions can be written directly on the exam sheets. If you need more
space for your solution ask the supervisors for a sheet of official paper. You
are not allowed to use other paper. Please write your student number on
each additional sheet.

• Only one solution can be handed in per question. Invalid solutions need
to be crossed out clearly.

• Please write legibly! We will only correct solutions that we can read.

• Manage your time carefully (take into account the number of points for
each question).

• Please tell immediately the exam supervisors if you feel disturbed during
the exam.

Good luck!

1

ETHZ D-INFK
Prof. Dr. B. Meyer Software Verification – Exam

Question Available points Your points

1) Axiomatic semantics 12

2) Separation logic 8

3) Model checking 14

4) Software model checking 14

5) Program analysis 8

6) Abstract interpretation 14

Total 70

2

ETHZ D-INFK
Prof. Dr. B. Meyer Software Verification – Exam

1 Axiomatic semantics (12 points)

Consider the following Hoare triple (all variables of type NATURAL, assumed to
describe mathematical natural numbers):

{ x = n }
1 from
2 z := 0
3 until x < y do
4 z := z + 1
5 x := x − y
6 end

{ n = z ∗ y + x }

Prove that this triple is a theorem of Hoare’s axiomatic system for partial cor-
rectness.

1 { x = n }
2 from
3 { n = 0 · y + x }
4 z := 0
5 { n = z · y + x }
6 until x < y do
7 { (n = z · y + x) ∧ ¬(x < y) }
8 { n = (z + 1) · y + (x − y) }
9 z := z + 1

10 { n = z · y + (x − y) }
11 x := x − y
12 { n = z · y + x }
13 end
14 { (n = z · y + x) ∧ (x < y) }
15 { n = z · y + x }

3

ETHZ D-INFK
Prof. Dr. B. Meyer Software Verification – Exam

2 Separation logic (8 points)

2.1 (4 points)

Consider the following program state:

Indicate in the following table whether or not a given assertion is satisfied by
this state. Indicate satisfaction with a T and non-satisfaction with an F.

T or F

∃v · x 7→ v ∗ v 7→ v

y 7→
(x = y) ∧ (y 7→ ∗ true)

(x = y) ∗ true

T or F
∃v · x 7→ v ∗ v 7→ v T
y 7→ F
(x = y) ∧ (y 7→ ∗ true) T
(x = y) ∗ true T

4

ETHZ D-INFK
Prof. Dr. B. Meyer Software Verification – Exam

2.2 (4 points)

Do the following implications hold for any predicate P,Q and any heap? If an
implication holds, explain why. If it does not hold, provide a counterexample.

(1) (P) ⇒ (P ∗ P)

(2) (P ∗Q) ⇒ [(P ∧Q) ∗ true]

Neither of the implications hold.
Consider the predicate ∃x, y · x 7→ y, which informally says that the heap

contains exactly one cell with some address and some stored value. If we take P
to be this predicate, then the first implication states that if we have a one-celled
heap, then we have a two-celled heap, which is clearly not the case.

For the second example, if we take P to be 2 7→ and Q to be 3 7→ , then
the left-hand side of the implication says the heap has two distinct cells with
addresses 2 and 3 respectively. The right-hand side means that the heap can be
split into two parts, of which the first has to be a single cell with addresses 2
and 3. Since one cell cannot have two distinct addresses, the implication does
not hold.

5

ETHZ D-INFK
Prof. Dr. B. Meyer Software Verification – Exam

3 Model checking (14 points)

Let us recall the semantics of LTL over finite words with alphabet P. For a
word w = w(1)w(2) · · ·w(n) ∈ (2P)∗ with n ≥ 0 and a position 1 ≤ i ≤ n the
satisfaction relation |= is defined recursively as follows for p, q ∈ P.

w, i |= p iff p ∈ w(i)
w, i |= ¬φ iff w, i 6|= φ
w, i |= φ1 ∧ φ2 iff w, i |= φ1 and w, i |= φ2

w, i |= Xφ iff i < n and w, i+ 1 |= φ
w, i |= φ1 Uφ2 iff there exists i ≤ j ≤ n such that: w, j |= φ2

and for all i ≤ k < j it is the case that w, k |= φ1

w |= φ iff w, 1 |= φ

Also recall the derived operators:

♦ φ defined as True Uφ
� φ defined as ¬♦¬φ

3.1 Automata and LTL formulas (6 points)

Consider the automaton T in Figure 1, where A is the initial state and D is the
accepting state.

A B

CD

p

p

p

p

q

r

r

Figure 1: Automaton T .

For each of the following LTL formulas say whether every run of T satisfies the
formula: if it does, demonstrate informally (but precisely) and briefly why this
is the case; if it does not, provide a counterexample.

(1) �♦p

No: {p}{p}{p}{r} is a counterexample because it does not satisfy ♦p at
position 4.

(2) ♦p

6

ETHZ D-INFK
Prof. Dr. B. Meyer Software Verification – Exam

Yes: every accepting run must reach state D, which requires to have (more
than) one event p.

(3) �
(

(p U q) =⇒ (p U (q ∧ ♦p))
)

Yes: whenever pU q holds, q holds at some future position j. The transition
relation of the automaton is such that state C is reached then. In order for
the run to be accepting there must be a p after position j which leads to
state D. Hence, q ∧ ♦p holds at j.

3.2 Automata-based model checking (8 points)

Consider again the automaton T in Figure 1. Prove by the basic algorithm for
automata-based model checking that the LTL formula ψ , �(q =⇒ ♦p) is a
property of the automaton.

(1) Build an automaton a(¬ψ) for ¬ψ.

X

Y

p

p
q

r

r q

(2) Build the intersection automaton T ×a(¬ψ) and check that it has no reach-
able accepting state.

A B

CD

p

p

p

p

q

r

r

X X

XX

C
Y

qp

Obviously no accepting state is connected.

7

ETHZ D-INFK
Prof. Dr. B. Meyer Software Verification – Exam

4 Software model checking (14 points)

Consider the following function that computes the product of two integers if
they are both negative or both positive, and returns zero otherwise.

1 same sign product (x, y: INTEGER): NATURAL
2 do
3 if x > 0 then
4 if y > 0 then
5 Result := x ∗ y
6 else Result := 0 end
7 else
8 if x 6= 0 then
9 if y < 0 then

10 Result := x ∗ y
11 else Result : = 0 end
12 else Result := 0 end
13 end
14 ensure
15 x∗y > 0 ⇐⇒ Result > 0
16 end

4.1 Boolean abstractions (10 points)

Build the Boolean abstraction ssp 1 of same sign product with respect to the fol-
lowing predicates:

p = x > 0
q = y > 0
r = x∗y > 0
s = Result > 0
t = x < 0

1 ssp 1 (p, q, r , s , t : BOOLEAN)
2 require p =⇒ ¬ t ; q ∧ t =⇒ ¬ r ; p ∧ q =⇒ r
3 do
4 if p then
5 if q then
6 r := True ; s := True
7 else r := False ; s := False end
8 else
9 if t then

10 if ∗ then
11 s := r
12 else s := False end
13 else r := False ; s := False end
14 end
15 ensure
16 r ⇐⇒ s
17 end

4.2 Abstract counterexamples (4 points)

Provide an annotated counterexample trace for the Boolean abstraction ssp 1.
The counterexample should be in the form of a valid sequence of statements and

8

ETHZ D-INFK
Prof. Dr. B. Meyer Software Verification – Exam

branch conditions in ssp 1 which reaches the bottom of the function with a false
postcondition. Each statement in the sequence must be preceded and followed
by a complete description of the abstract program state in terms of values of
the Boolean predicates p, q, r , s , t.

Also tell whether the counterexample trace is feasible in the original concrete
function same sign product, briefly justifying your answer.

1 {¬ p, ¬ q, r, s, t}
2 [¬ p]
3 {¬ p, ¬ q, r, s, t}
4 [t]
5 {¬ p, ¬ q, r, s, t}
6 [¬ ∗]
7 {¬ p, ¬ q, r, s, t}
8 s := False
9 {¬ p, ¬ q, r, ¬ s, t}

The counterexample trace is not feasible in the original concrete program be-
cause the original program is correct w.r.t. its specification, hence it has no
failing runs. The spurious counterexample is just a result of the abstraction
being too coarse (predicate y < 0 is missing).

9

ETHZ D-INFK
Prof. Dr. B. Meyer Software Verification – Exam

5 Program analysis (8 points)

Consider the following program fragment:

1 from
2 x := 2
3 y := 1
4 z := x − 1
5 until z > 30 do
6 if x < 5 then
7 z := z ∗ x
8 else
9 z := z + y

10 end
11 x := x + 1
12 end

(1) Draw the control flow graph of the program fragment and label each ele-
mentary block.

(2) Annotate your control flow graph with the analysis result of a reaching
definitions analysis of the program fragment.

[y = 1]2

[z = x - 1]3

[x < 5]5

[z > 30]4

[x = x + 1]8

x? y? z?
x1 y? z?

[x = 2]1

[z = z * x]6 [z = z + y]7

x1 y? z?
x1 y2 z?
x1 y2 z?
x1 y2 z3

x1 x8 y2 z3 z6 z7
x1 x8 y2 z3 z6 z7

x1 x8 y2 z3 z6 z7
x1 x8 y2 z3 z6 z7

x1 x8 y2 z3 z6 z7
x1 x8 y2 z7

x1 x8 y2 z3 z6 z7
x1 x8 y2 z6

x1 x8 y2 z6 z7
x8 y2 z6 z7

10

ETHZ D-INFK
Prof. Dr. B. Meyer Software Verification – Exam

6 Abstract interpretation (14 points)

Consider the language of integer arithmetic expressions e ∈ Exp defined by

e ::= n | − e | e+ e | e ∗ e

with the following concrete semantics C : Exp→ Z:

C[n] = n
C[−e] = −C[e]

C[e+ e] = C[e] + C[e]
C[e ∗ e] = C[e] · C[e]

The goal of this exercise is to define an abstract interpretation to determine
whether e is divisible by 5.

(1) Suggest a suitable abstract domain D.

⊤

div5 ndiv5

⊥

(2) Define the concretization function γ : D→ ℘(Z)

γ(>) = Z
γ(div5) = {n ∈ Z : n mod 5 ≡ 0}
γ(ndiv5) = {n ∈ Z : n mod 5 6≡ 0}

γ(⊥) = ∅

(3) The abstract semantics is given by the function A : Exp→ D:

A[n] = . . .
A[−e] = 	A[e]

A[e+ e] = A[e]⊕A[e]
A[e ∗ e] = A[e]⊗A[e]

Complete the specification of the function A by:

(a) defining A[n], and

(b) defining the abstract operations 	, ⊕, ⊗.

11

ETHZ D-INFK
Prof. Dr. B. Meyer Software Verification – Exam

(a)

A[n] =
{

div5 if n mod 5 ≡ 0
ndiv5 otherwise

(b)
Operation 	:

For all d ∈ D:
	d = d

Operation ⊕:
⊕ > div5 ndiv5 ⊥
> > > > ⊥

div5 div5 ndiv5 ⊥
ndiv5 > ⊥
⊥ ⊥

Operation ⊗:
⊗ > div5 ndiv5 ⊥
> > > > ⊥

div5 div5 div5 ⊥
ndiv5 ndiv5 ⊥
⊥ ⊥

12

	Axiomatic semantics (12 points)
	Separation logic (8 points)
	(4 points)
	(4 points)

	Model checking (14 points)
	Automata and LTL formulas (6 points)
	Automata-based model checking (8 points)

	Software model checking (14 points)
	Boolean abstractions (10 points)
	Abstract counterexamples (4 points)

	Program analysis (8 points)
	Abstract interpretation (14 points)

