ETHZ D-INFK
Prof. Dr. B. Meyer Software Verification — Exam

Software Verification

ETH Ziirich
14 December 2009

Surname, first NAMIE:coooiiiiiiiiiiiii e
Student NUIMDET: ... e

I confirm with my signature, that I was able to take this exam under regular
circumstances and that I have read and understood the directions below.

SIGNATULE: ...oiiiiiiiiiiiii e

Directions:
e Exam duration: 1 hour 45 minutes.

e Except for a dictionary you are not allowed to use any supplementary
material.

e All solutions can be written directly on the exam sheets. If you need more
space for your solution ask the supervisors for a sheet of official paper. You
are not allowed to use other paper. Please write your student number on
each additional sheet.

e Only one solution can be handed in per question. Invalid solutions need
to be crossed out clearly.

e Please write legibly! We will only correct solutions that we can read.

e Manage your time carefully (take into account the number of points for
each question).

e Please tell immediately the exam supervisors if you feel disturbed during
the exam.

Good luck!

ETHZ D-INFK

Prof. Dr. B. Meyer Software Verification — Exam
Question Available points | Your points
1)) Axiomatic semantics 12
2)) Separation logic 8
3)) Model checking 14
4)) Software model checking 14
o) Program analysis 8
6)) Abstract interpretation 14
Total 70

ETHZ D-INFK
Prof. Dr. B. Meyer Software Verification — Exam

1 Axiomatic semantics (12 points)

Consider the following Hoare triple (all variables of type NATURAL, assumed to
describe mathematical natural numbers):

{x=n}

1 from

2 z =0

3 until x < y do
4 z:=2z+1
5 X =X—-y
6 end

{n=zxy+x}
Prove that this triple is a theorem of Hoare’s axiomatic system for partial cor-
rectness.

1{x=n}

2 from
3{n=0-y+x}
4 z =0

5{n=z-y+x}

6 until x < y do
T{(n=z-y+x) AN ~(x<y)}
8{n=(z+1) -y+x-y)}

9 z: =2z +1
W{n=z-y+x-y)}

11 X:=X-—y
12{n=z-y+x}

13 end

M{(n=z-y+x) A (x<y)}
B5{n=z-y+x}

ETHZ D-INFK
Prof. Dr. B. Meyer Software Verification — Exam

2 Separation logic (8 points)

2.1 (4 points)

Consider the following program state:

Stack Heap
X
v
yiH—" _Is

Indicate in the following table whether or not a given assertion is satisfied by
this state. Indicate satisfaction with a T and non-satisfaction with an F.

TorF
Jv-r—v*xv—ov
yl—),
(x =y) A (y — _*true)
(x = y) * true
TorF

J-x—vkvI— v T

Yy F

(z =y) A (y — _xtrue) T

(x = y) * true T

ETHZ D-INFK
Prof. Dr. B. Meyer Software Verification — Exam

2.2 (4 points)

Do the following implications hold for any predicate P, and any heap? If an
implication holds, explain why. If it does not hold, provide a counterexample.

(1) (P) = (PxP)
(2) (P+xQ) = [(PAQ)x*true

Neither of the implications hold.

Consider the predicate Jz,y - ¢ +— gy, which informally says that the heap
contains exactly one cell with some address and some stored value. If we take P
to be this predicate, then the first implication states that if we have a one-celled
heap, then we have a two-celled heap, which is clearly not the case.

For the second example, if we take P to be 2 — _and Q to be 3 — _, then
the left-hand side of the implication says the heap has two distinct cells with
addresses 2 and 3 respectively. The right-hand side means that the heap can be
split into two parts, of which the first has to be a single cell with addresses 2
and 3. Since one cell cannot have two distinct addresses, the implication does
not hold.

ETHZ D-INFK
Prof. Dr. B. Meyer Software Verification — Exam

3 Model checking (14 points)

Let us recall the semantics of LTL over finite words with alphabet P. For a
word w = w(1)w(2)---w(n) € (27)* with n > 0 and a position 1 < i < n the
satisfaction relation |= is defined recursively as follows for p,q € P.

w,iE=p iff pew()
w, i = ¢ it w,i P
w,i = d1 Age il w, i @1 and w,i = ¢Pg
w,i = X¢ iff i<nandw,i+1E¢
w,i = ¢ Ugy iff there exists i < j < n such that: w,j = ¢
and for all ¢ < k < j it is the case that w, k = ¢
wk ¢ i w1k ¢

Also recall the derived operators:

O ¢ defined as TrueU¢
¢ defined as —Q—¢

3.1 Automata and LTL formulas (6 points)

Consider the automaton 7" in Figure [1, where A is the initial state and D is the
accepting state.

Figure 1: Automaton T

For each of the following LTL formulas say whether every run of T satisfies the
formula: if it does, demonstrate informally (but precisely) and briefly why this
is the case; if it does not, provide a counterexample.

(1) O0p

No: {pHpHp}{r} is a counterexample because it does not satisfy Op at
position 4.

(2) Op

ETHZ D-INFK
Prof. Dr. B. Meyer Software Verification — Exam

Yes: every accepting run must reach state D, which requires to have (more
than) one event p.

3 O((Ua) — (U (aA0p)))

Yes: whenever pU g holds, ¢ holds at some future position j. The transition
relation of the automaton is such that state C' is reached then. In order for
the run to be accepting there must be a p after position j which leads to
state D. Hence, ¢ A Op holds at j.

3.2 Automata-based model checking (8 points)

Consider again the automaton 7' in Figure[I] Prove by the basic algorithm for
automata-based model checking that the LTL formula +» £ O(¢ = Op) is a
property of the automaton.

(1) Build an automaton a(—)) for —.

(2) Build the intersection automaton T" x a(—1)) and check that it has no reach-
able accepting state.

Obviously no accepting state is connected.

ETHZ D-INFK
Prof. Dr. B. Meyer Software Verification — Exam

4 Software model checking (14 points)

Consider the following function that computes the product of two integers if
they are both negative or both positive, and returns zero otherwise.

1 same_sign_product (x, y: INTEGER): NATURAL

2 do

3 if x > 0 then

4 if y > 0 then

5 Result :=x xy

6 else Result := 0 end
7 else

8 if x # 0 then

9 if y < 0 then

10 Result :=x x y
11 else Result : = 0 end
12 else Result := 0 end
13 end

14 ensure

15 xxy > 0 <= Result >0
16 end

4.1 Boolean abstractions (10 points)

Build the Boolean abstraction ssp_1 of same_sign_product with respect to the fol-
lowing predicates:

P = x>0

= y>0
r = xxy >0
S = Result >0
t = x<0

1ssp-1 (p, q, r, s, t: BOOLEAN)

2 require p — -t ;qAt = -r;pAq=r
3 do

4 if p then

5 if q then

6 r := True ; s := True

7 else r := False ; s := False end
8 else

9 if t then

10 if * then

11 S =T

12 else s := False end

13 else r := False ; s := False end
14 end

15 ensure

16 r <= s

17 end

4.2 Abstract counterexamples (4 points)

Provide an annotated counterexample trace for the Boolean abstraction ssp_1.
The counterexample should be in the form of a valid sequence of statements and

ETHZ D-INFK
Prof. Dr. B. Meyer Software Verification — Exam

branch conditions in ssp_-1 which reaches the bottom of the function with a false
postcondition. Each statement in the sequence must be preceded and followed
by a complete description of the abstract program state in terms of values of
the Boolean predicates p, q, r, s, t.

Also tell whether the counterexample trace is feasible in the original concrete
function same_sign_product, briefly justifying your answer.

1{-~p,—qrst}

2 [—-7]

3 {_‘ p7 = q? r? S’ t}
4 [t]

5{-p, —~qr,s,t}
6 [+

7{-p, —~qrs,t}
8 s := False

g{ﬁpzﬁcbr:"s?t}

The counterexample trace is not feasible in the original concrete program be-
cause the original program is correct w.r.t. its specification, hence it has no
failing runs. The spurious counterexample is just a result of the abstraction
being too coarse (predicate y < 0 is missing).

ETHZ D-INFK
Prof. Dr. B. Meyer Software Verification — Exam

5 Program analysis (8 points)

Consider the following program fragment:

from
X =2
y:=1
z =x—1
until z > 30 do
if x < 5 then
Z =2 % X
else
z:=2z+Yy
end
x:=x4+1
end

0O~ O U WN

= =
= O O

(1) Draw the control flow graph of the program fragment and label each ele-
mentary block.

(2) Annotate your control flow graph with the analysis result of a reaching
definitions analysis of the program fragment.

xX?y? z?

x1y? z?
x1y?z?
x1y2z?

x1y2 z?
x1y2z3

x1 x8 y2 z3 z6 z7
x1 x8 y2 z3 z6 z7
x1 x8 y2 z3 z6 z7
x1 x8 y2 z3 z6 z7

x1 x8 y2 z3 z6 z7
x1 x8 y2 z7

x1 x8 y2 z3 z6 z7
x1 x8 y2 z6 |[Z=Z*X]6| |[z=z+y]1

x1 x8 y2 z6 z7
x8 y2 z6 z7

10

ETHZ D-INFK
Prof. Dr. B. Meyer Software Verification — Exam

6 Abstract interpretation (14 points)
Consider the language of integer arithmetic expressions e € Exp defined by
ex=n| —eletel|exe

with the following concrete semantics C : Exp — Z:

Cln] = n
Cl—e] = -=Cle]
Cle+e] = Cle]+Cle]
Clexe] = Cle]-Cle]

The goal of this exercise is to define an abstract interpretation to determine
whether e is divisible by 5.

(1) Suggest a suitable abstract domain D.
T
divd ndivb

e

(2) Define the concretization function v : D — p(Z)

WT) = Z
v(divs) = {n€Z:n mod 5 =0}
y(ndivh) = {n €Z:n mod 5 # 0}

(L) =0

(3) The abstract semantics is given by the function A : Exp — D:

An] = ...
Al—e] = ©Ale
Ale+e] = Ale] @ Ale]
Alexe] = Ale] ® Ale]

Complete the specification of the function A by:

(a) defining A[n], and
(b) defining the abstract operations ©, @, ®.

11

ETHZ D-INFK
Prof. Dr. B. Meyer Software Verification — Exam

(a)

Afn] = divd if nmod5=0
"~] ndivb otherwise

(b)
Operation ©:
For all d € D:
od=d
Operation @:
® || T |div5 | ndivs | L |
T T T T L
divb divh | ndivh | L
ndivh T L
1 L
Operation ®:
® HT\div5\ndiv5\L‘
T T T T L
divb divb | divd | L
ndivh ndivb | L
1 L

12

	Axiomatic semantics (12 points)
	Separation logic (8 points)
	(4 points)
	(4 points)

	Model checking (14 points)
	Automata and LTL formulas (6 points)
	Automata-based model checking (8 points)

	Software model checking (14 points)
	Boolean abstractions (10 points)
	Abstract counterexamples (4 points)

	Program analysis (8 points)
	Abstract interpretation (14 points)

