
ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. C. A. Furia, Dr. S. Nanz Software Verification

Software Verification – Exam

ETH Zürich

19 December 2011

Surname, first name: .....................................................................................

Student number: ............................................................................................

I confirm with my signature that I was able to take this exam under regular
circumstances and that I have read and understood the directions below.

Signature: ...................................................................................

Directions:

• Exam duration: 1 hour 45 minutes.

• Except for a dictionary you are not allowed to use any supplementary
material.

• All solutions can be written directly on the exam sheets. If you need more
space for your solution ask the supervisors for a sheet of official paper. You
are not allowed to use other paper. Please write your student number on
each additional sheet.

• Only one solution can be handed in per question. Invalid solutions need
to be crossed out clearly.

• Please write legibly! We will only correct solutions that we can read.

• Manage your time carefully (take into account the number of points for
each question).

• Please immediately tell the exam supervisors if you feel disturbed during
the exam.

Good luck!



Question Available points Your points

1) Axiomatic semantics 18

2) Separation logic 15

3) Data flow analysis 10

4) Model checking 15

5) Software model checking 12

Total 70

2



[This page is intentionally left blank.]

3



1 Axiomatic semantics (18 points)

Consider the following annotated program, where A is an array (indexed from
1), n is an integer variable storing A’s size, i, j, and Result are other integer
variables, and [1..n] denotes an interval of the integers from 1 to n included.

{ n ≥ 1 }
1 from
2 i := 1
3 j := n
4 until i = j loop
5 if A[i ] >A[j ] then
6 j := j − 1
7 else
8 i := i + 1
9 end

10 end
11 Result := A[i]
{ ∀k ∈ [1..n]: Result ≥A[k] ∧ Result = A[i] }

1.1 Program semantics (2 points)

Characterize, in plain English, which value of Result the program computes
from the inputs A and n. In other words: what does the program do?

Solution:
As apparent from the postcondition, the program stores in Result the maximum
element of A between positions 1 and n.

1.2 Partial correctness (14 points)

Prove that the triple (precondition, program, postcondition) is a theorem of
Hoare’s axiomatic system for partial correctness.

Solution:

1 { n ≥ 1 }
2 from
3 i := 1
4 j := n
5 { 1 ≤ i ≤ j <n ∧ ∃h ∈ [i..j]: ∀k ∈ [1..n]: A[h] ≥A[k] }
6 until i = j loop
7 { 1≤ i < j <n ∧ ∃h ∈ [i..j]: ∀k ∈ [1..n]: A[h] ≥A[k] }
8 if A[i ] >A[j ] then
9 { A[i ] >A[j ] ∧ 1≤i <j <n ∧ ∃h ∈ [i..j]: ∀k ∈ [1..n]: A[h]

≥A[k] }
10 { 1 ≤ i ≤ j−1 <n ∧ ∃h ∈ [i..j − 1]: ∀k ∈ [1..n]: A[h] ≥A[k] }

4



11 j := j − 1
12 { 1 ≤ i ≤ j <n ∧ ∃h ∈ [i..j]: ∀k ∈ [1..n]: A[h] ≥A[k] }
13 else
14 { A[i ] ≤ A[j ] ∧ 1≤i <j <n ∧ ∃h ∈ [i..j]: ∀k ∈ [1..n]: A[h]

≥A[k] }
15 { 1 ≤ i+1≤ j <n ∧ ∃h ∈ [i+ 1..j]: ∀k ∈ [1..n]: A[h] ≥A[k] }
16 i := i + 1
17 { 1 ≤ i ≤ j <n ∧ ∃h ∈ [i..j]: ∀k ∈ [1..n]: A[h] ≥A[k] }
18 end
19 end
20 { 1 ≤ i = j <n ∧ ∃h ∈ [i..i]: ∀k ∈ [1..n]: A[h] ≥A[k] }
21 { 1 ≤ i = j <n ∧ ∀k ∈ [1..n]: A[i] ≥A[k] }
22 Result := A[i]
23 { ∀k ∈ [1..n]: Result ≥A[k] ∧ Result = A[i] }

Another invariant for proving partial correctness is:

∀k ∈ [1..i]: A[k]≤A[i] ∨ A[k]≤A[j]
∀k ∈ [j..n]: A[k]≤A[i] ∨ A[k]≤A[j]

1.3 Termination (2 points)

Find a suitable variant function V to prove termination. V must be such that it
decreases along all branches of the loop body, and it is nonnegative after every
iteration of the loop. You do not have to prove termination, just write a suitable
variant and informally argue why it is a suitable variant.

Solution:
The variant V , j − i is always nonnegative and decrease in both branches (j
decreases along the then branch, and i increases along the else branch). Hence,
V can be used to build a proof of termination for the loop.

5



2 Separation Logic (15 points)

2.1 Predicates and satisfaction

1. Define a recursive predicate tree t i which asserts that i is a pointer to a
well-formed binary tree t. Here

t
def
= n | (t1, t2)

so a tree value t can be either a leaf, which is a single number n, or an
internal node with a left subtree t1 and a right subtree t2.

[4 points]

tree n i
def
= i 7→ n

tree (t1, t2) i
def
= ∃l, r · i 7→ l, r ∗ tree t1 l ∗ tree t2 r

2. Draw the diagram of a state satisfying tree (1, ((2, 3), 4)) i.

[4 points]

2.2 Code verification

Give a proof of the following triple:
{x 7→ a ∗ y 7→ b} t := [x]; [y] := t; dispose x {y 7→ a}
[3 points]

{x 7→ a ∗ y 7→ b}
..... t := [x]
{(x 7→ a ∧ t = a) ∗ y 7→ b}
..... [y] := t
{(x 7→ a ∧ t = a) ∗ y 7→ t}
{x 7→ ∗ y 7→ a}
..... dispose x
{y 7→ a}

6



[This page is intentionally left blank.]

7



3 Program slicing (10 points)

Consider the following program fragment (all variables are of type INTEGER):

1 a := 42
2 from
3 i := 0
4 until i ≥ 10 loop
5 if c <0 then
6 b := a
7 x := 1
8 else
9 c := b

10 y := 2
11 end
12 i := i + 1
13 end
14 print (c)
15 print (x + y)

(1) (5 points) Draw the Program Dependency Graph (PDG) of the program
fragment.

Solution:

Dashed arrows: data dependency edges; solid arrows: control dependency
edges.

(2) (3 points) Using the PDG, compute the static backward slice of the pro-
gram fragment for both following slicing criteria: (a) line 14; (b) line 15.
In both cases clearly mark the nodes you have visited with the slicing algo-
rithm in the PDG, and provide the line number(s) of those lines which are
deleted from the original program fragment (i.e. are not part of the slice).

8



Solution:

Filled circles: nodes visited for (a); open circles: nodes visited for (b).

Lines deleted for (a): 7, 10, 15; lines deleted for (b): 14;

(3) (2 points) For the same original program P , a program slice S1 is said
to be more precise than a slice S2 if S1 is a slice of S2 as well as P and
contains fewer statements than S2.

For the program slice computed in (2) (b), argue whether or not there
exists a more precise slice; provide this slice in case it exists.

Solution:

There exists a more precise slice, where also line 1 is removed. To see this,
do a case distinction on the value of c.

If c ≥ 0, then the else-branch of the conditional is executed, setting c to b
and y to 2. If b ≥ 0, then the else-branch will be executed in the remaining
iterations. If b < 0, then the then-branch will be executed in the remaining
iterations, setting b to a and x to 1.

If c < 0, then the then-branch will be executed in the remaining iterations,
setting b to a and x to 1.

In both cases, the setting of the variables x and y is independent of the
value of a, hence the setting of the value of variable a in line 1 does not
influence the result printed in line 15.

9



4 Model Checking (15 points)

Recall the semantics of LTL over finite words with alphabet P. For a word
w = w(1)w(2) · · ·w(n) ∈ P∗ with n ≥ 0 and a position 1 ≤ i ≤ n the satisfac-
tion relation |= is defined recursively as follows (where p, q ∈ P).

w, i |= p iff p = w(i)
w, i |= ¬φ iff w, i 6|= φ
w, i |= φ1 ∧ φ2 iff w, i |= φ1 and w, i |= φ2
w, i |= Xφ iff i < n and w, i+ 1 |= φ
w, i |= φ1 Uφ2 iff there exists i ≤ j ≤ n such that: w, j |= φ2

and for all i ≤ k < j it is the case that w, k |= φ1
w, i |= ♦ φ iff there exists i ≤ j ≤ n such that: w, j |= φ
w, i |= � φ iff for all i ≤ j ≤ n it is the case that: w, j |= φ
w |= φ iff w, 1 |= φ

4.1 Automata and LTL formulas (7 points)

Consider the automata A (with states A,B,C) in Figure 1, over the alphabet
{p, q, r}. Notice that A is the initial state and B is final.

A B C
p

q

r

r

q

Figure 1: Automata A over alphabet {p, q, r}.

For each of the following LTL formulas say whether every accepting run of A
satisfies the formula. If it does, argue informally (but precisely) why this is the
case; if it does not, provide a counterexample.

(1) A |= ♦ p
Yes: every accepting run must reach state B, hence it must include p in
position 1.

(2) A |= (♦¬p) =⇒ (� q)

No: the word p r q is accepted by A and satisfies ♦¬p but not � q.

(3) A |= X(�¬p)
Yes: p never occurs after position 1 in every accepting run, hence �¬p
holds globally from position 2 onward.

(4) A |= (XXX q) =⇒ (XX q)

No: the word w = p q r q is accepted and satisfies XXX q because q occurs
in position 1 + 3 = 4; however, q is false in position 1 + 2 = 3, hence w does
not satisfy XX q.

10



(5) A |= p =⇒ X(r U q)

No: p occurs in position 1 over word w = p, and w is clearly accepted by
A. However, w does not satisfy X(r U q) because it has length 1.

4.2 Automata-based model checking (8 points)

Show that A 6|= p =⇒ X q using automata-based model checking as follows.

Property automaton (4 points). Construct an automaton P that accepts
precisely the words that satisfy ¬(p =⇒ X q), that is, the complement of the
property we want to falsify.

Solution:
¬(p =⇒ X q) is equivalently written as p ∧ ¬X q, accepted by the automaton:

X Y Z
p p, r

p, q, r

Intersection automaton (4 points). Construct the intersection automaton
A× P that accepts precisely the words accepted by both A and P. Show that
A×P accepts some word.

Solution:
The words p and p r q are accepted by the intersection, hence they are coun-
terexamples that show A 6|= p =⇒ X q.

A,X B, Y C,Z B,Z
p r

q

r

r q

11



5 Software model checking (12 points)

Consider the following code snippet C, where x, y, z are integer variables.

1 assume x >0 end
2 z := (x ∗ y) + 1
3 assert z ≥ 1 end

Recall that:

• The Boolean abstraction of an assume c end statement is
assume not Pred (not c) end followed by a parallel conditional assign-
ment updating the predicates with respect to the original assume state-
ment.

• Similarly, the Boolean abstraction of an assert c end statement is
assert not Pred (not c) end followed by a parallel conditional assign-
ment updating the predicates with respect to the original assert state-
ment.

• Pred (f) denotes the weakest under-approximation of the expression f ex-
pressible as a Boolean combination of the given predicates.

5.1 Boolean abstractions (10 points)

Build the Boolean abstraction A of the code snippet C with respect to the
predicates:

p = x >0
q = y >0
r = z >0

Solution:
After the usual simplifications, the abstraction is:

1 assume p end
2
3 if (p and q) or (not p and not q) then
4 r := True
5 elseif False then
6 r := False
7 else r := ? end
8
9 assert r end

5.2 Error traces (2 points)

Provide an annotated trace for the Boolean abstraction A, and a correspond-
ing annotated trace for the concrete program C that is feasible and such that
assert z≥ 1 end evaluates to False when reached. Note that in general there
are multiple traces of C corresponding to the same trace of A: you must select
one which is feasible and violates the assertion.

12



The trace of A should be in the form of a valid sequence of statements
and branch conditions in A which reaches the bottom of A. Each statement
in the sequence must be preceded by a complete description of the abstract
program state in terms of values of the Boolean predicates p, q, r. Similarly,
the trace of C should be in the form of a valid sequence of statements and
branch conditions in C which reaches the bottom of C. Each statement in the
sequence must be preceded by a concrete value for the variables x, y, z which
satisfies the corresponding state in the abstract trace of A.

Solution:
An abstract error trace is, for example:

1 {p, not q, r}
2 assume p end
3 {p, not q, r}
4 if (p and q) or (not p and not q) then
5 r := True
6 elseif False then
7 r := False
8 else r := ? end
9 {p, not q, not r}

10 assert r end

A matching concrete trace which is feasible is, for example, the following.

1 {x = 3, y = −2, z = 0}
2 assume x >0 end
3 {x = 3, y = −2, z = 0}
4 z := (x ∗ y) + 1
5 {x = 3, y = −2, z = −5}
6 assert z ≥ 1 end

13


	Axiomatic semantics (18 points)
	Program semantics (2 points)
	Partial correctness (14 points)
	Termination (2 points)

	Separation Logic (15 points)
	Predicates and satisfaction
	Code verification

	Program slicing (10 points)
	Model Checking (15 points)
	Automata and LTL formulas (7 points)
	Automata-based model checking (8 points)

	Software model checking (12 points)
	Boolean abstractions (10 points)
	Error traces (2 points)


