
 1

Chair of Software Engineering
Bertrand Meyer, Manuel Oriol

Trusted Components

17 December 2007

Name, First name: ..

Stud.-Number: ..

I confirm with my signature, that I was able to take this exam under regular
circumstances and that I have read and understood the directions below.

Signature: ...

Directions:

• Except for a dictionary and personal notes, you are not allowed to use any
supplementary material.

• Please write your student number onto each sheet.

• Only one solution can be handed in per question. Invalid solutions need to be
crossed out clearly.

• Please write legibly! We will only correct solutions that we can read.

• Manage your time carefully (take into account the number of points for each
question).

• Please immediately tell the supervisors of the exam if you feel disturbed during
the exam.

• The maximum duration of the examination is 1h45mn the minimum duration is
1h.

Good Luck!

 2

Stud.-Number: ...

Question
Number of
possible points

Points

1 27
2 15

3 18
4 15
Total 75

Grade: ...

 3

1 Axiomatic semantics (27 points)

1.1 (5 points) Write the partial correctness inference rule of axiomatic semantics for

loops `from a until c loop b end'.

Hints:

- This is an inference rule whose purpose is to deduce {P} L {Q} where L is `from I until e

loop B end'.

- The rule involves an assertion that may be called INV.

1.2 (1 point) Consider the following form of recursive function, with one (natural)

integer argument and an integer result:

[1]

f (n: NATURAL): NATURAL

 do

 if n = 0 then

 Result := c

 else

 Result := g (n, f (n-1))

 end

 end

where c is a constant and g is a two-argument function (whose value is defined entirely in terms

of its arguments, i.e. without use of any other entity of the program).

An example is

factorial (n: NATURAL): NATURAL

 do

 if n = 0 then

 Result := 1

 else

 Result := n * factorial (n-1)

 end

 end

What are c and g in this example?

 4

1.3 (1 point) We consider the following loop equivalent for recursive definitions ofthe form [1]

(you don't need to prove that this equivalence is correct).

[2]

f (n: INTEGER): NATURAL

 local

 i: INTEGER

 do

 from

 i := 0

 Result := c

 until

 i = n

 loop

 i := i + 1

 Result := g (i, Result)

 end

 end

Apply this transformation (literally, that is to say, purely by program transformation) to produce

a recursion-free version of `factorial'. There is no need to prove anything about this

transformation, just apply it as given by [2].

1.4 (10 points) From the rule for loops (question 1) and the recursion-loop equivalence ([2]),

give an inference rule for proving the partial correctness of recursive functions of the form [1].

Hints:

- You need to apply the assignment axiom.

- The rule uses a notion of invariant.

1.5 (5 points) Using the rule from question 4, prove the correctness of the `factorial'

function in its original form.

1.6 (5 points) What notion should be added to the above framework to yield a rule covering total

correctness? (Only the name of the notion is required, no further justification or explanation.

Hint: take advantage of the notion used to prove total correctness for loops.)

 5

2 Component design and testing (15 points)

Analyze the class NETWORK_STREAM, and answer the following questions:

2.1 (9 points) For the routines make, descriptor and next_character, decide whether some

designing principles for components are violated. If so, give the name of these principles and

explain where and why they are violated.

2.2 (6 points) Suppose we are only working with HTTP protocol, for the feature is_url_valid ,

design test cases. Include what is the input and what is the expected output. You do not need to

implement the feature is_url_valid.

class
 NETWORK_STREAM

create make

feature{NONE} -- Initialization

 make (a_url: STRING; a_buffer_size: INTEGER)

 -- Initialize current network stream with URL `a_url' and with buffer size `a_buffer_size'.

 require

 a_url_attached: a_url /= Void

 a_buffer_size_positive: a_buffer_size > 0

 a_url_valid: is_url_valid (a_url)

 do

 set_url (a_url)

 set_buffer_size (a_buffer_size)

 -- Some other initialization, including initializing `buffer'.

 ensure

 url_set: url.is_equal (a_url)

 buffer_size_set: buffer_size = a_buffer_size

 end

feature -- Access

 url: STRING

 --URL associated with Current stream

 buffer_size: INTEGER

 -- Size of buffer used to read data

 6

descriptor: URL_DESCRIPTOR

 -- Descriptor for current stream, containing URL scheme information such as http, ftp.

 do

 if not is_descriptor_calculated then

 internal_descriptor := descriptor_from_url (url)

 is_descriptor_calculated := True

 end

 Result := internal_descriptor

 ensure

 result_attached: Result /= Void

 end

 position: INTEGER

 -- Position in the stream

feature -- Status report

 is_url_valid (a_url: STRING): BOOLEAN

 -- Is `a_url' valid?

 require

 a_url_attached: a_url /= Void

 do
 …

 ensure
 -- Result is True if and only if `a_rul’ is of correct format.

 end

feature -- Stream IO

 next_character: CHARACTER

 -- Next character from the stream

 local

 l_char_size: INTEGER

 do

 -- Retrieve number of bytes used to represent a character.

 l_char_size := {PLATFORM}.character_bytes

 -- Read `buffer' for new data if necessary.

 if buffer.is_empty or else buffer.count < l_char_size then

 read_buffer

 end

 -- Load a character from `buffer'.

 Result := buffer.item_as_character

 -- Increase `position' from current stream.

 position := position + l_char_size

 ensure

 position_increased: position = old position + {PLATFORM}.character_bytes

 end

 7

feature -- Setting

 set_buffer_size (a_size: INTEGER)

 -- Set `buffer_size' with `a_size'.

 require

 a_size_positive: a_size > 0

 do
 …

 ensure

 buffer_size_set: buffer_size = a_size

 end

 set_url (a_url: STRING)

 -- Set `url' with `a_url'.

 require

 a_url_attached: a_url /= Void

 a_url_valid: is_url_valid (a_url)

 do
 …

 ensure

 url_set: url /= Void and then url.is_equal (a_url)

 end

feature{NONE} -- Implementation

 buffer: BUFFER

 -- Buffer to store read data, used as cache.

 internal_descriptor: like descriptor

 -- Internal stream descriptor

 is_descriptor_calculated: BOOLEAN

 -- Has `descriptor' been calculated?

 descriptor_from_url (a_url: STRING): like descriptor

 -- Stream descriptor calculated from `a_url'

 require

 a_url_attached: a_url /= Void

 a_url_valid: is_url_valid (a_url)

 do
 …

 ensure
 result_attached: Result /= Void

 end

 8

read_buffer

 -- Fill `buffer' up to `buffer_size' bytes.

 -- Assume that current stream is unbounded, so we won't hit the end of the stream.

 do

 …

 ensure

 buffer_refilled: buffer.count = buffer_size

 end

feature
 -- Rest of the class

end

3 Program analysis (18 points)

3.1 (3 points) What kind of analysis do you need to know if a variable may be used in the

following of the program before it is overwritten?

3.2 (10 points) Make control-flow graph of the following program and apply the analysis to it:

a := 1

b := a + 2

c := 10

if b > 3 then

 c := 3 - c

else

 b := a

end

b := a + b

Result := b

3.3 (5 points) How would you do to also store where the variables were defined? Explain

informally.

 9

4 Abstract Interpretation (15 points)

Consider the following language:

 i ∈ [MIN_INT, ..., MAX_INT]

 e::= i | e1 * e2 | e1 + e2 | e1 - e2

The order of magnitude for MAX_INT and MIN_INT is around 10
40

 and -10
40

.

4.1 (10 points) Create an abstraction to evaluate the value of expressions and ensure that the

expressions value do not go over MAX_INT or below MIN_INT.

4.2 (5 points) Is the abstraction still valid if expressions are now defined as follows (// is the

integer division):

 e::= i | e1 * e2 | e1 + e2 | e1 - e2 | e1 // e2

If not, explain why and refine it.

