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Starred exercises (∗) are more challenging than the others.

1 Partial and Total Correctness

i. Partial correctness: if program P is executed on a state satisfying pre, then if its execution
terminates, the state returned will satisfy post.

ii. Total correctness: partial correctness (as above), but termination of P on states satisfying
pre is also guaranteed.

iii. |=, |=tot.

iv. Neither. The precondition does not express anything about x, and skip certainly does
not establish its value as 21. It could have any other value, failing the postcondition.

v. |=, |=tot.

vi. |= only. If x > 1, then the program will terminate and the postcondition will be satisfied.
But for x ∈ {0, 1}, x will never grow larger than 0 or 1. Since y > 1, x will never be larger
than y, and the loop will never terminate.

vii. |= only. Since the loop never terminates, it does not return any program states to check
against the postcondition. Hence every program state returned satisfies the postcondition
(or in other words, because no program states are returned, the postcondition is never
violated).

2 A Hoare Logic for Partial Correctness

i. The proof rule [cons] allows us to strengthen the precondition and/or weaken the post-
condition. It also allows us to replace them with syntactically distinct, but semantically
equivalent assertions. Proving the validity of the logical implications proves that the
strengthening/weakening holds in all program states, and is necessary for the soundness
of the proof rule.

ii. The assignment axiom [ass] can be interpreted as follows. If an assertion p, with every
occurrence of x replaced by e, holds before execution, then surely, after the assignment
is executed, the assertion p without this replacement will still hold (since x now has the
value of e).

(The axiom, at first, may look a little strange or jarring. But it is much simpler to use
than the alternative “forward” axiom – see the later exercise. Reasoning backwards is
more efficient!)
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iii. A possible proof tree is:

[ass]
` {x + 1 > 1} x := x + 1 {x > 1}

[cons]
` {x > 0} x := x + 1 {x > 1}

[skip]
` {x > 1} skip {x > 1}

[comp]
` {x > 0} x := x + 1; skip {x > 1}

The logical implication x > 0⇒ x + 1 > 1 is clearly valid.

iv. A possible proof tree is given in Figure 1.

What remains to be shown is that

x = a ∧ y = b ⇒ x + y = a + b ∧ x = a

is valid. Using the antecedent we substitute a for x and b for y in the consequent, obtaining:

x = a ∧ y = b ⇒ a + b = a + b ∧ a = a.

Clearly this is valid.

v. The proof rule [while] allows us to reason about loop invariants, i.e. assertion p. In proving
that p is maintained after an execution of P , we know that it will be maintained after any
number of executions of P . If the loop terminates, we know that the Boolean guard must
no longer evaluate to true, so we get the additional conjunct ¬b in the postcondition of
the conclusion.

vi. A possible proof tree is given in Figure 2.

We need to show that

in + m = 250 ⇒ (i− 1)n + m + n = 250

is valid. This follows from elementary mathematics:

250 = in + m

= in + m + n− n

= (i− 1)n + m + n

The other implications arising from [cons] are clearly valid.

vii. A possible inference rule is:

` {p} P {q} ` {¬b ∧ q} P {q}
[repeat]

` {p} repeat P until b {b ∧ q}

A weaker, but also sound inference rule is:

` {q} P {q}
[repeat]2 ` {q} repeat P until b {b ∧ q}
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viii. A sound axiom would be ` {p} surprise {true}. Because we do not know which variable
will be changed by surprise, we cannot assert anything about program variables in the
postcondition. We can however use [cons] to derive postconditions that are true in all
program states, e.g. statements about arithmetic like:

` {p} surprise {∀x : N. ∃y : N. y > x}.

ix. The following is known to be equivalent to the well-known “backward” rule:

` {p} x := e {∃xold. p[xold/x] ∧ x = e[xold/x]}

where xold is fresh (i.e. it does not occur free in p or e) and is not the same variable as x.

The variable xold can be understood as recording the value that x used to have before
the assignment. Because x may have changed, the first conjunct replaces each occurrence
of it in p with the old value, xold. The second conjunct expresses the value of x after
assignment, replacing occurrences of x in the expression with the old value xold.

If the soundness of this axiom is not clear at first, try applying it to an assignment like
x := x + 5 with precondition x > 0.

While this axiom is sound and equivalent to the backward rule, it tends to be used less in
practice, to avoid the accumulation of existential quantifiers (one per assignment!).
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Subtree X
[ass]

` {x = a+ b ∧ t = a} y := t {x = a+ b ∧ y = a}
[comp]

` {x = a ∧ y = b} t := x; x := x+ y; y := t {x = a+ b ∧ y = a}

where Subtree X is:

[ass]
` {x+ y = a+ b ∧ x = a} t := x {x+ y = a+ b ∧ t = a}

[cons]
` {x = a ∧ y = b} t := x {x+ y = a+ b ∧ t = a}

[ass]
` {x+ y = a+ b ∧ t = a} x := x+ y {x = a+ b ∧ t = a}

[comp]
` {x = a ∧ y = b} t := x; x := x+ y {x = a+ b ∧ t = a}

Figure 1: Proof tree for Exercise 2.1-iv

[ass]
` {(i− 1)n + m + n = 250} m := m + n {(i− 1)n + m = 250}

[cons]
` {INV } m := m + n {(i− 1)n + m = 250}

[ass]
` {(i− 1)n + m = 250} i := i− 1 {INV }

[comp]
` {INV } m := m + n; i := i− 1 {INV }

[cons]
` {i > 0 ∧ INV } m := m + n; i := i− 1 {INV }

[while]
` {INV } while (i > 0) do m := m + n; i := i− 1 {¬(i > 0) ∧ INV }

[cons]
` {INV } while (i > 0) do m := m + n; i := i− 1 {INV }

Figure 2: Proof tree for Exercise 2.1-vi
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