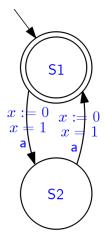
Problem Sheet 10: Verification of Real-Time Systems

Chris Poskitt and Carlo A. Furia

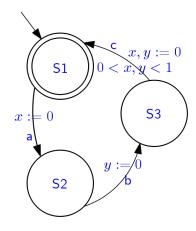
Starred exercises (*) are more challenging than the others.


The exercises in this problem sheet are all based on the third set of lecture slides on model checking:

http://se.inf.ethz.ch/courses/2013b_fall/sv/slides/13-RealTime.pdf

Assume that the time domain consists of exactly the non-negative real numbers.

1 MTL Property Checking


Consider first the following timed automaton:

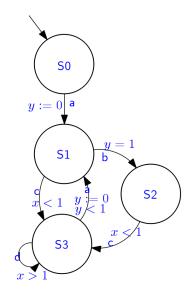
Do the following properties hold?

- i. $\square a$
- ii. \Box ($\Diamond = 1 \ a$)
- iii. \Box (\Box = 1 a)

Consider now the following timed automaton:

Do the following properties hold?

iv.
$$\Box$$
 $(a \to \Diamond(0,1) \ c)$


v.
$$\Box$$
 $(a \to \Diamond(0,1) \ b)$

vi.
$$\square$$
 $(a \rightarrow (a \lor b) \ \mathsf{U}(0,1) \ c)$

vii.
$$\Box$$
 $(a \rightarrow (a \lor b) \ U(1,2) \ c)$

2 Region Automaton Construction

- i. Construct the region automaton for the first timed automaton in Section 1.
- ii. Construct the region automaton for the second timed automaton in Section 1.
- iii. (*) Construct the region automaton for the following timed automaton (from $Alur\ \mathcal{E}\ Dill,\ 1994$):

3 Semantics of MTL Formulae

- i. Is the formula $\square\lozenge>0$ true satisfied by any timed word?
- ii. Is the formula $\square \lozenge \ge 0$ true satisfied by any timed word?
- iii. Is $\Diamond[a,b]$ $\Diamond[c,d]$ q equivalent or non-equivalent to $\Diamond[a+c,b+d]$ q for all $0\leq a\leq b\leq c\leq d$?