
ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. C.A. Furia, Dr. S. Nanz

Software Verification – Problem Sheets
Fall 2013

Problem Sheet 2: AutoProof

Chris Poskitt and Julian Tschannen
ETH Zürich

“Beware of bugs in the above code; I have only proved it correct, not tried it.”
– Donald E. Knuth

Starred exercises (∗) are more challenging than the others.

1 Background

This exercise class is concerned with the AutoProof tool [2, 3], a static verifier for programs
written in (a subset of) the object-oriented language Eiffel. The tool takes an Eiffel program—
annotated with contracts (i.e. executable pre-/postconditions, class invariants, intermediate
assertions)—and automatically attempts to verify the correctness of the program with respect
to its contracts.

The tool is built on top of Boogie [1], an automatic verification framework developed by
Microsoft Research. AutoProof translates Eiffel programs and their contracts (i.e. their proof
obligations) into the front-end language of Boogie—an intermediate verification language en-
coding the semantics of the source program in terms of primitive constructs, and prescribing
what it means for the source program to be correct. The Boogie tool then translates this inter-
mediate program into a set of verification conditions; logical formulae which if valid, indicate
the correctness of the source program. The validity of these verification conditions is checked
automatically by an SMT solver (currently Z3).

This workflow is summarised in Figure 1. We will only be interacting with AutoProof itself
in this exercise class, but it is helpful to be roughly aware of how it works and what translations
it is performing (in a later class, we will look at the Boogie framework directly).

2 Setting Up

The easiest way to interact with AutoProof is in a web browser, through Comcom:

http://cloudstudio.ethz.ch/comcom/

The Eiffel programs from these exercises are provided in Comcom already; simply hit the “Run”
button to execute AutoProof . You can verify your own Eiffel programs using the “More
AutoProof” tab (note that you cannot save your programs in Comcom, so you should work on
them offline and then paste them in).

1

http://cloudstudio.ethz.ch/comcom/

ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. C.A. Furia, Dr. S. Nanz

Software Verification – Problem Sheets
Fall 2013

AutoProof

Boogie

SMT Solver

Eiffel program

Eiffel errors

Boogie
file

Boogie
errors

Verification
conditions

Valid
/ invalid

User

Figure 1: The AutoProof workflow

3 Exercises

i. Consider the class WRAPPING COUNTER in Figure 2. The method increment increases by
one its integer input; except if the input is 59, in which case it wraps it round to 0. Verify
the class in AutoProof without changing the implementation, i.e. adding only the necessary
preconditions. Strengthen the postcondition further as suggested in the comments, and
check that the proof still goes through.

ii. In the axiomatic semantics problem sheet, we encountered several simple program spec-
ifications expressed as Hoare triples. Using the class AXIOMATIC SEMANTICS in Figure 3,
write some simple contract-equipped methods and show the following in AutoProof:

(A) |= {x = 21 ∧ y = 5} skip {y = 5}
(B) |= {x > 10} x := 2 ∗ x {x > 21}
(C) |= {x ≥ 0 ∧ y > 1} while x < y do x := x ∗ x {x ≥ y}
(D) |= {x = 5} while x > 0 do x := x + 1 {x < 0}
(E) |= {x = a ∧ y = b} t := x; x := x + y; y := t {x = a + b ∧ y = a}
(F) |= {in + m = 250} while (i > 0) do m := m + n; i := i− 1 {in + m = 250}

Hint: Eiffel does not offer a while construct. Try experimenting with from-until-loop
instead, as well as if-then-else with recursion.

2

ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. C.A. Furia, Dr. S. Nanz

Software Verification – Problem Sheets
Fall 2013

iii. Consider the class MAX IN ARRAY in Figure 4. What does the max in array method do?
Prove the class correct in AutoProof by determining a suitable precondition and loop
invariant.

Hint: you might find Eiffel’s across-as-all loop construct1 helpful for expressing loop
invariants.

iv. (∗) Consider the class SUM AND MAX in Figure 5. What does the method sum and max do?
What can you prove about it using AutoProof?

v. (∗∗) Consider the class LCP in Figure 6. The method lcp implements a Longest Common
Prefix (LCP) algorithm2 with input and output as follows:

Input: an integer array a, and two indices x and y into this array.

Output: length of the longest common prefix of the subarrays of a
starting at x and y respectively.

What can you prove about the class in AutoProof?

References

[1] K. Rustan M. Leino. This is Boogie 2. Technical report, 2008. http://research.

microsoft.com/en-us/um/people/leino/papers/krml178.pdf.

[2] Julian Tschannen, Carlo A. Furia, Martin Nordio, and Bertrand Meyer. Automatic ver-
ification of advanced object-oriented features: The AutoProof approach. In Tools for
Practical Software Verification - LASER 2011, International Summer School, volume 7682
of LNCS, pages 134–156. Springer, 2012. http://se.inf.ethz.ch/people/tschannen/

publications/TschannenLASER11.pdf.

[3] Julian Tschannen, Carlo A. Furia, Martin Nordio, and Bertrand Meyer. Program checking
with less hassle. In Proceedings of Verified Software: Theories, Tools and Experiments
(VSTTE). To appear, 2013. http://se.inf.ethz.ch/people/tschannen/publications/

tfnm-vstte13.pdf.

1See: http://bertrandmeyer.com/2010/01/26/more-expressive-loops-for-eiffel/
2From the FM 2012 verification challenge.

3

http://research.microsoft.com/en-us/um/people/leino/papers/krml178.pdf
http://research.microsoft.com/en-us/um/people/leino/papers/krml178.pdf
http://se.inf.ethz.ch/people/tschannen/publications/TschannenLASER11.pdf
http://se.inf.ethz.ch/people/tschannen/publications/TschannenLASER11.pdf
http://se.inf.ethz.ch/people/tschannen/publications/tfnm-vstte13.pdf
http://se.inf.ethz.ch/people/tschannen/publications/tfnm-vstte13.pdf
http://bertrandmeyer.com/2010/01/26/more-expressive-loops-for-eiffel/

ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. C.A. Furia, Dr. S. Nanz

Software Verification – Problem Sheets
Fall 2013

Appendix: Code Listings

Hint: the code listings below are all available to download from the course webpage (no need
to copy and paste from this PDF!):

http://se.inf.ethz.ch/courses/2013b_fall/sv/

and are also all set up in Comcom itself.

class WRAPPING_COUNTER

feature
increment (count : INTEGER) : INTEGER
require

−− pr e cond i t i on s
do

i f (count = 59) then
Result := 0

else
Result := count + 1

end
ensure

counter_in_range : Result >= 0 and Result < 60

−− miss ing pos t cond i t i on : the method should increment a l l va lues
−− by 1 , except those above 58 (which wrap back to 0) .

end
end

Figure 2: Class WRAPPING COUNTER

class AXIOMATIC_SEMANTICS

feature
a , b , i , m , n , x , y : INTEGER

feature
partA

require
−− precond i t i on

do
−− program

ensure
−− pos t cond i t i on

end

−− e tc .
end

Figure 3: Class AXIOMATIC SEMANTICS

4

http://se.inf.ethz.ch/courses/2013b_fall/sv/

ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. C.A. Furia, Dr. S. Nanz

Software Verification – Problem Sheets
Fall 2013

class MAX_IN_ARRAY

feature

max_in_array (a : ARRAY [INTEGER]) : INTEGER
−− Index o f maximum element o f a .

note
pure : True

require
−− precond i t i on

local
x , y : INTEGER

do
from

x := 1
y := a . count

invariant
−− loop inva r i an t

until
x = y

loop
i f a [x] <= a [y] then

x := x + 1
else

y := y − 1
end

variant
y − x

end
Result := x

ensure
result_in_range : 1 <= Result and Result <= a . count
result_is_max : across a as i a l l i . item <= a [Result] end

end
end

Figure 4: Class MAX IN ARRAY

5

ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. C.A. Furia, Dr. S. Nanz

Software Verification – Problem Sheets
Fall 2013

class SUM_AND_MAX

feature

sum_and_max (a : ARRAY [INTEGER]) : TUPLE [sum , max : INTEGER]
−− Calcu la te sum and maximum of array a .

note
framing : False

require
−− pr e cond i t i on s

local
i : INTEGER
sum , max : INTEGER

do
from

i := 1
invariant

−− loop i nva r i an t s
until

i > a . count
loop

sum := sum + a [i]
i f a [i] > max then

max := a [i]
end
i := i + 1

variant
a . count − i + 1

end
Result := [sum , max]

ensure
−− po s t cond i t i on s

end
end

Figure 5: Class SUM AND MAX

class LCP

feature

lcp (a : ARRAY [INTEGER] ; x , y : INTEGER) : INTEGER
note

pure : True
require

−− pr e cond i t i on s
do

from
Result := 0

invariant
−− loop i nva r i an t s

until
x + Result = a . count + 1 or else
y + Result = a . count + 1 or else
a [x + Result] /= a [y + Result]

loop
Result := Result + 1

variant
a . count − Result + 1

end
ensure

−− po s t cond i t i on s
end

end

Figure 6: Class LCP

6

	Background
	Setting Up
	Exercises

