
ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. C.A. Furia, Dr. S. Nanz

Software Verification – Problem Sheets
Fall 2013

Problem Sheet 3: Separation Logic

Chris Poskitt
ETH Zürich

Starred exercises (∗) are more challenging than the others.

1 Separation Logic Assertions

These exercises are about assertions in separation logic, in particular, the separating conjunction
∗. For a reminder of the semantics of assertions (as well as numerous examples), please refer to
the first set of separation logic lecture slides:

http://se.inf.ethz.ch/courses/2013b_fall/sv/slides/05-SeparationLogic-1.pdf

i. Consider the following state:

Store Heap

i

j

1 2 3 4

5

Which of the following assertions hold in this state? For the ones that do not: why not?

(a) ∃z. i 7→ z

(b) ∃z. i 7→ z ∗ j 7→ z

(c) ∃z. i 7→ z ∗ true

(d) ∃z. (i 7→ z ∗ true) ∧ i = j ∧ (z 7→ 1, 2 ∗ true)

(e) ∃x, x′, y, z. i 7→ x ∗ j 7→ x′ ∗ x 7→ 1, 2 ∗ j + 1 7→ y ∗ y 7→ z, 5 ∗ z 7→ 3, 4

(f) true ∗ emp

1

http://se.inf.ethz.ch/courses/2013b_fall/sv/slides/05-SeparationLogic-1.pdf


ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. C.A. Furia, Dr. S. Nanz

Software Verification – Problem Sheets
Fall 2013

ii. Do the following implications hold for all states and predicates p, q? If not, why not?

p imples p ∗ p

p ∗ q imples [(p ∧ q) ∗ true]

2 Separation Logic Proofs

These exercises involve proving specifications of heap-manipulating programs using separation
logic. For some Hoare-style proof rules, please refer to the first problem sheet. For the small
axioms and the frame rule of separation logic, please refer to the first set of separation logic
lecture slides:

http://se.inf.ethz.ch/courses/2013b_fall/sv/slides/05-SeparationLogic-1.pdf

The second set of lecture slides demonstrates their use on two simple heap-manipulating pro-
grams:

http://se.inf.ethz.ch/courses/2013b_fall/sv/slides/05-SeparationLogic-2.pdf

i. Consider the following program:

l := cons(1);

r := cons(2,3);

temp1 := [r+1];

temp2 := [l];

[l] := temp1;

[r] := temp2;

Starting from precondition {emp}, apply the axioms and inference rules of separation
logic to derive a postcondition expressing exactly the contents of the store and heap at
termination. Then, depict this state using the store and heap diagrams presented in the
lectures.

ii. We can assert that a heap portion contains a linked list by using the following inductively
defined predicate:

list([], i) ⇐⇒ emp ∧ i = nil

list(a :: as, i) ⇐⇒ ∃j. i 7→ a, j ∗ list(as, j)

where nil is a constant used to terminate the list.

Using the list predicate, verify the following program that deletes the first item in a non-
empty linked list (assume that i points to the first node).

dispose(i);

k := [i+1];

dispose(i+1);

i := k;

2

http://se.inf.ethz.ch/courses/2013b_fall/sv/slides/05-SeparationLogic-1.pdf
http://se.inf.ethz.ch/courses/2013b_fall/sv/slides/05-SeparationLogic-2.pdf


ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. C.A. Furia, Dr. S. Nanz

Software Verification – Problem Sheets
Fall 2013

iii. (∗) Consider the following inductively defined predicate:

tree(e, τ) ⇐⇒ if (isAtom(e) ∧ e = τ) then emp

else ∃x, y, τ1, τ2. τ = 〈τ1, τ2〉
∧ e 7→ x, y ∗ tree(x, τ1) ∗ tree(y, τ2)

where tree(p, τ) holds if p points to a data structure in memory representing the “mathe-
matical” tree τ (i.e. the tree as an abstract mathematical object; not a representation in
computer memory). Consider the following specification:

{tree(p, τ)} CopyTree(p, q) {tree(p, τ) ∗ tree(q, τ)}

which expresses that the procedure CopyTree stores—in a separate portion of memory
pointed to by q—a mathematically equivalent tree to the one pointed to by p.

Define the procedure CopyTree and verify the specification.

Hint: the following derived axiom for heap lookups may simplify the proof:

` {e 7→ e′} x := [e] {e 7→ e′ ∧ x = e′}

provided that x does not appear free in e or e′.

3


	Separation Logic Assertions
	Separation Logic Proofs

