
ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. C.A. Furia, Dr. S. Nanz

Software Verification – Problem Sheets
Fall 2013

Problem Sheet 4: Boogie and Boogaloo

Chris Poskitt and Nadia Polikarpova
ETH Zürich

Starred exercises (∗) are more challenging than the others.

1 Introduction

In the problem class two weeks ago, we worked with the AutoProof tool, a static verifier for Eiffel
programs. Recall, as illustrated in Figure 1, that the tool performs this verification by translating
Eiffel programs—and their contracts (i.e. their specifications)—into an intermediate verification
language called Boogie. The Boogie verifier then performs a further translation into verification
conditions; logical formulae which, if valid, imply the correctness of your original Eiffel program
with respect to its contracts. An SMT solver is then used to try and automatically determine
whether or not these formulae are valid, and hence, whether or not the original program is
correct.

While hopefully you were able to verify a number of Eiffel classes, you may have hit some
of the following problems: a lack of expressiveness in the specification language, a lack of
concrete counterexamples in failing verification attempts, or a lack of guidance when a “correct”
implementation cannot be verified because its specification is insufficient. In this problem class,
we return to the issue of automatic program verification, but from a different angle; one that
helps alleviate these concerns.

2 Boogie and Boogaloo

Firstly, rather than interacting with Boogie via AutoProof, now we will work with the Boo-
gie verifier directly, writing programs and specifications directly in its front-end language [1].
Boogie provides a much richer specification and implementation language, including among its
features: nondeterminism, unbounded quantification, and infinite structures (e.g. sets). For an
introduction to the language and verifier, consult the following slides and manual:

• Nadia Polikarpova’s Boogie/Boogaloo slides:

http://se.inf.ethz.ch/courses/2013b_fall/sv/slides/G3-Boogie-Boogaloo.pdf

• Boogie manual:

http://research.microsoft.com/en-us/um/people/leino/papers/krml178.pdf

Boogie, unsurprisingly, suffers from two of the same problems as AutoProof: an absence of
counterexamples when implementations do not agree with specifications, and little means of
validation when the implementation is actually correct but the specification insufficient for the
proof to go through automatically. Hence we will also be using the Boogaloo tool, which provides
a means to automatically generate executions of Boogie programs, in order to better understand
why a verification attempt is failing.

Boogaloo [2] is an interpreter and run-time assertion checker for Boogie. Based on a tech-
nique called symbolic execution, it enumerates all the possible paths of a Boogie program (there

1

http://se.inf.ethz.ch/courses/2013b_fall/sv/slides/G3-Boogie-Boogaloo.pdf
http://research.microsoft.com/en-us/um/people/leino/papers/krml178.pdf

ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. C.A. Furia, Dr. S. Nanz

Software Verification – Problem Sheets
Fall 2013

AutoProof

Boogie

SMT Solver

Eiffel program

Eiffel errors

Boogie
file

Boogie
errors

Verification
conditions

Valid
/ invalid

User

Figure 1: The AutoProof workflow

BoogalooBoogie

SMT Solver

Verification
conditions

Valid
/ invalid

User

SMT Solver

Symbolic
state

Concrete
state

Boogie
file

Boogie
errors

Boogie file

counterexamples
/ passing test cases

Figure 2: The Boogie/Boogaloo workflow

may be several due to the nondeterminism), but does so without having to enumerate all the
possible inputs too: instead, it uses symbolic values—essentially “placeholders” for concrete
program values. Upon arriving at the end of a path, Boogaloo will have a constraint built up of
such symbols to solve; each solution representing concrete values that variables could possibly
have in this execution. Such solutions are reported to the user, providing either (1) concrete
counterexamples for understanding why a verification attempt failed; or (2) passing test cases,
providing some validation of the implementation. This workflow is summarised in Figure 2.

For an introduction to Boogaloo, and an informative, concise manual, please consult:

• Nadia Polikarpova’s Boogie/Boogaloo slides:

http://se.inf.ethz.ch/courses/2013b_fall/sv/slides/G3-Boogie-Boogaloo.pdf

• Boogaloo wiki and manual:

https://bitbucket.org/nadiapolikarpova/boogaloo/wiki/Home

3 Setting Up

Both Boogie and Boogaloo are available to try in your browser, through rise4fun and Comcom
respectively:

http://rise4fun.com/boogie

http://cloudstudio.ethz.ch/comcom/#Boogaloo

Should you prefer, both tools can also be installed on your laptop. Please refer to their respec-
tive websites for details:

http://research.microsoft.com/en-us/projects/boogie/

https://bitbucket.org/nadiapolikarpova/boogaloo/wiki/Home

2

http://se.inf.ethz.ch/courses/2013b_fall/sv/slides/G3-Boogie-Boogaloo.pdf
https://bitbucket.org/nadiapolikarpova/boogaloo/wiki/Home
http://rise4fun.com/boogie
http://cloudstudio.ethz.ch/comcom/#Boogaloo
http://research.microsoft.com/en-us/projects/boogie/
https://bitbucket.org/nadiapolikarpova/boogaloo/wiki/Home

ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. C.A. Furia, Dr. S. Nanz

Software Verification – Problem Sheets
Fall 2013

4 Exercises

i. The Boogie program Fibonacci in Figure 3 is buggy: use Boogaloo to debug it, verify it
in Boogie, and then return to Boogaloo to generate some valid executions.

Hint: in the command box on Comcom, type test for test mode, −p PROC to specify a
procedure under test, and −o N to generate N valid executions.

ii. Prove the following specification in Boogie:

{true} t := x; x := x + y; y := t {x = x′ + y′ ∧ y = x′}

where x′, y′ respectively denote the values of x and y in the pre-state.

iii. Consider the Boogie program ArraySum in Figure 4 which is supposed to recursively com-
pute the sum of array elements. Try to debug the program using Boogaloo and then verify
it in Boogie.

Hint: don’t forget about loop invariants! Without an invariant, any loop in Boogie is
treated as equivalent to assigning arbitrary values to program variables.

iv. Implement, test, and verify the algorithm FindZero (its signature is given in Figure 5),
that linearly searches an array for the element 0:

Input: an integer array a, and its length N .

Output: an index k ∈ {0, . . . , N −1} into the array a such that a[k] = 0;
otherwise k = −1.

The specification should guarantee that if there exists an array element a[i] = 0 with
0 ≤ i < N , then FindZero will always return a k such that k ≥ 0 and a[k] = 0.

v. (∗) Copy the procedure FindZero you wrote in part (iv), rename it to FindZeroPro, and
add the following two preconditions:

requires (forall i: int :: 0 <= i && i < N ==> 0 <= a[i]);

requires (forall i: int :: 0 <= i-1 && i < N ==> a[i-1]-1 <= a[i]);

These additional preconditions require that along the array, values never decrease by
more than one. Adapt your linear search algorithm such that after an iteration of its loop,
instead of incrementing the current index k by 1, it now increments it by a[k]. Verify that
the procedure still establishes the same postconditions as in (iv).

Hint: you will need to prove that that all array values between a[k] and a[k + a[k]] are
non-zero (i.e. that 0-values are not skipped over by the search) and use this property in
the loop. For this you will need to write more than simply a loop invariant, e.g. some
“ghost” (or “proof”) code.

vi. (∗) Take a look at the Boogie program BinarySearch in Figure 6 which is supposed to
perform a binary search1. Debug the implementation and add the missing loop invariants
with the assistance of Boogaloo.

1See: http://en.wikipedia.org/wiki/Binary_search_algorithm

3

http://en.wikipedia.org/wiki/Binary_search_algorithm

ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. C.A. Furia, Dr. S. Nanz

Software Verification – Problem Sheets
Fall 2013

References

[1] K. Rustan M. Leino. This is Boogie 2. Technical report, 2008. http://research.

microsoft.com/en-us/um/people/leino/papers/krml178.pdf.

[2] Nadia Polikarpova, Carlo A. Furia, and Scott West. To run what no one has run before:
Executing an intermediate verication language. In Proc. 4th International Conference on
Runtime Verification (RV 2013), volume 8174, pages 251–268. Springer, 2013. http://se.

inf.ethz.ch/people/polikarpova/publications/rv13.pdf.

4

http://research.microsoft.com/en-us/um/people/leino/papers/krml178.pdf
http://research.microsoft.com/en-us/um/people/leino/papers/krml178.pdf
http://se.inf.ethz.ch/people/polikarpova/publications/rv13.pdf
http://se.inf.ethz.ch/people/polikarpova/publications/rv13.pdf

ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. C.A. Furia, Dr. S. Nanz

Software Verification – Problem Sheets
Fall 2013

Appendix: Code Listings

Hint: the code listings below are all available to download from the course webpage (no need
to copy and paste from this PDF!):

http://se.inf.ethz.ch/courses/2013b_fall/sv/

/∗
Naive computation of Fibonacci numbers using a recursive procedure .
An assertion defines the semantics using a recursive function .

∗/

// n−th Fibonacci number
function fib (x : int) : int ;
axiom fib (0) == 0 ;
axiom fib (1) == 1 ;
axiom (forall x : int : : x > 1 ==> fib (x) == fib (x − 2) + fib (x − 1)) ;

// Compute n−th Fibonacci number
procedure ComputeFib (x : int) returns (res : int)

requires x >= 0 ;
{

var f1 , f2 : int ;
i f (x > 1) {

call f1 := ComputeFib (x − 1) ;
call f2 := ComputeFib (x − 2) ;
res := f1 + f2 ;

} else {
res := 1 ;

}
}

// One way to call ComputeFib
procedure Main (x : int) returns (fib : int)

requires x >= 8 ;
{

call fib := ComputeFib (x) ;
assert fib == fib (x) ;

}

Figure 3: Program Fibonacci (buggy)

5

http://se.inf.ethz.ch/courses/2013b_fall/sv/

ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. C.A. Furia, Dr. S. Nanz

Software Verification – Problem Sheets
Fall 2013

/∗
Sum of array elements , with the semantics of sum defined recursively .

∗/

// Sum of N elements of array a
function recSum (a : [int] int , N : int) returns (int)
{ i f N == 0 then 0 else recSum (a , N − 1) + a [N − 1] }

// Iteratively compute the sum of array elements .
procedure Sum (a : [int] int , N : int) returns (sum : int)

requires 1 <= N ;
ensures recSum (a , N) == sum ;

{
var i : int ;
i , sum := 1 , 0 ;
while (i < N)
{

sum := sum + a [i] ;
i := i + 1 ;

}
}

Figure 4: Program ArraySum (buggy)

procedure FindZero (a : [int] int , N : int) returns (k : int)
// specification here

{
// implementation here

}

Figure 5: Program FindZero (incomplete)

/∗
Binary Search .

∗/

// Is array a of length N sorted ?
function sorted (a : [int] int , N : int) : bool
{ (forall j , k : int : : 0 <= j && j < k && k < N ==> a [j] <= a [k]) }

// Efficiently search for value in a sorted array a of length N .
procedure BinarySearch (a : [int] int , N : int , value : int) returns (index : int)

requires N >= 0 ;
requires sorted (a , N) ;
ensures 0 <= index && index <= N ;
ensures index < N ==> a [index] == value ;

// If index i s within bounds , value was found
ensures index == N ==> (forall j : int : : 0 <= j && j < N ==> a [j] != value) ;

// If index i s out of bounds , value does not occur
{

var low , high : int ;
low , high := 0 , N − 1 ;
while (true)
{

index := (low + high) div 2 ;
assert 0 <= index && index < N ; // Language−enforced
i f (value < a [index]) {

high := index − 1 ;
} else {

low := index + 1 ;
}
i f (low > high | | value == a [index]) {

break ;
}

}
i f (low > high) {

index := N ; // not found
}

}

Figure 6: Program BinarySearch (buggy)

6

	Introduction
	Boogie and Boogaloo
	Setting Up
	Exercises

