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Starred exercises (∗) are more challenging than the others.

1 Axiomatic Semantics Recap

i. I propose the axiom:

` {p} havoc(x0, . . . , xn) {∃xold
0 , . . . , xold

n . p[xold
0 /x0, . . . , x

old
n /xn]}

Essentially it is the same as the forward assignment axiom (see Problem Sheet 1), but
without conjuncts about the new values of each xi, since we do not know what they will
be after the execution of havoc.

ii. Below is a possible program and proof outline:

{x ≥ 0}
{x! ∗ 1 = x! ∧ x ≥ 0}

y := 1;

{x! ∗ y = x! ∧ x ≥ 0}
z := x;

{z! ∗ y = x! ∧ z ≥ 0}
while z > 0 do

{z > 0 ∧ z! ∗ y = x! ∧ z ≥ 0}
{(z − 1)! ∗ (y ∗ z) = x! ∧ (z − 1) ≥ 0}

y := y ∗ z;

{(z − 1)! ∗ y = x! ∧ (z − 1) ≥ 0}
z := z − 1;

{z! ∗ y = x! ∧ z ≥ 0}
end

{¬(z > 0) ∧ z! ∗ y = x! ∧ z ≥ 0}
{y = x!}

Observe that the loop invariant z! ∗ y = x! ∧ z ≥ 0 is key to completing the proof. The
three implications arising from applications of [cons] can be shown to be valid through
elementary mathematics and the definition of factorials.
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iii. Assume that ` {WP[P, post]} P {post} and |= {p} P {q}. From the definition of |=,
executing P on a state satisfying p results in a state satisfying q. By definition, WP[P, post]
expresses the weakest requirements on the state for P to establish q; hence p is either
equivalent to or stronger than WP[P, post], and p⇒WP[P, post] is valid. Clearly, q ⇒ q
is also valid, so we can apply the rule of consequence [cons] and derive the result that
` {p} P {q}.
Note: this property is called relative completeness, i.e. all valid triples can be proven in the
Hoare logic, relative to the existence of an oracle for deciding the validity of implications
(such as those in [cons]).

2 Separation Logic Recap

i. There are instances of s, h and p such that the state satisfies the first assertion. For
example,

(x 7→ 5), (5 7→ 5) |= x 7→ x ∗ ¬x 7→ x

However, x = y ∗ ¬(x = y) is not satisfiable since x, y denote values in the store, which is
heap-independent.

ii. (a) Satisfies.

(b) Does not satisfy (the heap only contains two locations).

(c) Does not satisfy (the heap contains more than one location).

(d) Satisfies. The variables x and y are indeed evaluated to the same location by the
store. The second conjunct expresses that there is a location in the heap determined
by evaluating y (clearly true).

(e) Satisfies.

iii. A proof outline is given below:

{emp}
x := cons(5, 9);

{x 7→ 5, 9}
y := cons(6, 7);

{x 7→ 5, 9 ∗ y 7→ 6, 7}
{∃xold. x 7→ 5, 9 ∗ y 7→ 6, 7 ∧ xold = x}

x := [x];

{∃xold. xold 7→ 5, 9 ∗ y 7→ 6, 7 ∧ x = 5}
[y + 1] := 9;

{∃xold. xold 7→ 5, 9 ∗ y 7→ 6, 9 ∧ x = 5}
dispose(y);

{∃xold. xold 7→ 5, 9 ∗ y + 1 7→ 9 ∧ x = 5}

and a depiction of the final state:
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Store Heap

x

y

5 5 9

9

3 Graph-Based Reasoning and Verification

i. If P is executed on a graph satisfying c, then any graph that results will satisfy d.

This definition handles nondeterminism by requiring that all of the possible (proper) post-
states satisfy the the postcondition. The definition does not guarantee the absence of
program failures.

ii. The program (destructively) tests whether or not the input graph was a tree. It iteratively
attempts to delete all the leaves by exploiting the dangling condition (nodes can only be
deleted if all the edges they are incident to are also deleted by the rule), until finally only
the root of the tree is left, and then deleted by finalChop. If at this stage the graph is
empty, then the original graph was a tree; otherwise it was not.

A possible yes-run:

“yes”

=> =>

=> => =>

=>

. . . and a possible no-run:
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=> =>

“no”

Graph reduction can be used to specify a wide range of pointer structures, see e.g.

http://www.cs.york.ac.uk/plasma/publications/pdf/BakewellPlumpRunciman.04b.

pdf

iii. The following program should respect the given specification:

main = addLoop! 

1
a

addLoop(a : int)

=>
1

a

a*a

where not edge(1,1)

iv. The following program deletes the entire graph yet respects the given specification:

main = {deleteEdge,deleteLoop,deleteNode}! 

1 1

x y x
k

deleteEdge(k,x,y : list)

=>

x

deleteNode(x : list)

=> ;

2

y

2

deleteLoop(k,x : list)

=>
1

x

k

x

1

An obvious frame axiom would be: “the nodes, edges, and labels of the input graph are
all preserved in the output graph”.

v. A possible proof rule might be:

` {c} P {d} ` {c} Q {d}
[or] ` {c} P or Q {d}
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vi. A possible proof rule might be:

` {c ∧App(R)} P {d} c ∧ ¬App(R)⇒ d
[if2] ` {c} if R then P {d}

vii. This expresses that there exists a node incident to a loop, and moreover, there is not
another node distinct from it that also is incident to a loop:

9( , ¬9( ))
1 1

x x

y y b

a
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