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1 Axiomatic Semantics Recap

This section provides some additional questions on Hoare logic. The proof rules are given again
in Figure 3.

i. Devise an axiom for the command havoc(x0, . . . , xn), which assigns arbitrary values to the
variables x0, . . . , xn.

ii. Write a program that computes the factorial of a natural number stored in variable x and
assigns the result to variable y. Prove that the program is correct using our Hoare logic.

iii. Sarah Proofgood has successfully shown that given an arbitrary program P and postcon-
dition post, the triple:

{WP[P, post]} P {post}

can be proven in our Hoare logic, i.e. ` {WP[P, post]} P {post}. Here, WP[P, post] is
an assertion expressing the weakest (liberal) precondition relative to P and post; that is,
the weakest condition that must be satisfied for P to establish post (without guaranteeing
termination).

Using Sarah’s result, show that any valid triple |= {p} P {q} is provable in our Hoare
logic, i.e. ` {p} P {q}.
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2 Separation Logic Recap

This section provides some additional practice on using separation logic. The small axioms and
frame rule of separation logic are given in Figure 4.

i. Are the following assertions satisfiable? Justify your answers.

p ∗ ¬p
x = y ∗ ¬(x = y)

ii. Consider the following program state:

Store Heap

x

y

Which of the following assertions does this state satisfy? For the assertions it does not
satisfy: why not?

(a) ∃v. x 7→ v ∗ v 7→ v

(b) ∃v. x 7→ v ∗ v 7→ v ∗ y 7→ v

(c) y 7→
(d) (x = y) ∧ (y 7→ ∗ true)

(e) (x = y) ∗ true

iii. Starting from precondition {emp}, apply the axioms and inference rules of separation
logic to derive a postcondition expressing exactly the contents of the store and heap at
termination (assume that x and y are the only variables). Then, depict this state using
the store and heap diagrams presented in the lectures.

x := cons(5,9);

y := cons(6,7);

x := [x];

[y+1] := 9;

dispose(y);
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3 Graph-Based Reasoning and Verification

The questions in this section are about modelling programs using graph transformation, assert-
ing properties of their states, and Hoare-style proof rules facilitating reasoning. Introductory
details are given in the lecture notes:

http://se.inf.ethz.ch/courses/2013b_fall/sv/slides/07-GraphBasedReasoning.pdf

We provide proof rules of a Hoare logic in Figure 5.

i. Define, in English, the meaning of |= {c} P {d}, where P is a graph program, and c, d are
E-conditions. How does the definition handle nondeterminism and program failure?

ii. Consider the graph program in Figure 1. What does it compute? Trace an execution on
an input graph that results in the no-branch being executed, and another that results in
the yes-branch being executed.

main = chop!; finalChop;
           if existsNode then no else yes 

1 1

x y x
k

chop(x,y,k : list)

=>

x

finalChop(x : list)

=> ;

x

existsNode(x : list)

=>
1

x

1

“yes”

yes(x : list)

=>;

“no”

no(x : list)

=>;

Figure 1: Graph program for exercise 3-ii

iii. Write a graph program that iteratively adds loops to nodes such that the partial correctness
specification in Figure 2 is fulfilled (you do not need to prove this). Informally justify that
your program terminates.

iv. The assertion language of E-conditions we proposed is not yet powerful enough to specify
framing properties. Demonstrate this by writing a program that always returns the empty
graph ∅ (the graph containing no nodes and no edges), yet also fulfills the partial correct-
ness specification of Figure 2. Then, strengthen the specification for your program in part
(iii), by informally (i.e. in English) adding frame axioms to the pre- and postcondition.
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|= {¬9( )}x

{8( , 9( | k = x ⇤ x))}

k

x

k

x

your program

1 1
| int(x)

Figure 2: Partial correctness specification for exercises 3-iii and 3-iv

v. Propose a partial correctness proof rule for the new control construct:

P or Q

which nondeterministically executes one of the programs P or Q.

vi. Propose a partial correctness proof rule for the derived control construct:

if R then P

which is equivalent to if R then P else ∅ ⇒ ∅.

vii. Write an E-condition expressing that: “there exists exactly one node incident to a loop”.

Hint: you will need nesting.
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Appendix: Proof Rules

[ass] ` {p[e/x]} x := e {p}

[skip] ` {p} skip {p}

` {p} P {r} ` {r} Q {q}
[comp] ` {p} P ; Q {q}

` {b ∧ p} P {q} ` {¬b ∧ p} Q {q}
[if] ` {p} if b then P else Q {q}

` {b ∧ p} P {p}
[while] ` {p} while b do P {¬b ∧ p}

p⇒ p′ ` {p′} P {q′} q′ ⇒ q
[cons] ` {p} P {q}

Figure 3: A Hoare logic for partial correctness

` {e 7→ } [e] := f {e 7→ f}

` {e 7→ } dispose(e) {emp}

` {X = x ∧ e 7→ Y } x := [e] {e[X/x] 7→ Y ∧ Y = x}

` {emp} x := cons(e0, . . . , en) {x 7→ e0, . . . , en}

` {p} P {q}
` {p ∗ r} P {q ∗ r}

side condition: no variable modified by P appears free in r

Figure 4: The small axioms and frame rule of separation logic
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[ruleapp] {Pre(r, c)} r {c}

[nonapp] {¬App({r})} r {false}

{c} r {d} for each r ∈ R
[ruleset] {c} R {d}

{c} P {e} {e} Q {d}
[comp] {c} P ; Q {d}

{c ∧App(R)} P {d} {c ∧ ¬App(R)} Q {d}
[if] {c} if R then P else Q {d}

{c ∧App(R)} R; P {d} {c ∧ ¬App(R)} Q {d}
[try] {c} try R then P else Q {d}

{inv} R {inv}
[!] {inv} R! {inv ∧ ¬App(R)}

c⇒ c′ {c′} P {d′} d′ ⇒ d
[cons] {c} P {d}

where App(R) is an E-condition satisfied exactly by those graphs that a
rule in R can be applied to; and

Pre(r, c) is an E-condition expressing the weakest property that must hold
for r to establish c (without guaranteeing termination)

Figure 5: A Hoare logic for partial correctness of graph programs
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