
ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. C.A. Furia, Dr. S. Nanz

Software Verification – Problem Sheets
Fall 2013

Problem Sheet 9: Software Model Checking

Sample Solutions

Chris Poskitt∗

ETH Zürich

1 Predicate Abstraction

i. Let us first visualise c and not c in a Venn diagram:

c

not c

Pred(not c) gives the weakest under-approximation of not c. In other words, Pred(not c)
implies not c, but not (in general) the converse. A possible visualisation in a Venn diagram
might then be:

c

Pred(not c)

In negating Pred(not c), we then get the strongest over-approximation, visualised as
follows:

c

Pred(not c)

not Pred(not c)

∗Some exercises adapted from ones written by Stephan van Staden and Carlo A. Furia.

1



ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. C.A. Furia, Dr. S. Nanz

Software Verification – Problem Sheets
Fall 2013

ii. We build a Boolean abstraction from C1, one line at a time. First, we over-approximate
assume x > 0 end with assume ¬Pred(¬x > 0) end, followed by a parallel conditional
assignment updating the predicates with respect to the original assume statement.

¬Pred(¬x > 0) = ¬Pred(¬p)

= ¬¬p
= p

Hence we add assume p end to A1. This should be followed by a parallel conditional
assignment (as described in the slides):

if Pred(+ex(i)) then

p(i) := True

elseif Pred(-ex(i)) then

p(i) := False

else

p := ?

end

Using the rule ` {ex⇒ post} assume ex end {post} for the weakest precondition of assume
statements, we compute every ex(i) (as defined in the slides):

+ex(p) = (x > 0⇒ x > 0)

−ex(p) = (x > 0⇒ ¬x > 0)

+ex(q) = (x > 0⇒ y > 0)

−ex(q) = (x > 0⇒ ¬y > 0)

+ex(r) = (x > 0⇒ z > 0)

−ex(r) = (x > 0⇒ ¬z > 0)

We apply the simplification step from the slides, and omit each Pred(ex(i)) that is not
unconditionally valid. It so happens that only

Pred(+ex(p)) = Pred(x > 0⇒ x > 0) = Pred(true) = true

is valid, hence the parallel conditional assignment reduces to simply p := True, which we
add to A1.

Next, we address the assignment z := (x ∗ y) + 1. Recall that an assignment x := f is
over-approximated by a parallel conditional assignment:

if Pred(+f(i)) then

p(i) := True

elseif Pred(-f(i)) then

p(i) := False

else

p := ?

end

2



ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. C.A. Furia, Dr. S. Nanz

Software Verification – Problem Sheets
Fall 2013

Using the rule ` {post[f/x]} x := f {post} and the definition of f(i) from the slides, we
get:

Pred(+f(p)) = Pred(x > 0)

= p

Pred(−f(p)) = Pred(¬x > 0)

= ¬p
Pred(+f(q)) = Pred(y > 0)

= q

Pred(−f(q)) = Pred(¬y > 0)

= ¬q
Pred(+f(r)) = Pred((x ∗ y) + 1 > 0)

= (p ∧ q) ∨ (¬p ∧ ¬q)

Pred(−f(r)) = Pred(¬(x ∗ y) + 1 > 0)

= Pred((x ∗ y) + 1 ≤ 0)

= false

The parallel conditional assignments for p, q have no effect, hence we add only the following
to A1:

if (p and q) or (not p and not q) then

r := True

elseif False then

r := False

else

r := ?

end

Finally, we address the assertion assert z >= 1 end. This is analogous to the ab-
straction of assume statements, except that we add assert ¬Pred(¬z >= 1) end fol-
lowed by a parallel conditional assignment with each ex(i) constructed using the rule
` {exp ∧ post} assert exp end {post}. We have:

¬Pred(¬z >= 1) = ¬Pred(z < 1) = ¬¬r = r

and hence add assert r end to A1.

3



ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. C.A. Furia, Dr. S. Nanz

Software Verification – Problem Sheets
Fall 2013

Pred(+ex(p)) = Pred(z ≥ 1 ∧ x > 0)

= r ∧ p

Pred(−ex(p)) = Pred(z ≥ 1 ∧ ¬x > 0)

= r ∧ ¬p
Pred(+ex(q)) = Pred(z ≥ 1 ∧ y > 0)

= r ∧ q

Pred(−ex(q)) = Pred(z ≥ 1 ∧ ¬y > 0)

= r ∧ ¬q
Pred(+ex(r)) = Pred(z ≥ 1 ∧ z > 0)

= r

Pred(−ex(r)) = Pred(z ≥ 1 ∧ ¬z > 0)

= false

Given that r is asserted immediately before, the parallel conditional assignment will have
no effect on the values of p, q, r and so we omit it from A1. Altogether, A1 is the following
program:

assume p end

p := True

if (p and q) or (not p and not q) then

r := True

elseif False then

r := False

else

r := ?

end

assert r end

With a further simplification, we get:

assume p end

p := True

if (p and q) or (not p and not q) then

r := True

else

r := ?

end

assert r end

iii. (a) After normalising the program (following the details in the slides) we get:

4



ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. C.A. Furia, Dr. S. Nanz

Software Verification – Problem Sheets
Fall 2013

if ? then

assume x > 0 end

y := x + x

else

assume x <= 0 end

if ? then

assume x = 0 end

y := 1

else

assume x /= 0 end

y := x * x

end

end

assert y > 0 end

(b) To build A2 from the normalised code above, apply the transformations to each as-
signment, assume, and assert, analogously to how I did when constructing A1 (except
that this time you only have two predicates, p and q). The resulting abstraction (after
some simplifications) looks as follows:

if ? then

assume p end

p := True

q := True

else

assume not p end

p := False

if ? then

assume not p end

p := False

q := True

else

assume True end -- can delete this assume

q := ?

end

end

assert q end

2 Error Traces

i. An abstract error trace is, for example:

[p, not q, r]

assume p end

[p, not q, r]

p := True

[p, not q, r]

r := ?

[p, not q, not r]

5



ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. C.A. Furia, Dr. S. Nanz

Software Verification – Problem Sheets
Fall 2013

assert r end

Observe that each concrete instruction corresponds to a (compound) abstract instruction.
We can check whether or not this is a feasible concrete run by computing the weakest
precondition of the concrete instructions with respect to p∧¬q∧¬r, interpreting conditions
(assume, conditionals, or exit conditions) as assert:

{x > 0 and y <= 0 and (x*y)+1 <= 0}

{x > 0 and x > 0 and y <= 0 and (x*y)+1 <= 0}

assert x > 0 end

{x > 0 and y <= 0 and (x*y)+1 <= 0}

z := (x*y) + 1

{x > 0 and y <= 0 and z <= 0}

[p, not q, not r]

Some witnesses to the fault are x = 3, y = −2 which satisfy the constructed weakest
precondition.

ii. Here is an abstract counterexample trace:

[not p, not q]

assume not p end

[not p, not q]

p := False

[not p, not q]

assume True end

[not p, not q]

q := ?

[not p, not q]

assert q end

As before, we check whether or not this abstract execution reflects a feasible, concrete
counterexample, by computing the weakest precondition of the corresponding concrete
instructions with respect to ¬p∧¬q. Again, we interpret conditions (assume in this case)
as assert, and apply the corresponding Hoare proof rule:

{x < 0 and x*x <= 0}

{x <= 0 and x /= 0 and x <= 0 and x*x <= 0}

assert x <= 0

{x /= 0 and x <= 0 and x*x <= 0}

assert x /= 0 end

{x <= 0 and x*x <= 0}

y := x*x

{x <= 0 and y <= 0}

[not p, not q]

Observe that in this case, the weakest precondition we have constructed is equivalent to
false. There is no assignment to x that will satisfy the assertion. Hence the abstract
counterexample is infeasible (spurious) in the concrete program; abstraction refinement is
needed.

6


	Predicate Abstraction
	Error Traces

