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Axiomatic semantics

.1 OVERVIEW

As introduced in chapter 4, the axiomatic method expresses the semantics of a
r

p
programming language by associating with the language a mathematical theory fo
roving properties of programs written in that language.

s
s

The contrast with denotational semantics is interesting. The denotational method, a
tudied in previous chapters, associates a denotation with every programming language

construct. In other words, it provides a model for the language.

This model, a collection of mathematical objects, is very abstract; but it is a model.

o
As with all explicit specifications, there is a risk of overspecification: when you choose
ne among several possible models of a system, you risk including irrelevant details.

y
a

Some of the specifications of chapters 6 and 7 indeed appear as just one possibilit
mong others. For example, the technique used to model block structure (chapter 7) looks

s
w
very much like the corresponding implementation techniques (stack-based allocation). Thi

as intended to make the model clear and realistic; but we may suspect that other,

m
equally acceptable models could have been selected, and that the denotational model is

ore an abstract implementation than a pure specification.

e
a

The axiomatic method is immune from such criticism. It does not attempt to provid
n explicit model of a programming language by attaching an explicit meaning to every

e
p
construct. Instead, it defines proof rules which make it possible to reason about th
roperties of programs.
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i
In a way, of course, the proof rules are meanings, but very abstract ones. More

mportantly, they are ways of reasoning about programs.

d
d

Particularly revealing of this difference of spirit between the axiomatic an
enotational approaches is their treatment of erroneous computations:

• A denotational specification must associate a denotation with every valid language

s
construct. As noted in 6.1, a valid construct is structurally well-formed but may
till fail to produce a result (by entering into an infinite computation); or it may

l
f
produce an error result. For non-terminating computations, modeling by partia
unctions has enabled us to avoid being over-specific; but for erroneous

t
s
computations, a denotational model must spill the beans and say explicitly wha
pecial ‘‘error’’ values, such as unknown in 6.4.2, the program will yield for

6
expressions whose value it cannot properly compute. (See also the discussion in
.4.4.)

• In axiomatic semantics, we may often deal with erroneous cases just by making
y

b
sure that no proof rule applies to them; no special treatment is required. This ma
e called the unobtrusive approach to erroneous cases and undefinedness.

___________________________________________________________

You may want to think of two shopkeepers with different customer policies:

t

Billy’s Denotational Emporium serves all valid requests (‘‘No construct too big or

oo small’’ is its slogan), although the service may end up producing an error

d

report, or fail to terminate; in contrast, a customer with an erroneous or overly

ifficult request will be politely but firmly informed that the management and

l

a

staff of Ye Olde Axiomatic Shoppe regret their inability to prove anything usefu

bout the request.
___________________________________________________________

e
a
Because of its very abstractness, axiomatic semantics is of little direct use for some of th
pplications of formal language specifications mentioned in chapter 1, such as writing

t
a
compilers and other language systems. The applications to which it is particularly relevan
re program verification, understanding and standardizing languages, and, perhaps most

9

importantly, providing help in the construction of correct programs.

.2 THE NOTION OF THEORY

An axiomatic description of a language, it was said above, is a theory for that language.

t
A theory about a particular set of objects is a set of rules to express statements about
hose objects and to determine whether any such statement is true or false.

y

t

As always in this book, the word ‘‘statement’’ is used here in its ordinary sense of a propert

hat may be true or false – not in its programming sense of command, for which this book

always uses the word ‘‘instruction’’.
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A

9.2.1 Form of theories

THE NOTION OF THEORY

theory may be viewed as a formal language, or more properly a metalanguage, defined
e

a
by syntactic and semantic rules. (Chapter 1 discussed the distinction between languag
nd metalanguage. Here the metalanguage of an axiomatic theory is the formalism used

to reason about languages.)

The syntactic rules for the metalanguage, or grammar, define the meaningful
.

‘
statements of the theory, called well-formed formulae: those that are worth talking about
‘Well-formed formula’’ will be abbreviated to ‘‘formula’’ when there is no doubt about
well-formedness.

The semantic rules of the theory (axioms and inference rules), which only apply to

9

well-formed formulae, determine which formulae are theorems and which ones are not.

.2.2 Grammar of a theory

The grammar of a theory may be expressed using standard techniques such as BNF or
abstract syntax, both of which apply to metalanguages just as well as to languages.

An example will illustrate the general form of a grammar. Consider a simple theory
a

v
of natural integers. Its grammar might be defined by the following rules (based on
ocabulary comprising letters, the digit 0 and the symbols =, <, ==> , ¬ and ’):

1 • The formulae of the metalanguage are boolean expressions.

2 • A boolean expression is of one of the four forms

α
α = β

< β

γ
¬ γ

==> δ
where α and β are integer expressions and γ and δ are boolean expressions.

3 • An integer expression is of one of the three forms

α
n

0

’

where n is any lower-case letter from the roman alphabet and α is any integer

I

expression.

n the absence of parentheses, the grammar is ambiguous, which is of no consequence for

a
this discussion. (For a fully formal presentation, abstract syntax, which eliminates
mbiguity, would be more appropriate.)

According to the above definition, the following are well-formed formulae:
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0

0 = 0

≠ 0

m ’’’ < 0 ’’

0

T

0 = 0 ==> 0 ≠

he following, however, are not well-formed formulae (do not belong to the
metalanguage of the theory):

0 < 1 -- Uses a symbol which is not in the vocabulary of the theory.

9

0 < ’ n ’ -- Does not conform to the grammar.

.2.3 Theorems and derivation

Given a grammar for a theory, which defines its well-formed formulae, we need a set of
f

t
rules for deriving certain formulae, called theorems and representing true properties o
he theory’s objects.

The following notation expresses that a formula f is a theorem:

O

f

nly well-formed formulae may be theorems: there cannot be anything interesting to say,

t
within the theory, about an expression which does not belong to its metalanguage. Within
he miniature theory of integers, for example, it is meaningless to ask whether 0 < 1 may

e
m
be derived as a theorem since that expression simply does not belong to th

etalanguage. Here as with programming languages, we never attempt to attach any
e

t
meaning to a structurally invalid element. The rest of the discussion assumes all formula
o be well-formed.

___________________________________________________________

t

The restriction to well-formed formulae is similar, at the metalanguage level, to

he conventions enforced in the specification of programming languages: as noted

_
in 6. 1, semantic descriptions apply only to statically valid constructs.
__________________________________________________________

d
i

To derive theorems, a theory usually provides two kinds of rules: axioms an
nference rules, together called ‘‘rules’’.

A

9.2.4 Axioms

n axiom is a rule which states that a certain formula is a theorem. The example theory
might contain the axiom
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0A

0 < 0 ’

This axiom reflects the intended meaning of ’ as the successor operation on integers:

9

it expresses that zero is less than the next integer (one).

.2.5 Rule schemata

To characterize completely the meaning of ’ as ‘‘successor’’, we need another axiom
complementing A :0

A
successor

For any integer expressions m and n :

T

m < n ==> m ’ < n ’

his expresses that if m is less than n , the same relation applies to their successors.

tA is not exactly an axiom but what is called an axiom schema because i
successor

refers to arbitrary integer expressions m and n . We may view it as denoting an infinity
l

i
of actual axioms, each of which is obtained from the axiom schema by choosing actua
nteger expressions for m and n . For example, choosing 0 ’’ and 0 for m and n yields

the following axiom:

0 ’’ < 0 ==> 0 ’’’ < 0 ’

In more ordinary terms, this says: ‘‘2 less than 0 implies 3 less than 1’’ (which happens to
be a true statement, although not a very insightful one).

In practice, most interesting axioms are in fact axiom schemata.

’
w

The following discussion will simply use the term ‘‘axiom’’, omitting ‘‘schema’
hen there is no ambiguity. As a further convention, single letters such as m and n will

p
stand for arbitrary integer expressions in a rule schema: in other words, we may omit the
hrase ‘‘For any integer expressions m and n ’’.

I

9.2.6 Inference rules

nference rules are mechanisms for deriving new theorems from others. An inference rule
is written in the form

f , f , ..... , f
n_1 2___________

f 0
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and means the following:

___________________________________________________________

If f , f , . . . , f are theorems, then f is a theorem.1 2 n 0 ___________________________________________________________

a
b
The formulae above the horizontal bar are called the antecedents of the rule; the formul
elow it is called its consequent.

As with axioms, many inference rules are in fact inference rule schemata, involving
parameterization. ‘‘Inference rule’’ will be used to cover inference rule schemata as well.

The mini-theory of integers needs an inference rule, useful in fact for many other

i
theories. The rule is known as modus ponens and makes it possible to use implication in
nferences. It may be expressed as follows for arbitrary boolean expressions p and q :

MP

p, p ==> q
____________

q

This rule brings out clearly the distinction between logical implication ( ==> ) and
s

v
inference: the ==> sign belongs to the metalanguage of the theory: as an element of it

ocabulary, it is similar to <, ’ , 0 etc. Although this symbol is usually read aloud as

r
‘‘implies’’, it does not by itself provide a proof mechanism, as does an inference rule. The
ole of modus ponens is precisely to make ==> useful in proofs by enabling q to be

derived as a theorem whenever both p and p ==> q have been established as theorems.

Another inference rule, essential for proofs of properties of integers, is the rule of

I

induction, of which a simple form may be stated as:

ND

φ (0), φ (n ) ==> φ (n ’ )_______________________
φ (n )

T

9.2.7 Proofs

he notions of axiom and inference rule lead to a precise definition of theorems:
___________________________________________________________

Definition (Theorem): A theorem t in a theory is a well-formed
s

b
formula of the theory, such that t may be derived from the axiom
y zero or more applications of the inference rules.

___________________________________________________________
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he mechanism for deriving a theorem, called a proof, follows a precise format, already
o

h
outlined in 4.6.3 (see figure 4.10). If the proof rigorously adheres to this format, n
uman insight is required to determine whether the proof is correct or not; indeed the task

f
r
of checking the proof can be handed over to a computer program. Discovering the proo
equires insight, of course, but not checking it if it is expressed in all rigor.

1

The format of a proof is governed by the following rules:

• The proof is a sequence of lines.

2 • Each line is numbered.

3 • Each line contains a formula, which the line asserts to be a theorem. (So you may

4

consider that the formula on each line is preceded by an implicit .)

• Each line also contains an argument showing unambiguously that the formula of

T

the line is indeed a theorem. This is called the justification of the line.

he justification (rule 4) must be one of the following:

A • The name of an axiom or axiom schema of the theory, in which case the formula

B

must be the axiom itself or an instance of the axiom schema.

• A list of references to previous lines, followed by a semicolon and the name of an

I

inference rule or inference rule schema of the theory.

n case B, the formulae on the lines referenced must coincide with the antecedents of the
f

t
inference rule, and the formula on the current line must coincide with the consequent o
he rule. (In the case of a rule schema, the coincidence must be with the antecedents and

consequents of an instance of the rule.)

As an example, the following is a proof of the theorem

(

i < i’

that is to say, every number is less than its successor) in the the above mini-theory.

[9.1]

Number Formula Justification
______________________________________________

M

____________________________________________

.1 0 < 0’ A0

r

M

M.2 i < i ’ ==> i ’ < i ’’ A
successo

.3 i < i ’ M.1, M.2; IND
______________________________________________

O

____________________________________________

n line M.2 the axiom schema A is instantiated by taking i for m and i ’ for n .
O

successor
n line M.3 the inference rule IND is instantiated by taking φ (n ) to be i < i ’ . Note that

j
for the correctness of the proof to be mechanically checkable, as claimed above, the
ustification field should include, when appropriate, a description of how a rule or axiom

schema is instantiated.
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s
n

The strict format described here may be somewhat loosened in practice when there i
o ambiguity; it is common, for example, to merge the application of more than one rule

,
h
on a single line for brevity (as with the proof of figure 4.10). The present discussion
owever, is devoted to a precise analysis of the axiomatic method, and it needs at least

9

initially to be a little pedantic about the details of proof mechanisms.

.2.8 Conditional proofs and proofs by contradiction

[This section may be skipped on first reading. ]

Practical proofs in theories which support implication and negation often rely on two
useful mechanisms: conditional proofs and proofs by contradiction.

A conditional proof works as follows:

[9.2]
___________________________________________________________

p
Definition (Conditional Proof): To prove P ==> Q by conditional
roof, prove that Q may be derived under the assumption that P is

_
a theorem.
__________________________________________________________

m
i

A conditional proof, usually embedded in a larger proof, will be written in the for
llustrated below.

Number Formula Justification
_____________________________________

i

___________________________________

−1 ... ...
ni 1 P Assumptio•

•i 2 ... ...

i

...

n Q ...

i

•

P ==> Q Conditional Proof

_i +1 ... ..._______________________________________________________________________

T

Figure 9.1: A conditional sub-proof

he goal of the proof is a property of the form P implies Q , appearing on a line

n
numbered i . The proof appears on a sequence of lines, called the scope of the proof and
umbered i 1, i 2, ..., i n (for some n ≥ 1). These lines appear just before line i . The• • •

• s
l
formula stated on the first line of the scope, i 1, must be P ; the justification field of thi
ine, instead of following the usual requirements given on page 305, simply indicates
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• e
j
‘‘Assumption’’. The formula proved on the last line of the scope, i j , must be Q . Th
ustification field of line i simply indicates ‘‘Conditional Proof’’.

,Conditional proofs may be nested; lines in internal scopes will be numbered i j k• •

i • • •j k l etc.

The proof of the conclusion Q in lines i 2 to i n may use P , from line i 1, as a• • •

• s
n
premise. It may also use any property established on a line preceding i 1, if the line i
ot part of the scope of another conditional proof. (For a nested conditional proof, lines

established as part of enclosing scopes are applicable.)

P is stated on line i 1 only as assumption for the conditional proof; it and any
f

•

ormula deduced from it may not be used as justifications outside the scope of that proof.

Proofs by contradiction apply to theories which support negation:

___________________________________________________________

p
Definition (Proof by Contradiction): To prove P by contradiction,
rove that false may be derived under the assumption that ¬ P is a

_
theorem.
__________________________________________________________

,
w

The general form of the proof is the same as above; here the goal on line i is P
ith ‘‘Contradiction’’, instead of ‘‘Conditional Proof’’, in its justification field. The

property proved on the last line of the scope, i j , must be false.•

A

9.2.9 Interpretations and models

s presented so far, a theory is a purely formal mechanism to derive certain formulae as
,

e
theorems. No commitment has been made as to what the formulae actually represent
xcept for the example, which was interpreted as referring to integers.

e
u

In practice, theories are developed not just for pleasure but also for profit: to deduc
seful properties of actual mathematical entities. To do so requires providing

a
m
interpretations of the theory. Informally, you obtain an interpretation by associating

ember of some mathematical domain with every element of the theory’s vocabulary, in
d

f
such a way that a boolean property of the domain is associated with every well-forme
ormula. A model is an interpretation which associates a true property with every theorem

of the theory. The only theories of interest are those which have at least one model.

When a theory has a model, it often has more than one. The example theory used
e

s
above has a model in which the integer zero is associated with the symbol 0, th
uccessor operation on integers with the symbol ’ , the integer equality relation with = and

d
p
so on. But other models are also possible; for example, the set of all persons past an
resent (assumed to be infinite), with 0 interpreted as modeling some specific person (say

l
a
the reader), x ’ interpreted as the mother of x , x < y interpreted as ‘‘y is a materna
ncestor of x ’’ and so on, would provide another model.
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f
Often, a theory is developed with one particular model in mind. This was the case

or the example theory, which referred to the integer model, so much so that the
.

S
vocabulary of its metalanguage was directly borrowed from the language of integers

imilarly, the theories developed in the sequel are developed for a specific application
a

e
such as the semantics of programs or, in the example of the next section, lambd
xpressions. But when we study axiomatic semantics we must forget about the models

9

and concentrate on the mechanisms for deriving theorems through purely logical rules.

.2.10 Discussion

As a conclusion of this quick review of the notion of theory and proof, some
,

a
qualifications are appropriate. As defined by logicians, theories are purely formal objects
nd proof is a purely formal game. The aim pursued by such rigor (where, in the words

t
i
of [Copi 1973], ‘‘a system has rigor when no formula is asserted to be a theorem unless i
s logically entailed by the axioms’’) is to spell out the intellectual mechanisms that

underlie mathematical reasoning.

It is well known that ordinary mathematical discourse is not entirely formal, as this
s

s
would be unbearably tedious; the proof process leaves some details unspecified and skip
ome steps when it appears that they do not carry any conceptual difficulty.

n
o

The need for a delicate balance between rigor and informality is well accepted i
rdinary mathematics, and in most cases this works to the satisfaction of everyone

e
v
concerned – although ‘‘accidents’’ do occur, of which the most famous historically is th
ery first proof of Euclid’s Elements, where the author relied at one point on geometrical

c
intuition, instead of restricting himself to his explicitly stated axioms. Formal logic, of
ourse, is more demanding.

Although purely formal in principle, theories are subject to some plausibility tests.
Two important properties are:

• Soundness: a theory is sound if for no well-formed formula f the rules allow

•
deriving both f and ¬ f .

Completeness: a theory is complete if for any well-formed formula f the rules

B

allow the derivation of f or ¬ f .

oth definitions assume that the metalanguage of the theory includes a symbol ¬ (not)

S

corresponding to denial.

oundness is also called ‘‘non-contradiction’’ or ‘‘consistency’’. It can be shown that a

t
theory is sound if and only if it has a model, and that it is complete if and only if every
rue property of any model may be derived as a theorem.

s
s

An unsound theory is of little interest; any proposed theory should be checked for it
oundness. One would also expect all ‘‘good’’ theories to be complete, but this is not the

f
s
case: among the most importants results of mathematical logic are the incompleteness o
uch theories as predicate calculus or arithmetic. The study of completeness and

soundness, however, falls beyond the scope of this book.
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.3 AN EXAMPLE: TYPED LAMBDA CALCULUS

4
t
[This section may be skipped on first reading. It assumes an understanding of sections 5.
o 5.10. ]

Before introducing theories of actual programming languages, it is interesting to
e

a
study a small and elegant theory, due to Cardelli, which shows well the spirit of th
xiomatic method, free of any imperative concern.

a
m

Chapter 5 introduced the notion of typed lambda calculus and defined (5.10.3)
echanism which, when applied to a lambda expression, yields its type. The theory

–
w
introduced below makes it possible to prove that a certain formula has a certain type

hich is of course the same one as what the typing mechanism of chapter 5 would
compute.

The theory’s formulae are all of the form

w

b e : t

here e is a typed lambda expression, t is a type and b is a binding (defined below). The
informal meaning of such a formula is:

‘‘Under b , e has type t . ’’

Recall that a type of the lambda calculus is either:

1 • One among a set of basic predefined types (such as N or B).

2 • Of the form α β, where α and β are types.

I

→
n case of ambiguity in multi-arrow type formulae, parentheses may be used; by default,

arrows associate to the right.

A binding is a possibly empty sequence of <identifier, type> pairs. Such a sequence
will be written under the form

x : α + y : β + z : γ

and may be informally interpreted as the binding under which x has type α and so on.

b
The notation also uses the symbol + for concatenation of bindings, as in b + x : α where

is a binding. The same identifier may appear twice in a binding; in this case the
rightmost occurrence will take precedence, so that under the binding

x : α + y : β + x : γ

x has type γ. One of the axioms below will express this property formally.

n
λ

In typed lambda calculus, we declare every dummy identifier with a type (as i
x : α e ). This means that the types of all bound identifier occurrences in a typed

l
•

ambda expression are given in the expression itself. As for the free identifiers, their types
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-
e
will be determined by the environment of the expression when it appears as a sub
xpression of a larger expression. So if an expression contains free identifier occurrences

we can only define its type relative to the possible bindings of these identifiers.

To derive the type of an expression e , then, is to prove a property of the form

f

b e : α

or some type α. The binding b may only contain information on identifiers occurring

w
free in e (any other information would be irrelevant). If no identifier occurs free in e , b

ill be empty.

Let us see how a system of axioms and inference rules may capture the type
e

a
properties of lambda calculus. In the following rule schemata, e and f will denot
rbitrary lambda expressions, x an arbitrary identifier and b an arbitrary binding.

t
s

The first axiom schema gives the basic semantics of bindings and the ‘‘rightmos
trongest’’ convention mentioned above:

Right

b + x : α x : α

e
a
In words: ‘‘Under binding b extended with type α for x , x has type α’’ – even if b gav
nother type for x .

Deducing types of identifiers other than the rightmost in a binding requires a simple

P

inference rule schema:

erm

b x : α
_

b

_______________

+ y : β x : α

e
α
(if x and y are different identifiers). In words: ‘‘If x has type α under b , x still has typ

under b extended for any other identifier y with some type β’’.

t
r
To obtain the rules for typing the various forms of lambda expressions, we mus
emember that a lambda expression is one of atom, abstraction or application.

e
b

Atoms (identifiers) are already covered by Right: their types will be whatever th
inding says about them. We do not need to introduce the notion of predefined identifier

b
explicitly since the theory will yield a lambda expression’s type relative to a certain
inding, which expresses the types of the expression’s free identifiers. If a formula is

h
incorrect for some reason (as a lambda expression involving an identifier to which no type
as been assigned), the axiomatic specification will not reject it; instead, it simply makes

it impossible to prove any useful type property for this expression.

Abstractions describe functions and are covered by the following rule:
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Abstraction
I

b + x : α e : β
_

b

________________________

{λ x : α e }: α β• →

x
m
This rule captures the type semantics of lambda abstractions: if assigning type α to

akes it possible to assign type β to e , then the abstraction λ x : α e describes a
→

•
.function of type α β

In a form of the lambda calculus that would support generic functions with implicit

r
typing (inferred from the context rather than specified in the text of the expression), this
ule could be adapted to:

I
Generic_abstraction

b + x : α e : β
_

b

_____________________

{λ x e }: α β• →

→ :making it possible, for example, to derive α α, for any α, as type of the function

Id = λ x x

a

∆ •

nd similarly for other generic functions. But we shall not pursue this path any further.

,
a

In an axiomatic theory covering programming languages rather than lambda calculus
pair of rules similar to Right and I could be written to account for typing in

Abstraction
.block-structured languages, where innermost declarations have precedence

Finally we need an inference rule for application expressions:

I
Application

→b f : α β b e : α
____________________________

b f (e ): β

fIn other words, if a function of type α β is applied to an argument, which must be o→
.type α, the result is of type β. This completes the theory

This theory is powerful enough to derive types for lambda expressions. It is
f

t
interesting to compare the deduction process in this theory with the ‘‘computations’’ o
ypes made possible by the techniques introduced in 5.10. That section used the following

expression as example:

λ x : N N λ y : N N λ z : N x ( {λ x : N y (x )} (z ))→ →• • • •
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__________________________________________________________________________

E

________________________________________________________________________

.1 x : N→N + y : N→N + z : N x : N→N

Right, Perm

E.2 x : N→N + y : N→N + z : N + x : N z : N

Right, Perm

E.3 x : N→N + y : N→N + z : N + x : N x : N

Right

E.4 x : N→N + y : N→N + z : N + x : N y : N→N

Right, Perm

E.5 x : N→N + y : N→N + z : N + x : N y (x ): N

E.3, E.4; I
p

•

Ap

NE.6 x : N→N + y : N→N + z : N λ x : N y (x ): N→
E.5; I

Abst

• NE.7 x : N→N + y : N→N + z : N {λ x : N y (x )} (z ):

E.2, E.6; I
p

•

Ap

NE.8 x : N→N + y : N→N + z : N x ( {λ x : N y (x )} (z )):

E.1, E.7; I
p

E • •

Ap

.9 x : N→N + y : N→N λ z : N x ( {λ x : N y (x )} (z )):
N→N

E.8; I
Abst

E • • •.10 x : N→N λ y : N→N λ z : N x ( {λ x : N y (x )} (z )):
(N→N)→(N→N)

E.9; I
Abst

E • • • •.11 λ x : N λ y : N→N λ z : N x ( {λ x : N y (x )} (z )):
(N→N)→((N→N)→(N→N))

E.10; I
Abst __________________________________________________________________________________________________________________________________________________

Figure 9.2: A type inference in lambda calculus
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he figure on the adjacent page shows how to derive the type of this expression in the
e

5
theory exposed above. You are invited to compare it with the type computation of figur
.4, which it closely parallels. (The subscripts in I and I have been

Application Abstraction
)abbreviated as App and Abst respectively on the figure.

The rest of this chapter investigates axiomatic theories of programming languages,
.

T
which mostly address dynamic semantics: the meaning of expressions and instructions

his example just outlined, which could be transposed to programming languages, shows

9

that the axiomatic method may be applied to static semantics as well.

.4 AXIOMATIZING PROGRAMMING LANGUAGES

T

9.4.1 Assertions

he theories of most interest for this discussion apply to programming languages; the
formulae should express relevant properties of programs.

For the most common class of programming languages, such properties are
s

o
conveniently expressed through assertions. An assertion is a property of the program’

bjects, such as

w

x + y > 3

hich may or may not be satisfied by a state of the program during execution. Here, for
;

o
example, a state in which variables x and y have values 5 and 6 satisfies the assertion
ne in which they both have value 0 does not.

n
c
For the time being, an assertion will simply be expressed as a boolean expression i
oncrete syntax, as in this example; this represents an assertion satisfied by all states in

n
t
which the boolean expression has value true. A more precise definition of assertions i
he Graal context will be given below (9.5.2).

T

9.4.2 Preconditions and postconditions

he formulae of an axiomatic theory for a programming language are not the assertions

p
themselves, but expressions involving both assertions and program fragments. More
recisely, the theory expresses the properties of a program fragment with respect to the

f
a
assertions that are satisfied before and after execution of the fragment. Two kinds o
ssertion must be considered:

• Preconditions, assumed to be satisfied before the fragment is executed.

• Postconditions, guaranteed to be satisfied after the fragment has been executed.

n
p
A program or program fragment will be said to be correct with respect to a certai
recondition P and a certain postcondition Q if and only if, when executed in a state in

which P is satisfied, it yields a state in which Q is satisfied.
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t
p

The difference of words – assumed vs. ensured – is significant: we trea
reconditions and postconditions differently. Most significant program fragments are only

t
p
applicable under certain input assumptions: for example, a Fortran compiler will no
roduce interesting results if presented with the data for the company’s payroll program,

,
t
and conversely. The precondition should of course be as broad as possible (for example
he behavior of the compiler for texts which differ from correct Fortran texts by a small

p
number of common mistakes should be predictable); but the specification of any realistic
rogram can only predict the complete behavior of the program for a subset of all

possible cases.

It is the responsibility of the environment to invoke the program or program
e

p
fragment only for cases that fall within the precondition; the postcondition binds th
rogram, but only in cases when the precondition is satisfied.

e
p

So a pre-post specification is like a contract between the environment and th
rogram: the precondition obligates the environment, and the postcondition obligates the

w
program. If the environment does not observe its part of the deal, the program may do

hat it likes; but if the precondition is satisfied and the program fails to ensure the
f

s
postcondition, the program is incorrect. These ideas lie at the basis of a theory o
oftware construction which has been termed programming by contract (see the

bibliographical notes).

Defined in this way, program correctness is only a relative concept: there is no such
k

a
thing as an intrinsically correct or intrinsically incorrect program. We may only tal
bout a program being correct or incorrect with respect to a certain specification, given by

9

a precondition and a postcondition.

.4.3 Partial and total correctness

The above discussion is vague on whose responsibility it is to ensure that the program
terminates. Two different approaches exist: partial and total correctness.

The following definitions characterize these approaches; they express the correctness,

p
total or partial, of a program fragment a with respect to a precondition P and a
ostcondition Q .

___________________________________________________________

c
Definition (Total Correctness). A program fragment a is totally
orrect for P and Q if and only if the following holds: Whenever a

n
t
is executed in any state in which P is satisfied, the executio
erminates and the resulting state satisfies Q .

___________________________________________________________
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___________________________________________________________

Definition (Partial Correctness). A program fragment a is partially

i
correct for P and Q if and only if the following holds: Whenever a
s executed in any state in which P is satisfied and this execution

_
terminates, the resulting state satisfies Q .
__________________________________________________________

y
r
Partial correctness may also be called conditional correctness: to prove it, you are onl
equired to prove that the program achieves the postcondition if it terminates. In contrast,

proving total correctness means proving that it achieves the postcondition and terminates.

You might wonder why anybody should be interested in partial correctness. How
o

t
good is the knowledge that a program would be correct if it only were so kind as t
erminate? In fact, any non-terminating program is partially correct with respect to any

specification. For example, the following loop

while 0 = 0 do
print ("We try harder!")

p
end;
rint ("We have proved Fermat’s last theorem")

e
r
is partially correct with respect to the precondition true and a postcondition left for th
eader to complete (actually, any will do).

The reason for studying partial correctness is pragmatic: methods for proving

p
termination are often different in nature from methods for proving other program
roperties. This encourages proving separately that the program is partially correct and

l
c
that it terminates. If you follow this approach, you must never forget that partia
orrectness is a useless property until you have proved termination.

T

9.4.4 Varieties of axiomatic semantics

he work on axiomatic semantics was initiated by Floyd in a 1967 article (see the
a

h
bibliographical notes), applied to programs expressed through flowcharts rather than
igh-level language.

The current frame of reference for this field is the subsequent work of Hoare, which
d

f
proposes a logical system for proving properties of program fragments. The well-forme
ormulae in such a system will be called pre-post formulae. They are of the form

w

{P} a {Q}

here P is the precondition, a is the program fragment, and Q is the postcondition.

t
(Hoare’s original notation was P {a} Q, but this discussion will use braces according to
he convention of Pascal and other languages which treat them as comment delimiters.)

,
t
The notation expresses partial correctness of a with respect to P and Q : in this method
ermination must be proved separately.
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s
f

So a Hoare theory of a programming language consists of axioms and inference rule
or deriving certain pre-post formulae. This approach may be called pre-post semantics.

a
l

Another approach was developed by Dijkstra. Its aim is to develop, rather than
ogical theory, a calculus of programs, which makes it possible to reason on program

n
a
fragments and the associated assertions in a manner similar to the way we reason o
rithmetic and other expressions in calculus: through the application of well-formalized

s
t
transformation rules. Another difference with pre-post semantics is that this theory handle
otal correctness. This approach may be called wp-semantics, where wp stands for

‘‘weakest precondition’’; the reason for this name will become clear later (9.8).

We will look at these two approaches in turn. Of the two, only the pre-post method
s

c
fits exactly in the axiomatic framework as defined above. But the spirit of wp-semantics i
lose.

9.5 A CLOSER LOOK AT ASSERTIONS

o
f
The theory of axiomatic semantics, in either its ‘‘pre-post’’ or ‘‘wp’’ flavor, applies t
ormulae whose basic constituents are assertions. To define the metalanguage of the

s
a
theory properly, we must first give a precise definition of assertions and of the operator
pplicable to them.

Because assertions are properties involving program objects (variables, constants,

o
arrays etc.), the assertion metalanguage may only be defined formally within the context
f a particular programming language. For the discussion which follows that language

9

will be Graal.

.5.1 Assertions and boolean expressions

An assertion has been defined as a property of program objects, which a given state of
program execution may or may not satisfy.

Graal, in common with all usual programming languages, includes a construct which
o

i
seems very close to this notion: the boolean expression. A boolean expression als
nvolves program objects, and has a value which is true or false depending on the values

i
of these objects. For example, the boolean expression x + y > 3 has value true in a state
f and only if the sums of the values that the program variables x and y have in this state

is greater than three.

Such a boolean expression may be taken as representing an assertion as well – the
assertion satisfied by those states in which the boolean expression has value true.

Does this indicate a one-to-one correspondence between assertions and boolean
expressions? This is actually two questions:
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• Given an arbitrary boolean expression of the programming language, can we

2

always associate an assertion with it, as in the case of x + y > 3?

• Can any assertion of interest for the axiomatic theory of a programming language

F

be expressed as a boolean expression?

or the axiomatic theory of Graal given below, the answer to these questions turns out to
e

b
be yes. But this should not lead us confuse assertions with boolean expressions; there ar
oth theoretical and practical reasons for keeping the two notions distinct.

tOn the theoretical side, assertions and boolean expressions belong to differen
:worlds

• Boolean expressions appear in programs: they belong to the programming

•
language.

Assertions express properties about programs: they belong to the formulae of the

O

axiomatic theory.

n the practical side, languages with more powerful forms of expressions than Graal,

q
including all common programming languages, may yield a negative answer to both
uestions 1 and 2 above. To express the assertions of interest in such languages, the

e
formalism of boolean expressions is at the same time too powerful (not all boolean
xpressions can be interpreted as assertions) and not powerful enough (some assertions

are not expressible as boolean expressions).

Examples of negative answers to question 1 may arise from functions with side-
effects: in most languages you can write a boolean expression such as

f (x) > 0

where f is a function with side-effects. Such boolean expressions are clearly inadequate
s

a
to represent assertions, which should be purely descriptive (‘‘applicative’’) statement
bout program states.

As an example of why the answer to question 2 could be negative (not all assertions

l
of interest are expressible as boolean expressions), consider an axiomatic theory for any
anguage offering arrays. We may want to use an axiomatic theory to prove that any state

immediately following the execution of a sorting routine satisfies the assertion

i : 1 . . n −1 t [ i ] ≤ t [ i +1]V •-

where t is an array of bounds 1 and n . But this cannot be expressed as a boolean
expression in ordinary languages, which do not support quantifiers such as .V-

t
s

Commonly supported boolean expressions are just as unable to express a requiremen
uch as ‘‘the values of t are a permutation of the original values’’ – another part of the

sorting routine’s specification.

To be sure, confusing assertions and boolean expressions in the specification of a

c
language as simple as Graal would not cause any serious trouble. It is indeed often
onvenient to express assertions in boolean expression notation, as with x + y > 3 above.

r
But to preserve the theory’s general applicability to more advanced languages we should
esist any temptation to identify the two notions.
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T

9.5.2 Abstract syntax for assertions

o keep assertions conceptually separate from boolean expressions, we need a specific
abstract syntactic type for assertions. For Graal it may be defined as:

Assertion = exp: Expression

w

∆

ith a static validity function expressing that the acceptable expressions for exp must be

[

of type boolean:

9.3]
V [a : Assertion , tm : Type_map] =∆Assertion

Expression
/\V [a. exp, tm ] expression_type (a. exp, tm ) = bt

r
a
This yields the following complete (if rather pedantic) form for the assertion used earlie
s example under the form x + y > 3:

[9.4]
Assertion

(exp: Expression (Binary
y(term1: Expression (binar

(term1: Variable (id: "x") ;

o
term2: Variable (id: "y") ;
p: Operator (Arithmetic_op (Plus))));

o
term2: Constant (Integer_constant (3));
p: Operator (Relational_op (Gt)))))

:or if we just use plain concrete syntax for expressions

Assertion (exp : x + y > 3)

For simplicity, the rest of this chapter will use concrete syntax for simple assertions and
n

a
their constituent expressions; furthermore, it will not explicitly distinguish between a
ssertion an the associated expression when no confusion is possible. So the above

assertion will continue to be written x + y > 3 without the enclosing Assertion (exp: . . .).

In the same spirit, the discussion will freely apply boolean operators such as and,
orand not to assertions; for example, P and Q will be used instead of

Assertion (exp: Expression (Binary
(term1: P exp ;•

• ;
o
term2: Q exp
p: Operator (Boolean_op (And)))))

.It is important, however, to bear in mind that these are only notational facilities

The next chapter shows how to give assertions a precise semantic interpretation in
the context of denotational semantics.
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.5.3 Implication

In stating the rules of axiomatic semantics for any language, we will need to express

t
properties of the form: ‘‘Any state that satisfies P satisfies Q ’’. This will be written using
he infix implies operator as

W

P implies Q

hen such a property holds and the reverse, Q implies P , does not, P will be said said
to be stronger than Q , and Q weaker than P .

The implies operator takes two assertions as its operands; its result, however, is not

a
an assertion but simply a boolean value that depends on P and Q . This value is true if
nd only if Q is satisfied whenever P is satisfied. P implies Q is a well-formed formula

9

of the metalanguage of axiomatic semantics, not a programming language construct.

.6 FUNDAMENTALS OF PRE-POST SEMANTICS

g
l
The basic concepts are now in place to introduce axiomatic theories for programmin
anguages such as Graal, beginning with the pre-post approach.

e
n

This section examines general rules applicable to any programming language; th
ext section will discuss specific language constructs in the Graal context.

T

9.6.1 Formulae of interest in pre-post semantics

he formulae of pre-post semantics are pre-post formulae of the form {P} a {Q}. The
e

i
purpose of pre-post semantics is to to derive certain such formulae as theorems. Th
ntuitive meaning of a pre-post formula is the following:

[9.5]
___________________________________________________________

{
Interpretation of pre-post formulae: A pre-post formula
P} a {Q} expresses that a is partially correct with respect to

_
precondition P and postcondition Q .
__________________________________________________________

f
a
From the definition of partial correctness (page 314), this means that the computation o

, started in any state satisfying P , will (if it terminates) yield a state satisfying Q . The
next chapter will interpret this notion in terms of the denotational model.
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T

9.6.2 The rule of consequence

he first inference rule (in fact, as the subsequent rules, a rule schema) is the language-

i
independent rule of consequence, first introduced in 4.6.2. It states that ‘‘less
nformative’’ formulae may be deduced from ones that carry more information. This

:

C

concept may now be expressed more rigorously using the implies operator on assertions

ONS

{P} a {Q}, P’ implies P, Q implies Q’___________________________________
{P’} a {Q’}

T

9.6.3 Facts from elementary mathematics

he axiomatic theory of a programming language is not developed in a vacuum. Programs

w
manipulate objects which represent integers, real numbers, characters and the like. When

e attempt to prove properties of these programs, we may have to rely on properties of

h
these objects. This means that our axiomatic theories for programming languages may
ave to embed other, non-programming-language-specific theories.

l
i

Assume that in a program manipulating integer variables only, we are able (as wil
ndeed be the case with the axiomatic theory of Graal) to prove

[9.6]
{x + x > 2} y := x + x {y > 1},

[

but what we really want to prove is

9.7]
{x > 1} y := x + x {y > 1}

Before going any further you should make sure that you understand the different notations

t

involved. The formulae in braces {...} represent assertions, each defined, as we have seen, by

he associated Graal boolean expression. Occurrences of arithmetic operators such as + or > in

h

w

these expressions denote Graal operators – not the corresponding mathematical functions, whic

ould be out of place here. If programming language constructs (such as the Graal operator

b

for addition) were confused with their denotations (such as mathematical addition), there would

e no use or sense for formal semantic definitions.

f
c
How can we prove [9.7] assuming we know how to prove [9.6]? The rule o
onsequence is the normal mechanism: from the antecedents

[9.6]
{x + x > 2} y := x + x {y > 1}
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9.8]
{x > 1} implies {x + x > 2}

.direct application of the rule of consequence will yield [9.7]

This assumes that we can rely on the second antecedent, [9.8]. But we cannot

d
simply accept [9.8] as a trivial property from elementary arithmetic. Actually, its formula
oes not even belong to the language of elementary arithmetic; as just recalled, it is not a

.
D
mathematical property but a well-formed formula of the Graal assertion language

eductions involving such formulae require an appropriate theory, transposing to
s

–
programming language objects the properties of the corresponding objects in mathematic

integers, boolean values, real numbers.

When applied to actual programs, written in an actual programming languages and
f

s
meant to be executed on an actual computer, this theory cannot be a blind copy o
tandard mathematics. For integers, it needs to take size limitations and overflow into

e
p
account; this is the object of exercise 9.1. For ‘‘real’’ numbers, it needs to describe th
roperties of their floating-point approximations.

For the study of Graal, which only has integers, we will accept arithmetic at face
s

d
value, taking for granted all the usual properties of integers and booleans. The rest of thi
iscussion assumes that the theory of Graal is built on top of another axiomatic theory,

r
called EM for elementary mathematics. EM is assumed to include axioms and inference
ules applicable to basic Graal operators (+, –, <, >, and etc.) and reflecting the properties

s
[
of the corresponding mathematical operators. Whenever a proof needs a property such a
9.8] above, the justification will simply be the mention ‘‘EM’’.

o
t

EM also includes properties of the mathematical implication operation, transposed t
he implies operation on assertions. An example of such a property is the transitivity of

implication: for any assertions P , Q , R ,

((P implies Q ) and (Q implies R )) ==> (P implies R )

a
f
Chapter 10 will use the denotational model to define the semantics of assertions in
ormal way, laying the basis for a rigorously established EM theory, although this theory

will not be spelled out.

Using EM, the proof that [9.7] follows from [9.6] may be written as:

_________________________________________________________

T

_______________________________________________________

1 [9.6] {x + x > 2} y := x + x {y > 1} (proved separately)

T

T2 x > 1 implies x + x > 2 EM

3 [9.7] {x > 1} x := x + x {y > 1} T1, T2; CONS
_________________________________________________________

T

_______________________________________________________

he EM rules used in this chapter are all straightforward. In proofs of actual programs,

t
you will find that axiomatizing the various object domains may be a major part of the
ask. One of the proofs below (the ‘‘tower of Hanoi’’ recursive routine, 9.10.9), as well

as exercises 9.25 and 9.26, provide examples of building theories adapted to specific
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g
problems. But some object domains are hard to axiomatize. For example, producing a
ood theory for floating-point numbers and the associated operations, as implemented by

t
a
computers, is a difficult task. Such problems are among the major practical obstacles tha
rise in efforts to prove full-scale programs.

A

9.6.4 The rule of conjunction

language-independent inference rule similar in scope to the rule of consequence is

a
useful in some proofs. This rule states that if you can derive two postconditions you may
lso derive their logical conjunction:

CONJ

{P} a {Q}, {P} a {R}_____________________
{P} a {Q and R }

e
b
Note that conversely if you have established {P} a {Q and R }, then you may deriv

oth {P} a {Q} and {P} a {R}. This property does not need to be introduced as

t
a rule of the theory but follows from the rule of consequence, since the following are EM
heorems:

(Q and R ) implies Q

R

W

(Q and R ) implies

p-semantics, as studied later in this chapter, will enable us to determine whether there is

9

a corresponding ‘‘rule of disjunction’’ for the or operator (see 9.9.4).

.7 PRE-POST SEMANTICS OF GRAAL

.

9

We now have all the necessary background for the axiomatic theory of Graal instructions

.7.1 Skip

The first instruction to consider is Skip . The pre-post axiom schema is predictably neither

A

hard nor remarkable.

Skip
{P} Skip {P}

Skip does not do anything, so what the user of this instruction may be guaranteed on exit
is no more and no less than what he is prepared to guarantee on entry.
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.7.2 Assignment

The axiom schema for assignment uses the notion of substitution. For any assertion Q :

A
Assignment

{Q [x ← e ]} Assignment (target : x ; source : e) {Q}

,
i

This rule introduces a new notation: Q [x ← e ], read as ‘‘Q with x replaced by e ’’
s the substitution of e for all occurrences of x in Q . This notation is applicable when Q

s
a
and e are expressions and x is a variable; it immediately extends to the case when Q i
n assertion.

Substitution is a purely textual operation, involving no computation of the

t
expression: to obtain Q [x ← e ], you take Q and replace occurrences of x by e
hroughout. We need to define this notion formally, of course, but let us first look at a

r
few examples of substitution. As mentioned above, the expressions apply arithmetic and
elational operations in standard concrete syntax.

2

1 3 [x ← y + 1] = 3

(z 7) [x ← y + 1] = z 7

3

* *
x [x ← y + 1] = y + 1

)4 (x − x ) [x ← y + 1] = ( y + 1) − ( y + 1
2 3 2 3

6

5 (x + y ) [x ← y + 1] = ( y + 1) + y

(x + y ) [x ← x + y + 1] = (x + y + 1) + y

o
Q

In the first two examples, x does not occur in Q , so that Q [x ← e ] is identical t
(a constant in the first case, a binary expression not involving x in the second). In

n
e
example 3, Q is just the target x of the substitution, so that the result is e , here y + 1. I
xample 4, x appears more than once in Q and all occurrences are substituted. Example 5

f
o
shows a case when a variable, here y , appears in both Q and e ; note that rules o
rdinary arithmetic would allow replacement of the right-hand side by 2 y +1, but this is*

h
x
outside the substitution mechanism. Finally, example 6 shows the important case in whic

, the variable being substituted for, appears in e , the replacement.

We need a way to define substitution formally. Let

Q [x ← e ] = subst (Q , e , x id )∆
•

where function subst , a simplified version of the substitution function introduced in 5.7
for lambda calculus (see figure 5.2), is defined by structural induction on expressions:
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[9.9]
subst (Q : Expression , e : Expression , x : S) =∆

case Q of

Constant : Q

Variable : if Q id = x then e else Q end

Binary :

•

Expression (Binary (
term1 : subst (Q term1, e, x) ;

•

•

;
o
term2 : subst (Q term2, e, x)

p: Q op ))

W

end •

e may need to compose substitutions, using the following rule:

[9.10]
(Q [a ← f ]) [b ← g ] = Q [a ← ( f [b ← g ])]

s
c
This property does not hold in all cases (a counter-example is easy to produce) but i
orrect in the two cases for which we will need it: when a and b are the same identifier;

o
and when b does not occur in Q . The proof by structural induction, using the definition

f function subst , is the subject of exercise 9.20.

h
a
In the pre-post theory, subst will only be applied to boolean expressions (associated wit
ssertions); but as these may be relational expressions involving sub-expressions of any

type, we need subst to be defined for general expressions.

The pre-post axiom schema for assignment (A ) uses substitution to describe
Assignment

e
a
the result of an assignment. The idea is quite simple: whatever is true of x after th
ssignment x := e must have been true of e before.

e
s

The following are simple examples of the use of the axiom schema. Carry out th
ubstitutions by yourself to see the mechanism at work.

2

1 {y > z – 2} x := x + 1 {y > z – 2}

{2 + 2 = 5} x := x + 1 {2 + 2 = 5}

4

3 {y > 0} x := y {x > 0}

{x + 1 > 0} x := x + 1 {x > 0}

n
a
Example 1 shows that an assertion involving only variables other than the target of a
ssignment is preserved by the assignment. The assertion of the second example only

e
p
involves constants and is similarly maintained. Note that the rule says nothing about th
recondition and postcondition being ‘‘true’’ or ‘‘false’’: all that example 2 says is that if

t
two plus two equaled five before the assignment this will still be the case afterwards – a
heorem, although a useless one since its assumption does not hold.
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Examples 3 and 4 result from straightforward application of substitution. For the
latter, the assignment rule does not by itself yield a proof of

{x > –1} x := x + 1 {x > 0}

For this, EM and the rule of consequence are needed. The proof may be written as
follows:

__________________________________________________________________________________________________

A1 {x + 1 > 0} x := x + 1 {x > 0} A
Assignment

A

A2 x > –1 implies x + 1 > 0 EM

3 {x > –1} x := x + 1 {x > 0} A1, A2; CONS
__________________________________________________

T

________________________________________________

hree important comments apply to the assignment rule.

a
p

First, the rule as given works ‘‘backwards’’: it makes it possible to deduce
recondition Q [v ← e ] from the postcondition Q rather than the reverse. A forward rule

t
is possible (see exercise 9.9), but it turns out to be less easy to apply. The observation
hat proofs involving assignments naturally work by sifting the postcondition back through

d
o
the program to obtain the precondition has important consequences on the structure an
rganization of these proofs.

In a simple case, however, the backward rule yields an immediate forward property,

a
If the source expression e for an assignment is a plain variable, rather than a constant or

composite expression, then for any assertion P :

[9.11]
{P } Assignment (target: x ; source: e) {P [e ← x ]}

rprovided x does not occur in P . To derive this, use A , taking P [e ← x ] fo
Assignment

,
w
Q ; then Q [x ← e ] is P by the rule for composition of substitutions ([9.10], page 324)

hich is applicable here thanks to the assumption that x does not occur in P .

f
t

The second comment reflects on the nature of assignment. This instruction is one o
he most imperative among the features that distinguish programming from the

a
m
‘‘applicative’’ tradition of mathematics (1.3). An assignment is a command, not

athematical formula; it specifies an operation to be performed at a certain time during
a

c
the execution of a program, not a relation that holds between mathematical entities. As
onsequence, it may be difficult to predict the exact result of an assignment instruction in

h
o
a program, especially since repeated assignments to the same variable will cancel eac
ther’s effect.

Axiom A establishes the mathematical respectability of assignment by
e

Assignment
nabling us to interpret this most unabashedly imperative of programming language

:
s
constructs in terms of a ‘‘pure’’ – that is to say, applicative – mathematical concept
ubstitution.
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a
The third comment limits the applicability of the rule. As given above, this rule only

pplies to languages (such as Graal) which draw a clear distinction between the notions of
t

o
expression and instruction. In such languages, expressions produce values, with no effec
n the run-time state of the program; in contrast, instructions may change the state, but do

,
u
not return a value. This separation is violated if an expression may produce side-effects
sually through function calls. Consider for example a function

asking_for_trouble (x : in out INTEGER): INTEGER is
do

x := x + 1;
global := global + 1;
Result := 0

-- The function’s returns as result the final value of
)

w

end
-- the predefined variable Result (Eiffel convention

here global is a variable external to asking_for_trouble in some fashion but declared
t

o
outside of the scope of asking_for_trouble; for example global may be external in C, par

f a COMMON in Fortran, declared in an enclosing block in Pascal, in the enclosing
e

f
package in Ada or in the enclosing class in Eiffel. The following pre-post formulae ar
alse in this case even though they would directly result from applying A (with a

proper rule for functions):
Assignment

{global = 0} u := asking_for_trouble (a) {global = 0}

I

{a = 0} u := asking_for_trouble (a) {a = 0}

t is possible to adapt A to account for possible side-effect in expressions, but
t

assignment
his makes the theory significantly more complex. Since, however, most programming

e
s
languages allow functions to produce side-effects, we need a way to describe th
emantics of the corresponding calls. A solution, already suggested in the discussion of

denotational semantics (7.7.2), is to limit the application of A to assignments
Assignment

n
a
whose source expression does not include any function call. Then to deal with a
ssignment whose right-hand side is a function call, such as

[9.12]
y := asking_for_trouble (x)

we consider that, in abstract syntax, this is not an assignment but a routine call; the
t

r
abstract syntax for such an instruction includes an input argument, here x , and an outpu
esult, here y . The instruction then falls under the scope of the inference rule for such

routine calls, given later in this chapter (9.10.2).

Only for the purposes of a proof do you actually need to translate an assignment of

o
the [9.12] form into a routine call; the translation, done in abstract syntax, leaves the
riginal concrete program unchanged. (As noted in chapter 7, this is an example of the

‘‘two-tiered specifications’’ discussed in 4.3.4.)
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Of course, functions which produce arbitrary side-effects are bad programming
a

f
practice since they damage referential transparency. We should certainly not condone
unction such as asking_for_trouble. But in practice many functions will need to change

r
the state in some perfectly legitimate ways. For example any function that creates and
eturns a new object does perform a side-effect (by allocating memory), although from the

caller’s viewpoint it simply computes a result (the object) and is referentially transparent.

Because it is difficult to define useful universal rules for distinguishing between
e

d
‘‘good’’ and ‘‘bad’’ side-effects, most programming languages, even the few whos
esigners worried about the provability of programs, allow side-effects in functions, with

u
s
few or no restrictions. To prove properties of assignments involving functions, then, yo
hould treat them as routine calls using the transformation outlined above.

f
s

The existence of such a formal mechanism is not an excuse for undisciplined use o
ide-effects in expressions, especially those which do not even involve a function call, as

9

with the infamous value-modifying C expressions of the form x++ or – –x.

.7.3 Dealing with arrays and records

The assignment axiom, as given above, is directly applicable to simple variables. How can
we deal with assignments involving array elements or record fields?

Plain substitution will not work. Take for example the Pascal array assignment

T

t [ i ] := t [ j ] + 1

hen by naive application of axiom A we could prove a property such as:

[9.13]

Assignment

{t [ j ] = 0} t [ i ] := t [ j ] + 1 {t [ j ] = 0}

n
t
Here the substitution appears trivial since the assignment’s target, t [ i ], does not occur i
he postcondition.

Unfortunately, the above is not a theorem since the assignment will fail to ensure the
c

i
postcondition if i = j . The problem here is a fundamental property of arrays, dynami
ndexing: when you see a reference to an array element, t [ i ], the program text does not

t
w
tell you which array element it denotes. So it is only at run time that you will find ou

hether t [ i ] and t [ j ] denote the same array elements or different ones. Such a
e

o
situation, where two different program entities may at run time happen to denote the sam
bject, is known as dynamic aliasing.

One solution is to consider an assignment to an array element as an assignment to
,

w
the whole array. More precisely, we may treat this operation as a separate instruction

ith abstract syntax

Array_assign = target : Variable ; index : Expression ; source : Expression∆
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Assignment
:

A

The associated rule is a variant of A

Array_assign

{Q [t ← t ( i : e )]} Array_assign (target : t ; index : i ; source : e ) {Q}

t
t

The new notation introduced, t (i : e ), denotes an array which is identical to t excep
hat its value at index i is e . This property may be described by two axioms:

A
Array

i ≠ j implies t (i : e ) [ j ] = t [ j ]

T

i = j implies t (i : e ) [ j ] = e

hese rules yield the following two theorems (replacing [9.13]):

[9.14]
{i ≠ j and t [ j ] = 0} t [i ] := t [ j ] + 1 {t [ j ] = 0}

T

{i = j and t [ j ] = 0} t [i ] := t [ j ] + 1 {t [ j ] = 1}

he proof is left as an exercise (9.10)

We may use a similar method to deal with objects of record types. (See also the
,

w
denotational model in 7.2.) If x is such an object, and a is one of the component tags

e should treat the assignment x a := e as an assignment to x as a whole. In line with
t

•

he technique used for arrays, x (a : e ) is defined as denoting an object identical to x
e

s
except that its a component is equal to v . The axioms schemata for this operation ar
impler with records than with arrays, as here there is no dynamic aliasing: an array index

n
s
may only be known at run-time, but the tag of a reference to a record field is know
tatically1.

A
Record

(x (a : e )) b = x b

•

• •

e

w

(x (a : e )) a =

here: x is an object of a record type; a and b are different component tags of this type;
dot notation x t denotes access to the component of x with tag t .•

To obtain a variant of the assignment axiom applicable to record components, just
imitate A after introducing the suitable abstract syntax.

Array_assign

In object-oriented languages such as Eiffel or Smalltalk, the technique known as dynamic
b

1

inding means that in some cases the actual tag must be computed at run-time.
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T

9.7.4 Conditional

he remaining instructions are not primitive commands, but control structures used to
s

s
construct complex instructions from simpler ones; as a consequence, their semantics i
pecified through inference rules (actually rule schemata) rather than axioms.

I

Here is the inference rule for conditionals:

Conditional

{P and c} a {Q}, {P and not c} b {Q}
_

{

_________________________________________________

P} Conditional (test : c; thenbranch : a; elsebranch : b) {Q}

h
r
Let us see what this means. Assume you are requested to prove the correctness, wit
espect to P and Q , of the instruction given in abstract syntax at the bottom of the rule,

which in more casual notation would appear as

if c then a else b end

Since the result of executing this instruction is to execute either a or b , you may proceed
n

t
by proving separately that both a and b are correct with respect to P and Q ; however i
he case of a you may ‘‘and’’ the precondition with c , since this branch will only be

executed when c is initially satisfied; and similarly with not c for the other branch.

As an example of using this rule, consider the proof of the following program
t

u
fragment, which you may recognize as an extract from Euclid’s algorithm, in its varian
sing subtraction rather than division. (The proof of the extract will be used later as part

[

of the proof of the complete algorithm.)

9.15]
{m, n, x, y > 0 and x ≠ y and gcd (x , y ) = gcd (m , n )}

if x > y then

x := x – y
else

y := y – x

{

end

m, n, x, y > 0 and gcd (x , y ) = gcd (m , n )}

n
d
where all variables are of type INTEGER, gcd (u , v ) denotes the greatest commo
ivisor of two positive integers u and v and the notation u, v, w, . . . > 0 is used as a

shorthand for

u > 0 and v > 0 and w > 0 and . . .
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_______________________________________________________________________

C

_____________________________________________________________________

1 {m, n, x – y, y > 0 and gcd (x − y , y ) = gcd (m , n )}

{

x := x – y

m, n, x, y > 0 and gcd (x , y ) = gcd (m , n )} A
t

C2 m, n, x, y > 0 and x ≠ y and

Assignmen

gcd (x , y ) = gcd (m , n ) and x > y

m

implies

, n, x – y, y > 0 and gcd (x − y , y ) = gcd (m , n ) EM

C3 {m, n, x, y > 0 and x ≠ y and
gcd (x , y ) = gcd (m , n ) and x > y}

{

x := x – y

m, n, x, y > 0 and gcd (x , y ) = gcd (m , n )} C1, C2; CONS

C4 {m, n, x, y – x > 0 and gcd (x , y − x ) = gcd (m , n )}

y := y – x

{m, n, x, y > 0 and gcd (x , y ) = gcd (m , n )} A
t

C5 m, n, x, y > 0 and x ≠ y and

Assignmen

gcd (x , y ) = gcd (m , n ) and not x > y

m

implies

, n, y – x, y > 0 and gcd (x , y − x ) = gcd (m , n ) EM

C6 {m, n, x, y > 0 and x ≠ y and
gcd (x , y ) = gcd (m , n ) and not x > y}

{

y := y – x

m, n, x, y > 0 and gcd (x , y ) = gcd (m , n )} C4, C5; CONS

C7 {m, n, x, y > 0 and x ≠ y and
gcd (x , y ) = gcd (m , n )}

CONDIT

{m, n, x, y > 0 and gcd (x , y ) = gcd (m , n )} C3, C6; I
lConditiona
____________________________________________________________________________________________________________________________________________

Figure 9.3: Proof involving a conditional instruction
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he proof of [9.15] is given in full detail on the adjacent page. CONDIT denotes the
,

t
conditional instruction under scrutiny. P and Q being the precondition and postcondition
he proof proceeds by establishing two properties separately:

){P and x > y} x := x – y {Q} (Line C3

{P and y > x} y := y – x {Q} (Line C6)

[

Both cases are direct applications of the EM property that

9.16]
u > v > 0 implies gcd (u , v ) = gcd (u −v , v )

e

a

[9.16] as well as the precondition and postcondition of [9.15] illustrate the ‘‘unobtrusiv

pproach’’ to undefinedness mentioned at the beginning of this chapter. The greatest common

e

a

divisor of two integers is only defined if both are positive. To deal with this problem, th

ssertions of [9.15] include clauses, anded with the rest of these assertions, stating that the

e

l

elements whose gcd is needed are positive; the formula in [9.16] uses a similar condition as th

eft-hand side of an implies.

Rather than introducing explicit rules stating when an expression’s value is defined and when it

,

b

is not, it is usually simpler, as here, to permit the writing of potentially undefined expressions

ut to ensure through the axioms and inference rules of the theory that one can never prove

9

anything of interest about their values.

.7.5 Compound

Two rules are needed to deal with compound instructions. The first, an axiom schema,

A

expresses that a zero-element compound is equivalent to a Skip :

0
Compound

{P} Compound (<>) {P}

t
a
The second rule enables us to to combine the properties of more than one compound. I
ssumes c is a compound and a is an instruction.

I
Compound

{P} c {Q}, {Q} a {R}
______________________

{P} c ++ <a> {R}

,
b
The derivation shown below illustrates the technique for proving properties of compounds
ased on these two rules. The property to prove is

}{m, n > 0} x := m ; y := n {m, n, x, y > 0 and gcd (x , y ) = gcd (m , n )
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________________________________________________________________

S

______________________________________________________________

1 {m , n > 0}
implies

{m, n, m, n > 0 and gcd (m , n ) = gcd (m , n )} EM

S2 {m, n, m, n > 0 and gcd (m , n ) = gcd (m , n )}
x := m
{m, n, x, n > 0 and gcd (x , n ) = gcd (m , n )} A

t

S3 {m, n > 0}

Assignmen

x := m
{m, n, x, n > 0 and gcd (x , n ) = gcd (m , n )} S1, S2; CONS

S4 {m, n, x, n > 0 and gcd (x , n ) = gcd (m , n )}
y := n
{m, n, x, y > 0 and gcd (x , y ) = gcd (m , n )} A

t

S5 {m, n > 0}

Assignmen

x := m; y := n
{m, n, x, y > 0 and gcd (x , y ) = gcd (m , n )} S3, S4; I

dCompoun______________________________________________________________________________________________________________________________

Figure 9.4: Proof involving a compound instruction

T

9.7.6 Loop

he last construct to study is the loop, for which the rule is predictably more delicate. It

I

is an inference rule, as follows:

Loop

{I and c} b {I}
_

{

____________________________________

I} Loop (test : c ; body : b ) {I and not c}

sThis rule embodies two properties of loops. In concrete syntax, the loop considered i

while c do b end

First, the postcondition includes not c because the continuation condition c will not hold
lupon loop exit (otherwise the loop would have continued). Note that I is a partia

Loop
e

t
correctness rule, which is of little interest if the loop does not terminate. You must prov
ermination separately, using techniques explained below.
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The second property relates to an assertion I , called a loop invariant, which is
assumed to be such that:

{I and c} b {I}

In other words, if I is satisfied before an execution of b , I will still be satisfied after that

a
execution – hence the name ‘‘invariant’’. The actual precondition in this hypothesis is
ctually not just I but I and c since executions of b are of interest only when they

t
i
occur as part of loop iterations, that is to say when c is satisfied. The rule expresses tha
f the truth of I is maintained by one execution of b (under c ), then it will also be

maintained by any number of executions of b , and hence by a loop having b as body.

Loop e

s

The expressions I and c and I and not c appearing in I are a slight abuse of languag

ince and and not as defined (page 318) take assertions as operands, whereas c is just a Graal

W

boolean expression. The correct notations would use Assertion (exp: c ) rather than c .

hat is a loop invariant? The consequent of the rule gives a hint. Its postcondition
represents what the loop is supposed to achieve, its ‘‘goal’’. This goal is

I and not c

which makes the invariant I appear as a weakened form of the goal. But I is also the
e

s
precondition of the consequent. This means that I is weak enough to be satisfied in th
tate preceding execution of the loop, but strong enough to yield the desired goal on exit

when combined with the exit condition.

As an example, take Euclid’s algorithm for computing the greatest common divisor
of two positive integers m and n :

x := m ; y := n;

pwhile x ≠ y loo

if x > y then

y
else

x :=x –

y := y – x

g

end;
end

:= x

The proofs of the previous examples show that that this loop admits the following

[

property as invariant:

INV]
x > 0 and y > 0 and gcd (x , y ) = gcd (m , n )
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f
A
The invariant is satisfied before the loop begins, since by straightforward application o

, I and EM:
Assignment Compound

{m > 0 and n > 0}

x := m ; y := n

{x > 0 and y > 0 and gcd (x , y ) = gcd (m , n )}

e
e
So on loop exit we may infer both the invariant, hence gcd (x , y ) = gcd (m , n ), and th
xit condition x = y ; the conjunction of these assertions implies x = y = gcd (m , n ).

•
Note how INV matches the informal notion of a ‘‘weakened form of the goal’’:

INV yields x = gcd (m , n ), that is to say essentially the goal, when x = y .

• But INV is also weaker (more general) than this goal. In fact it is weak enough to

Y

be satisfied trivially by taking x = m , y = n .

ou may consider an execution of the loop, then, as a process designed to maintain INV,

c
making it a little stronger (closer to the goal) on each iteration. The last part of this
hapter (9.11) shows how this view leads to a systematic approach for building correct

software.

Below is the formal proof. It uses a few abbreviations: LOOP for the loop, CONDIT

f
for the loop body (which is the conditional instruction studied previously), and EUCLID
or the whole program fragment.
____________________________________________________________________________________________________________________________________________________

L1 {m, n > 0}
x := m; y := n
{x, y > 0 and gcd (x , y ) = gcd (m , n )} S5 (see page 332), CONS

L

L2 {m, n > 0} x := m; y := n {INV} L1, definition of INV

3 {INV and x ≠ y} CONDIT {INV} C7 (see page 329), CONS

L4 {INV} LOOP {INV and x = y} I
Loop

d

L

L5 {m, n > 0} x := m; y := n; LOOP {INV and x = y} L2, L4; I
Compoun

6 {x, y > 0 and x = y implies gcd (x , y ) = x EM

M

L

L7 INV and x = y implies gcd (m , n ) = x L6, definition of INV, E

8 {INV and x = y} g := x {g = gcd (m , n )} L7; CONS

S_L9 {m, n > 0} EUCLID {g = gcd (m , n )} L5, L8; CON___________________________________________________________________________________________________________________________________________________

Figure 9.5: Proof involving a loop
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.7.7 Termination

The previous rules are partial correctness rules; this leaves the termination problem open.

c
As programmers know all too well, loops may fail to terminate; they are the only
onstruct studied so far that introduces this possibility, although of a course a compound

or conditional may also not terminate if one of its constituents does not.

The inference rule for loops, I , is clearly applicable to terminating constructs
o

Loop
nly. Otherwise the problem of automatic programming would be easy: to solve any

computing problem characterized by an output condition Q , use a program of the form

while not Q loop Skip end

Using any assertion as invariant, rule I makes it possible to infer Q upon exit. The
p

Loop
roblem, of course, is that usually there will be no exit at all. The above loop rule is of

T

no help here.

o prove termination, you may attempt to find a suitable loop variant, according to the
following definition.

___________________________________________________________

i
Definition (Variant): A variant for a loop is an expression V of type
nteger, involving some of the program’s variables, and whose

p
possible run-time values may be proved to satisfy the following two
roperties:

• The value of V is non-negative before the execution of the loop.

n
c
• If the value of V is non-negative and the loop continuatio
ondition is satisfied, an execution of the loop body will decrease

_
the value of V by at least one while keeping it non-negative.
__________________________________________________________

,
s

If these two conditions are satisfied, execution of the loop will clearly terminate
ince you cannot go on indefinitely decreasing the value of an integer expression which

never becomes negative.

As an example, the expression

V = max (x , y )∆

is an appropriate variant for the loop in the EUCLID program fragment.

d

b

More general variants may be used: rather than integer, the type of the variant expression coul

e any well-founded set, that is to say any set in which every decreasing sequence is finite. An

e

m

example of well-founded set other than N is the set of nodes of a possibly infinite tree, wher

≤ n is defined as ‘‘m is an ancestor of n or n itself’’. However the use of integer variants

i

entails no loss of generality: if v is a variant in any well-founded set, then there is also an

nteger variant v , defined for any value n of v as the longest length of a decreasing sequence

starting at n .
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variant may be viewed as an expression of the program’s variables which, prior to each
o

p
iteration of the loop, provides an upper bound on the number of remaining iterations. T
rove that the loop terminates, you must exhibit such a bound. If your sole purpose is to

l
n
prove termination, you are not required to guarantee that the bound is close to the actua
umber of remaining iterations, but a close enough bound will help you estimate the

program’s efficiency.

This informal description of the method for proving termination may now be made
more precise. Consider a pre-post formula of the form

{P} Loop (test : c ; body : b ) {Q}

To prove rigorously that the loop terminates when started with precondition P satisfied,

[

you must find an appropriate variant expression V and prove the following properties:

9.17]
P implies (V ≥ 0)

[9.18]
{(V ≥ 0) and c } z := V; b {0 ≤ V < z }

r
t

Here z is assumed to be a fresh variable of type integer, not appearing in the loop o
he rest of the program. This variable is used to record the value of the variant before

z
execution of the loop body b , to express that b decreases V strictly. The concrete form

:= V; b has been used as an abbreviation for

)

U

Compound (<Instruction (Assignment (source : V ; target : z )), b >

sing this method, you are invited to carry out formally the proof that EUCLID
terminates.

______________________________________________________________________

p

Note: it seems useless to have the condition V ≥ 0, rather than just V > 0, in the

recondition of [9.18]. Since the postcondition shows that V is decreased by at

y

least one, V could not possibly have had value 0 before the execution of b . Can

ou see why it is in reality essential to use ≥ rather than >? (For an answer, see

_
exercise 9.17).
_____________________________________________________________________

Loop
:

I

The termination rule may be merged with I to yield a total correctness rule

T -- T for termination: total correctness rule
Loop

(I and c ) implies V > 0, {I and c } z := V; b {I and (V < z )}
__________________________________________________________

{I } Loop (test : c ; body : b ) {I and not c}
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ecall that I (the invariant) must be an assertion, treated here as a boolean expression, V
g

e
(the variant) is an integer expression, and z is a fresh integer variable not appearin
lsewhere in the program fragment considered.

The new rule handles both partial correctness and termination. As compared to
d

t
[9.18], the second antecedent of the rule has a simpler postcondition: 0 ≤ V is not neede
here any more, since (because of the first antecedent):

s

I and (V ≤ 0) implies (not c )

o that the loop stops whenever V becomes non-positive. In essence, the condition
c implies (V > 0) has been integrated into the invariant.

This rule completes the pre-post theory of basic Graal. The treatment of other

b
language features in this framework (arrays, pointers and procedures) will be outlined
elow (9.10).

9.8 THE CALCULUS OF WEAKEST PRECONDITIONS

s
i
The previous section has given the pre-post semantics of the Graal constructs. It i
nteresting to consider these constructs again from a complementary viewpoint: weakest

9

precondition semantics.

.8.1 Overview and definitions

In pre-post semantics, the assertions used to characterize an instruction are not necessarily

[

the most ‘‘interesting’’ ones. For a formula of pre-post semantics:

9.19]
{P} a {Q}

d

[

the rule of consequence will also yiel

9.20]
{P’} a {Q’}

for any P ’ stronger than P and Q ’ weaker than Q (‘‘stronger’’ and ‘‘weaker’’ were
e

l
defined on page 319). Thus [9.19] may be said to be more interesting than [9.20], as th
atter may be derived from the former and so is less informative. More generally, we

e
p
may define ‘‘more interesting than’’ as an order relation between formulae: the weaker th
recondition, and the stronger the postcondition, the more interesting (informative) the

formula.



AXIOMATIC SEMANTICS338 §9.8.1

d
When the aim is to prove specific properties of a given program, we often need to

erive formulae which are not the most interesting among all possible ones. But when we
s

a
define the semantics of a language we should look for the most interesting statement
bout the instructions of that language. All axioms and inference rules given in the

’
s
preceding section, except for the properties of loops, are indeed ‘‘most interesting’
pecifications of instructions, in the sense that the given Q is the strongest possible

postcondition for the given P , and P is the weakest possible precondition for Q .

Even so, we have many possible choices of pre-post pairs to characterize any
g

o
particular instruction. It is legitimate to restrict the potential for arbitrary choice by fixin
ne of the two assertions. For example any instruction a may be characterized by the

answer to either of the following questions:

• For an arbitrary assertion P , what is the strongest assertion Q such that

•
{P} a {Q}?

For an arbitrary assertion Q , what is the weakest assertion P such that

I

{P} a {Q}?

n both cases, we view an instruction as an assertion transformer, that is to say, a

p
mechanism that associates with a given precondition or postcondition the most interesting
ostcondition or precondition (respectively) which corresponds to it through the

instruction.

The method to be described now, due to Dijkstra, follows this approach. Of the two
a

p
questions asked, the more fruitful turns out to be the second: given an instruction and
ostcondition, find the weakest precondition. This is due to both a technical and a

conceptual reasons.

• The technical reason, already apparent in the above presentation of pre-post

f
semantics, is that for common languages it is easier to express preconditions as
unctions of postconditions than the reverse.

• The conceptual reason has to do with the use of axiomatic techniques for program
y

o
construction. A program is built to satisfy a certain goal, expressed as a propert
f the output results – that is to say, a certain postcondition. It is natural to

g
p
construct the program by working backwards from the postcondition, choosin
reconditions as the weakest possible (least committing on the input data).

e
s
The weakest precondition approach is based on these observations: it defines th
emantics of a programming language through a set of rules which associate with every

t
c
construct an assertion transformer, yielding for any postcondition the weakes
orresponding precondition.

Three other features distinguish the theory given below from the above pre-post
t

d
theory: it does not require, at least in principle, the invention of a variant and invariant; i
irectly handles total correctness; finally, it deals with non-deterministic constructs

(which, however, could also be specified with pre-post semantics).
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.8.2 Basic definitions

The basic objects of the theory are wp-formulae (wp for weakest precondition) written

[

under the general form

9.21]
a wp Q

where a is an instruction and Q an assertion. Such a formula denotes, not a property
,

d
which is either true or false (as was the case with a pre-post formula), but an assertion
efined as follows:

[9.22]
___________________________________________________________

a
Definition (Weakest Precondition): The wp-formula a wp Q , where

is an instruction and Q an assertion, denotes the weakest

p
assertion P such that a is totally correct with respect to

recondition P and postcondition Q
___________________________________________________________

e
t

The expression ‘‘calculus of weakest preconditions’’ indicates the ambition of th
heory: to provide a set of rules for manipulating programs and their associated assertions

a
in a purely formal way, similar to how mathematical formulae are manipulated in ordinary
rithmetic or algebra. To compute an expression such as (x − y ) , you merely apply2 3 2

e
s
well-defined transformation rules; these rules are defined by structural induction on th
tructure of expressions. Similarly, the calculus of weakest preconditions provides rules

i
for computing a wp Q for a class of instructions a and assertions Q ; the rules defined
nductively on the structure of a and Q if a and Q are complex program objects.

y
a

Unfortunately, the calculus of programs and assertions is not as easy as elementar
rithmetic; computing a wp Q remains a difficult or impossible endeavor as soon as a

y
u
contains a loop. The theory nevertheless yields important insights and is particularl
seful in connection with the constructive approach to program correctness, discussed

9

below in 9.11.

.8.3 True and false as postconditions

The theory relies on a set of simple axioms. The first one, called the ‘‘Law of the
e

p
excluded miracle’’ by Dijkstra, states that no instruction can ever produce th
ostcondition False :

[9.23]
a wp False = False
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t
p
This is an axiom schema, applicable to any instruction a . In words: The weakes

recondition that ensures satisfaction of False after execution of a is False itself. Since it

w
is impossible to find an initial state for which False is satisfied, there is no state from

hich a will ensure False .

Having seen that, for consistency, a wp False must be False for any instruction a ,
.

B
you may legitimately ask what a wp True is. True is the assertion that all states satisfy

ut do not conclude hastily that a wp True is True for any a . If an instruction is started
y

T
in a state satisfying True , that is to say in any state, the final state will indeed satisf

rue – provided there is a final state; in other words, provided a terminates. So
a wp True is precisely the weakest precondition that will ensure termination of a .

This property is the first step towards establishing the calculus of weakest

9

preconditions as a theory not just of correctness but of total correctness.

.8.4 The rule of consequence

It is interesting to see how the rule of consequence (CONS, page 320) appears in this

[

framework:

9.24]
Q implies Q ’

_

(

_________________________

a wp Q ) implies (a wp Q ’ )

t
i
In words: if Q is stronger than Q ’, then any initial condition which guarantees tha
nstruction a will terminate in a state satisfying Q also guarantees that a will terminate in

e
i
a state satisfying Q ’. That is to say, one may derive new properties from ‘‘mor
nteresting’’ ones.

n

T

9.8.5 The rule of conjunctio

he rule of conjunction has a similarly simple wp-equivalent:

[9.25]
a wp (Q and Q ’) = (a wp Q ) and (a wp Q ’)

.

9

You are invited to study by yourself the practical meaning of this rule

.8.6 The rule of disjunction

The corresponding rule for boolean ‘‘or’’ may be written as:

[9.26]
a wp (Q or Q ’) = (a wp Q ) or (a wp Q ’)
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l
a

This rule requires more careful examination; as will turn out, it is satisfied for Graa
nd ordinary languages, but not for more advanced cases. At this point you are invited to

.
(
ponder the meaning of this rule and decide for yourself whether it is a theorem or not
For an answer, see 9.9.4 below.)

W

9.8.7 Skip and Abort

e are now ready to start studying the wp-rules for language constructs. The axiom
schema for the Skip instruction is predictably trivial:

Skip wp Q = Q

A

for any assertion Q .

n instruction (not present in Graal) that would do even less than Skip is Abort ,
characterized by the following axiom schema:

Abort wp Q = False

In other words, Abort cannot achieve any postcondition Q – not even True , the least
committing of all. Quoting from [Dijkstra 1976]:

This one cannot even ‘‘do nothing’’ in the sense of ‘‘leaving things as they

‘

are’’; it really cannot do a thing.

‘Leaving things as they are’’ is a reference to the effect of Skip .

t
f

You may picture Abort as a non-terminating loop: by failing to yield a final state, i
ails to ensure any postcondition at all. But this view, although not necessarily wrong, is

t
a
overspecifying: all the rule expresses is the impossibility of proving anything of interes
bout Abort . This is another example of the already noted unobtrusiveness of the

p
axiomatic method, where the ‘‘meaning’’ of a program consists solely of what you may
rove about it. What Abort ‘‘does’’ practically, like looping forever or crashing the

e
c
system, is irrelevant to the theory. To paraphrase Wittgenstein’s famous quote: What on
annot prove about, one must not talk about.

T

9.8.8 Assignment

he wp-rule for assignments is:

[9.27]
Assignment (target : x ; source : e ) wp Q = Q [x ← e ]

eThis is the same as the corresponding pre-post rule (A , page 323), with th
Assignment

e
m
supplementary information that Q [x ← e ] is not just one possible precondition but th

ost interesting – weakest.
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T

9.8.9 Conditional

he wp-rule for conditional instructions is also close to the pre-post rule (I , page

[

329):
Conditional

9.28]
Conditional (test : c ; thenbranch : a ; elsebranch : b ) wp Q =

I

(c implies (a wp Q )) and ((not c ) implies (b wp Q ))

n words: for the instruction if c then a else b end to terminate in a state where Q is

m
satisfied, the two possible scenarios in the initial state — c satisfied, c not satisfied —

ust both lead to a final state where Q is satisfied; in other words, the initial state must
satisfy both of the following properties:

• If c is satisfied, the condition for a to terminate and ensure a state where Q is

•
satisfied.

If c is not satisfied, the condition for b to terminate in a state where Q is

A

satisfied.

s before, this wp-rule expresses that the precondition of the pre-post rule was weakest.

c
Yet here it also includes something else: a termination property. The rule implies that a
onditional instruction will terminate if and only if every branch terminates whenever its

(
guard is true. Here the ‘‘guard’’ of a branch is the condition under which it is executed
c for the thenbranch and not c for the elsebranch ).

F

9.8.10 Compound

or compounds too the wp-rules directly reflect the pre-post rules (page 331):

[9.29]
Compound (<>) wp Q = Q

[9.30]
(c ++ <a>) wp Q = c wp (a wp Q)

.

9

In the second rule, c is an arbitrary compound and a an arbitrary instruction

.8.11 Loop

We may expect the rule for loops to be more difficult; also, it is interesting to see how
the theory handles total correctness.

The basic wp-rule for loops is:
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9.31]

given
l = Loop (test : c ; body : b ) -- i. e. while c do b end

0

∆

∆G = not c and Q ;

G = c and (b wp G ) -- for i > 0

then
i

∆
i −1

l wp Q = n : N G
n

T

end
––
–

•

he rule may be explained as follows. For the loop to terminate in a state satisfying Q ,

f
it must do so after a finite number of iterations. So the weakest precondition is of the
orm

G or G or G or . . .0 1 2

i
where, for i ≥ 0, G is the weakest precondition for the loop to terminate after exactly i

i
i
iterations in a state satisfying Q . A loop started in an initial state σ terminates after
terations in a state satisfying Q if and only if:

• For i = 0:

– No iteration is performed, so σ satisfies not c .

•
– σ satisfies Q .

For i > 0:

– One iteration is performed, so σ satisfies c .

p– This iteration brings the computation to a state from which the loo
performs exactly i −1 further iterations and then terminates in a state
satisfying Q : in other words, σ satisfies b wp G .

i −1

i
.

R

By combining these cases, we obtain the above inductive definition of G

ather than G , it is sometimes more convenient to use H , the condition for l to yield Q
a

i i
fter at most i iterations (see exercise 9.17).

Rule [9.31] addresses total correctness. But it is not directly useful in practice: to
e

n
check whether l wp Q is satisfied it would require you to check a potentially infinit

umber of conditions. This can only be done through a proof by induction, which in fact

b
amounts to using an invariant and variant, as with the pre-post approach. The connection
etween the wp-rule and the pre-post rules is expressed by the following theorem, which

reintroduces the invariant I and the variant V :
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[9.32]
___________________________________________________________

w
Theorem (Invariant and variant in wp-semantics): Let l be a loop

ith body b and test c , I an assertion and V an integer-valued
function of the state. If for any value z ∈ N

(I and c and V = z ) implies

((z > 0) and (b wp (I and (0 < V < z ))))

then:

I implies ( l wp (I and not c ))
___________________________________________________________

sThis theorem is equivalent to the inference rule IT (page 336). Its proof require
Loop

t
c
an appropriate model of the axiomatic theory, which will be introduced in the nex
hapter.

9.8.12 A concrete notation for loops

In a systematic approach to program construction, you should think of loop variants and
s

c
invariants not just as ‘‘decoration’’ to be attached to a loop if a proof is required, but a
omponents of the loop, conceptually as important as the body or the exit condition.

Abstract and concrete syntax should reflect this role.

Whenever the rest of this chapter needs to express loops in concrete syntax, it will

a
use the Eiffel notation for loops, which is a direct consequence of the above discussion
nd looks as follows:

from
Compound - - Initialization

invariant
Assertion

variant
Integer_expression

until
Boolean_expression - - Exit condition

loop
Compound - - Loop body

L

end

ike other uses of assertions in Eiffel, the invariant and variant clauses are optional.

A
s
The execution of such a loop consists of two parts, which we may call A and B. Part
imply executes the initialization Compound. Part B does nothing if the exit condition is

satisfied; otherwise it proceeds with the loop body, and starts part B again.
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In other words this is like a Pascal or Graal ‘‘while’’ loop, with its initialization
included (from clause), and an exit test rather than a continuation test.

The reason for including the initialization follows from the axiomatic semantics of

i
loops as studied above: every loop must have an initialization, whose aim is to ensure the
nitial validity of the invariant. (In some infrequent cases where the context of the loop

guarantees the invariant the initialization Compound is empty.)

The reason for using an exit condition (until rather than while) is to make
e

r
immediately visible what the outcome of the loop will be. By looking at the loop, you se
ight away the postcondition that will hold on loop exit:

G = I and E∆

where I is the invariant and E the exit condition.

p
a

In the constructive approach, as discussed below (9.11), we will design loo
lgorithms by starting from G , the goal of the algorithm, and deriving I and E through

9

various heuristics.

.9 NON-DETERMINISM

A class of constructs enjoys a particularly simple characterization by wp-rules (although
c

i
pre-post formulae would work too): non-deterministic instructions. A non-deterministi
nstruction is one whose effect is not entirely characterized by the state in which it is

executed.

Simple examples of non-deterministic instructions are the guarded conditional and

9

the guarded loop.

.9.1 The guarded conditional

In concrete syntax (see exercise 9.2 for abstract syntax), the guarded conditional may be

[

written as follows:

9.33]
if

c : a

2

1 1

2

.

c : a

. .

c : a
n

w

end
n

here there are n branches (n ≥ 0). The c , called guards, are boolean expressions, and
t

i

i
he a are instructions.
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i
Informally, the semantics of this construct is the following: the effect of the

nstruction is undefined if it is executed in a state in which none of the guards is true;
otherwise, execution of the instruction is equivalent to execution of one a such that the

i

i
.corresponding guard c is true

The standard if c then a else b end of Graal and most common languages may be

[

expressed as a special case of this construct:

9.34]
if

c : a

b

T

end
not c :

he guarded conditional has three distinctive features: first, it treats the various possible
-

d
cases in a more symmetric way than the if...then. . . else. . . conditional; second, it is non
eterministic; third, it may fail – produce an undefined result.

.
T

The first property, symmetry, follows directly from the above informal specification
he non-determinism comes from the absence in that specification of any prescription as

i
to which of all possible branches is selected when more than one guard is true. So the
nstruction

[9.35]
if

x ≥ 0 : x := x + 1

c

end
x ≤ 0 : x := x − 1

ould yield x = −1 as well as x = +1 when started with x = 0.

a
s

This suggests the following axiom schema, which is both a generalization and
implification of the wp-rule for the standard conditional ([9.28], page 342); guarded_if

[

denotes the above construct [9.33].

9.36]

guarded_if wp Q =

d(c or c . . . or c ) an1 2 n

1 1(c implies (a wp Q )) and

d(c implies (a wp Q )) an2 2

(

. . . and

c implies (a wp Q ))
n n
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ote how simply this axiom expresses the non-determinism of the construct’s informal

g
semantics. For guarded_if to ensure satisfaction of Q , there must be a branch whose

uard c is true and whose action a ensures Q . There may be more than one such
b

i i
ranch; if so, it does not matter which one is selected, as only the result, Q , counts. The

axiom states this through the first and clause.

The axiom also captures the last of the construct’s three key properties listed above:

s
regardless of Q , the weakest precondition is False – that is to say, non-satisfiable by any
tate – if none of the c is true. This means that guarded_if is informally equivalent in

t
i

his case to Abort , since we may not prove anything about it.

c
i

Many people are shocked by this convention when they first encounter the symmetri
f: should guarded_if not behave like Skip , not Abort , when no guard is satisfied?

e
o

There are serious arguments, however, for the interpretation implied by [9.36]. On
f the dangers of the if ... then ... else construct is that it lumps the last case with all

n
unforeseen cases in the else branch. More precisely, assume a programmer has identified

cases for which a different treatment is required. The usual way to write the

e
corresponding instruction is the following (using the Algol 68-Ada-Eiffel abbreviation
lseif to avoid useless nesting of conditionals):

if c then a1 1

2e 2lseif c then a

. . .

elseif c then a 1

e
n

n −1 n −

lse a end

-- No need to specify that the last branch corresponds to the case
-- c true, c false (1 ≤ j ≤ n −1)

n j

i n
n

e
The risk is to forget a case. When all of the c , including c , are false, the instructio
xecutes a , which is almost certainly wrong; but the error may be hard to catch.

I
n

n the guarded conditional, on the other hand, every branch is explicitly preceded by
d

i
its guard and executed only if the guard is true. If no guard is satisfied, a goo
mplementation will produce an error message and stop execution, or raise an exception,

9

or loop forever; this is better than proceeding silently with a wrong computation.

.9.2 The guarded loop

The other basic non-deterministic construct is the guarded loop, which may be written as:



3 AXIOMATIC SEMANTICS48 §9.9.2

[9.37]
loop

c : a

2

1 1

2

.

c : a

. .

c : a
n

w

end
n

ith the following informal semantics: if no c is true, the instruction does nothing;
o

i i

i
therwise it executes one of the a such that c is true, and the process starts anew. The

,
a
formal wp-rule for this construct is left for your pleasure (work from [9.31], page 342
nd [9.36], page 346). The rule should make it clear, as [9.36], that it does not matter

which branch is chosen when several are possible.

Here the case in which no c is satisfied is not an error but normal loop termination.
I

i
n particular, for n = 0, the guarded loop is equivalent to Skip , not to Abort as with the

9

guarded conditional.

.9.3 Discussion

Why should one want to specify non-deterministic behavior? There are two main reasons.

-
d

The first reason is that non-deterministic programs may be useful to model non
eterministic behavior of the real world, as in real-time systems. (The non-determinism is

;
h
not necessarily in the events themselves, but sometimes only in our perception of them
owever the end result is the same.)

The second reason is the desire not to overspecify, mentioned at the start of this

c
chapter: if it does not matter which branch of (say) a conditional is selected in a certain
ase, as both branches will lead to equally acceptable results, then the programmer need

n
i
not choose explicitly. The goal here is abstraction: when a feature of the implementatio
s irrelevant to the specification, you should be able to leave it implicit.

l
o

How can we implement a non-deterministic construct such as the guarded conditiona
r loop? You must not think that such an implementation needs to use some kind of

t
random mechanism for choosing between possible alternatives. All that the rules say is
hat whenever more than one c is satisfied, every corresponding a must yield the desired

p
i i

ostcondition, and then any of the corresponding branches may be selected. Any
implementation which observes this specification is correct.

Examples of correct implementations include: one that test the guards in the order in
.

t
which they are written, and takes the first branch whose guard is true (as with the if . .
hen . . . elseif . . .); one that starts from the other end; one that behaves like the first on

n
even-numbered days and like the second on odd-numbered days; one that uses a random
umber generator to find the order in which it will evaluate the guards; one that starts n

d
c
parallel processes to evaluate the guards (or asks n different nodes on a network), an
hooses the branch whose guard is first (or last) computed as true; and many others.
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No proof of properties of the construct is correct if it relies on knowledge about the
f

i
actual policy used for choosing between competitive true guards. But as long as the proo
s only based on the official, policy-independent rules, any implementation that abides by

these rules is acceptable.

___________________________________________________________

c

One way to picture the situation is to imagine that a demon is in charge of

hoosing between acceptable branches when more than one guard is true. The

e

b

demon does not have to be erratic, although he may well be; some demons ar

ureaucrats who always follow the same routine, others take pleasure in

t

r

constantly changing their policies to defeat any attempt at second-guessing. Bu

egardless of the individual psychology of the demon that has been assigned to us

t

a

by the Central Office of Demon Services, he is in another room, and we are no

llowed to look.
___________________________________________________________

T

9.9.4 The rule of disjunction

he above remarks are the key to the pending issue of the rule of disjunction ([9.26],

[

page 340). The (so far tentative) rule may be written as

9.38]
given

lhs = a wp (Q or Q ’ ) ;∆

∆rhs = (a wp Q ) or (a wp Q ’ )
then

lhs = rhs

T

end

he rule expresses an equality between two assertions, that is to say a two-way
d

c
implication: according to this rule, whenever a state satisfies lhs , it satisfies rhs , an
onversely.

Look first at rhs . This assertion is true of states σ such that one or both of the
following holds:

• a , started in σ, is guaranteed to terminate in a state satisfying Q .

• a , started in σ, is guaranteed to terminate in a state satisfying Q ’ .

e
s
Each of these conditions implies that a , started in σ, is guaranteed to terminate in a stat
atisfying Q or Q ’ ; in other words, that state σ satisfies lhs . So rhs implies lhs .
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t
Assume conversely that σ satisfies lhs . Instruction a , started in σ, is guaranteed to

erminate in a state satisfying Q or satisfying Q ’ . Does this imply that σ is either

s
guaranteed to terminate in a state satisfying Q or guaranteed to terminate in a state
atisfying Q ’ ? The answer is yes in the absence of non-deterministic constructs: since a ,

m
started in σ, is always executed in the same fashion, a guarantee that it ensures Q or Q ’

eans either a guarantee that it ensures Q or a guarantee that it ensures Q ’ .

.
A

This is no longer true, however, if we introduce non-deterministic constructs
ssume for example that a is ‘‘toss a coin’’, Q is the property of getting heads and Q ’

o
a
of getting tails. Before tossing the coin you are guaranteed to get heads or tails: s

wp (Q or Q ’ ) is true. But you are not guaranteed to get heads: thus a wp Q is false;

o
so is a wp Q ’ and hence their or. Tossing a coin may be viewed as an implementation
f the following program:

[TOSS ]

if
true : produce_heads

where

end
true : produce_tails

produce_heads wp (result = heads ) = True
e

p
produce_heads wp (result = tails ) = Fals
roduce_tails wp (result = heads ) = False

T

produce_tails wp (result = tails ) = True

his discussion assumes a non-deterministic coin-tossing process, with an unpredictable
s

f
result: the coin is tossed by a demon, who does not reveal his tossing policies. To see thi
ormally note that

TOSS wp ((result = heads ) or (result = tails ))

=
= TOSS wp True

True

but if we apply the non-deterministic conditional axiom ([9.33], page 345) we see that

TOSS wp (result = heads )
= (true implies (produce_heads wp (result = heads )) and

=

(true implies (produce_tails wp (result = heads ))

(produce_heads wp (result = heads )) and

=

(produce_tails wp (result = heads ))

True and False

a

= False

nd TOSS wp (result = tails ) is similarly False . By tossing a coin we are sure to get
either heads or tails; but we can neither be sure to get heads nor be sure to get tails.



ROUTINES AND RECURSION 1

9

§9.10 35

.10 ROUTINES AND RECURSION

The presentation of language features in denotational semantics summarized the role of

h
routines in software development (7.7.1). Now we must see what axiomatic semantics
as to say about them.

This section will show how to derive properties of software elements containing

9

routine calls, including recursive ones.

.10.1 Routines without arguments

Consider first routines with no arguments and no results. The abstract syntax of a routine
declaration is then just:

Routine = name : Identifier ; body : Instruction

a

∆

nd a routine call (new branch for the abstract syntax production describing instructions)
just involves the name of the routine:

Call = called : Identifier

T

∆

hen a call instruction simply stands for the insertion of the corresponding routine body
e

d
at the point of call. This is readily translated into an inference rule (for any routin
eclaration r ):

I0
Routine

•{P} r body {Q}
_

{

_________________________

P} Call (called: r name) {Q}•

.

9

The rule expresses that any property of the body yields a similar property of the call

.10.2 Introducing arguments

Routines without arguments are not very exciting; let us see how arguments affect the
e

d
picture. The discussion will first introduce arguments; then, as was done in 7.7 for th
enotational specification, it will show how we can avoid complicating the specification

by treating argument and result passing as assignment.

In many languages, the arguments to a routine may be of three kinds: ‘‘in’’

r
arguments, passed to the routine; results, also called ‘‘out’’ arguments, computed by the
outine; and ‘‘in-out’’ arguments, which are both consumed and updated. In some

e
o
languages such as Algol W or Ada, routine declarations qualify each argument with on
f these modes.
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t
a

As in 7.7.5, it is convenient to restrict the discussion to in arguments and ou
rguments, from now on respectively called arguments and results. Callers may still

r
obtain the effect of in-out arguments by including variables in both the argument and
esult actual lists, subject to limitations given below.

l
a

A further simplification is to write every routine with exactly one (in) forma
rgument and one result, both being lists (finite sequences). This is not a restriction in

n
c
practice since lists may have any number of elements. Proof examples given below i
oncrete syntax will follow the standard style, with individually identified arguments and

n
c
result; but grouping arguments and results into two lists makes the theoretical presentatio
learer.

Routines are commonly divided into functions, which return a result, and procedures,

e
which do not. A procedure call stands for an instruction; a function call stands for an
xpression. Our routines cover both functions and procedures, but for consistency it will

l
h
be preferable to treat all calls as instructions. A routine which represents a procedure wil
ave an empty result list; a routine representing a procedure or function with no

arguments will have an empty argument list.

The call instruction now has the following abstract syntax, generalized from the form
without arguments given page 351:

Call = called : Identifier ; input: Expression* ; output: Variable*

T

∆

he elements of the actual input list may be arbitrary expressions, whose value will be
e

r
passed to the routine; the actual output elements will have their value computed by th
outine, so they must be variables (or, more generally, elements whose value may be

changed at execution time, such as arrays or records).

For a routine f representing a function, a call using i as actual arguments and o as
actual results, described in abstract syntax as

Call (called : f name ; input: i; output: o)

c

•

orresponds to what is commonly thought of as an assignment instruction with a function
call on the right-hand side:

o := f (i)

so that the discussion below will allow us to derive an axiomatic semantics for such

t
assignments, which the earlier discussion (see page 326) had specifically excluded from
he scope of the assignment axiom.

Because every routine has exactly one argument list and one result list, there is no
t

s
need to make the formal argument and result explicit. We may simply keep the abstrac
yntax

Routine = name : Identifier ; body : Instruction

w

∆

ith the convention that every body accesses its argument and result lists through
npredefined names: argument and result. (Eiffel uses this convention for results, as see
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elow.) We do not allow nesting of routine texts, so any use of these names

‘
unambiguously refers to the enclosing routine. We must of course make sure that no
‘normal’’ variable is called argument or result.

With these conventions, we may derive a first rule for routines with arguments by
interpreting a call instruction

Call (called : f name ; input: i; output: o)

a

•

s the sequence of instructions (in mixed abstract-concrete syntax)

f

argument := i;

body ;

o

•

:= result

(Section 7.7.6 gave a more precise equivalence, taking into account possible name clashes
in block structure. The above equivalence suffices for this discussion.)

Taking this interpretation literally, assume that we know the axiomatics of the body
in the form of a theorem or theorem schema

{P} called body {Q}

T

•

hen we can use the assignment axiom to include the first instruction above, the
initialization of argument :

{P [argument ← i ]} argument := i; called body ; {Q}•

t
h
It appears at first more difficult to include the final instruction, the assignment to o. Bu
ere result includes only variables, as opposed to composite expressions or constants; so

t
y
the forward rule for assignment ([9.11], page 325) applies if o does not occur in P . I
ields for the whole instruction sequence the pre-post formula

a

{P [argument ← i ]}

rgument := i; called body ; o := result

I

{Q [result ← o ]}

•

n other words, taking the instruction sequence to represent the call: if the body is
l

v
characterized by a precondition P and a postcondition Q , which may involve the loca
ariables argument and result representing the arguments, then any call will be

p
characterized by precondition P applied to the actual inputs i instead of argument , and

ostcondition Q applied to the actual results o instead of the formal result .

a
n

This yields the first version of the rule for routines with arguments, applicable to
on-recursive routine r . Some restrictions, given below, apply.
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I
Routine

1

{P } r body {Q}
_ •__________________________________________________________________

}{P [argument ← i ]} Call (called : r name; input: i; output: o) {Q [result ← o ]•

:This rule admits a simple weakest precondition version

given
c = Call (called : r name ; input: i; output: o)∆

•

then
c wp Q ’ = (r body wp (Q ’ [o ← result ])) [argument ← i ]

H

end
•

ere Q ’ , an arbitrary assertion subject to the restrictions below, corresponds to

9

Q [result ← o ] in the pre-post rule.

.10.3 Simultaneous substitution

In rule I1 and its weakest precondition counterpart, the source and targets of
s

Routine
ubstitutions are list variables, representing lists of formal and actual arguments and

t
c
results. Since the original definition of substitution applied to atomic variables, we mus
larify what the notation means for lists.

The generalization is straightforward: if vl is a list of variables and el a list of
expressions, take

Q [vl ← el ]

to be the result of replacing simultaneously in Q every occurrence of vl (1) with el (1),
every occurrence of vl (2) with el (2) etc. For example:

(x + y) [<x, y > ← <3, 7>] = (3 + 7)

)

T

(x + y) [<x, y > ← <y , x >] = (y + x

he simultaneity of substitutions is essential. In the second example, if the substitutions

t
were executed in two steps in the order given, the first step would yield (y + y ), which
he second would transform into (x + x ) – not the desired result. A formal definition of

,
p
simultaneous substitution, generalizing the subst function for single substitutions ([9.9]
age 323), is the subject of exercise 9.21.

The simultaneity requirement only makes sense if all the elements in the variable list

a
vl are different: if x appeared as both vl ( j ) and vl ( k ) with j ≠ k , the result would be
mbiguous since you would not know whether to substitute el ( j ) or el ( k ) for x . The

f
I
absence of duplicate variables is one of the constraints listed below on the application o
1 .

Routine
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The example proofs that follow list arguments individually, rather than collectively
e

n
as list elements. To avoid introducing lists in such a case, it is convenient to use th
otation

Q [x ← a , ..., x ← a ]1 1 n n

ras a synonym fo

Q [< x , ..., x > ← < a , ..., a >]

9

1 n 1 n

.10.4 Conditions on arguments and results

,The application of rule I1 assumes that the call satisfies some constraints. One
Routine

already noted, is absence of recursion; we shall see below how to make the rule useful for

a
recursive routines. Let us first study the other seven constraints, which could be expressed
s static semantic validity functions (exercise 9.19). The constraints are the following:

1 • No identifier may occur twice in the formal argument list.

2 • No identifier may occur twice in the formal result list.

3 • No identifier may occur in both the formal argument list and the formal result list.

4 • In any particular call, no variable may occur twice in the actual output result list.

5 • No variable local to the body of the routine may have the same name as a variable

P
accessible to the calling program unit, unless it occurs in neither the precondition

nor the postcondition Q .

6 • No element of the result list may appear in P .

7 • If the postcondition Q involves any element of the argument list, then the
t

(
corresponding element of the actual input list may not occur in the output lis
that is to say, it may not be used as an in-out argument).

4
a
We already encountered the first four constraints in the denotational specification (7.7.
nd 7.7.7).

Constraints 1 and 2 follow directly from the consistency condition for simultaneous
r

i
substitutions, as given above. From a more practical point of view, a duplicate identifie
n the argument or result formal list would amount to a duplicate declaration; occurrences

of the identifier in the routine body would then be ambiguous.

The latter observation also applies to an identifier appearing in both formal lists,
justifying constraint 3.

Constraint 4 precludes any call which uses the same variable twice as actual result.
Assume this constraint is violated and consider a routine
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s (out x, y: INTEGER) is
do -- BODY

w
end

x := 0 ; y := 1

hose body makes the following pre-post formula hold:

T

{true} BODY {x = 0 and y = 1}

hen rule I1 could be used to deduce the contradictory result

{

Routine

true} call s (a , a ) {a = 0 and a = 1}

r
i
From a programmer’s viewpoint, this means that the outcome would depend on the orde
n which the final values of the formal results (here x and y ) are copied into the

r
w
corresponding actual arguments on return from a call – a decision best left to the compile

riters and kept out of the language manual. Many programming language specifications
indeed include constraint 4.

Nothing in constraints 1 to 4 precludes an expression from occurring more than once
t

l
in the actual input list, or a variable from occurring in both the actual input and outpu
ists. The latter case achieves the effect of in-out arguments.

y
o

Constraint 5 precludes sharing of local variable names between the routine and an
f its callers. Such ‘‘puns’’ would cause incorrect application of the rule: if a local

r
variable of r occurs in P or Q , then it will also occur in P [i ← argument ] or Q [o ←
esult ], and may yield an incorrect property of its namesake in the calling program.

Lambda calculus raised similar problems (5.7).

A name clash of this kind, resulting from the independent choice of the same
e

c
identifier in different program units, may be removed by manual renaming; mor
onveniently, compilers and formal proof systems can disambiguate the names statically.

f
The denotational specification of block structure described one way of doing this in a
ormal system (see 7.2, especially 7.2.3). The same techniques could be applied here,

d
removing the need for constraint 5. (This constraint had no equivalent in the denotational
iscussion of routines, which could afford to be more tolerant precisely because it

assumed a block structure mechanism as a basis.)

Constraint 5 is not a serious impediment for programmers or program provers:

• It does not prevent routines from accessing global variables, as long as there is no
s

a
name conflicts with locally declared variables. It is important to let routine
ccess externally declared variables, especially if they use globals in the

•
disciplined style enforced by object-oriented programming.

If the local variable is used in neither the precondition nor the postcondition, no
e

v
harm will result. In this case the computation performed by the routine uses th
ariable for internal purposes, but its properties do not transpire beyond the

p
routine’s boundaries. This means that constraint 5 is essentially harmless in
ractice, since meaningful pre-post assertions for a routine have no business

referring to anything else than argument, result and global variables.
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ou may then interpret constraint 5 as a requirement on language implementers,

v
specifying that each routine which uses a certain variable name must allocate a different
ariable for that name (and in the case of recursive routines, studied below, that every

call to a routine must allocate a new instance of the variable).

Constraints 6 and 7 are in fact special cases of constraint 5, applying to the variable

a
lists argument and result , implicitly declared in every routine, and hence raising many
pparent cases of possible name clashes between routines and their callers. Constraint 6

was necessary to apply the forward assignment rule (page 353).

To avoid any harm from such clashes, we must first exclude any element of result
e

p
from the precondition P ; since result is to be computed by the routine, its presence in th

recondition would be meaningless anyway. This is constraint 6.

g
r

The presence of input (or any of its elements) in Q is a problem only if the callin
outine uses its own input (or the corresponding element of its input) as result (or part of

r
r
it). Assume for example a routine with a single integer argument and a single intege
esult, whose body computes

T

result := argument + 1

hen with true as precondition P we may deduce

a

result = argument + 1

s postcondition Q . Now assume a call in which the caller’s argument is used as both
t

a
actual argument and actual result; this is expressly permitted, to allow the effect of in-ou
rguments. But then blind application of I1 , without constraint 7, would allow us to

infer, as postcondition for the call, that
Routine

argument = argument + 1

which is absurd. Constraint 7 specifically prevents this. It does not prohibit the presence

t
of argument in Q if argument is not used as actual result for the call. As you are invited
o check, this case does not raise any particular problem; nor does the possible presence

9

of argument in P or result in Q .

.10.5 A concrete notation for routines

Like invariants and variants for loops, routine preconditions and postconditions play such
f

t
a key role in building, understanding and using software that they deserve to be part o
he abstract and concrete syntax for routines, on a par with the argument list or the body.

e
E

When they need a concrete syntax, subsequent examples of routines will use th
iffel notation, which results from the preceding discussion and rule I1 (and

routine
e

f
supports the extended rule for recursive routines given below). An Eiffel routine is of th
orm
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routine_name (argument : TYPE; argument : TYPE; . . .): RESULT_TYPE is

-- Header comment (non-formal)

require
Precondition

do
Compound

ensure

Postconditions

e

end

xpressing the precondition and the postcondition as part of the routine text, through the
require and ensure clauses. Like other uses of assertions, these clauses are optional.

A call to the routine is correct if and only if it satisfies the Precondition ; if the
.

T
routine body is correct, the caller may then rely on the postcondition on routine return

his is the idea, already mentioned above (page 314), of Design by Contract. A routine
s

t
call is a contract to perform a certain task. The caller is the ‘‘client’’, the called routine i
he ‘‘supplier’’. As in every good contract, there are advantages and obligations for both

parties:

• The precondition is an obligation for the client; for the supplier, it is a benefit,
since, as expressed by I1 , it relieves the routine body from having to care

Routine
.

•
about cases not covered by the precondition

For the postcondition the situation is reversed.

t
r
An Eiffel routine, as given by the above form, is a function, returning a result. Tha
esult is a single element rather than a list. This is sufficient for the examples below;

E
generalization to a list of results would be immediate. The examples below will use the

iffel convention for computing the result of a function: any function has an implicitly
d

i
declared variable called Result , of type RESULT_TYPE, to which values may be assigne
n the body; its final value is the result returned to the caller.

a
p

The notation also supports procedures, which do not return a result. A routine is
rocedure if its header does not include the part

9

: RESULT_TYPE

.10.6 Recursion

Rule I1 , it was said above, is not applicable to recursive routines. This is not
b

Routine
ecause it is wrong in this case, but rather because it becomes useless.

mThe problem is that the rule only enables you to prove a formula of the for

{P} call s (...) {Q}



ROUTINES AND RECURSION 9

i

§9.10.6 35

f you can prove the corresponding property of the body b of s , with appropriate actual-
t

o
formal argument substitutions. If s is recursive, however, its body will contain at leas

ne call to s , so that proving properties of b will require proving properties of calls to s ,

p
which because of the inference rule will require proving properties of.... The proof
rocess itself becomes infinitely recursive.

If, as with loops, we take a partial correctness approach, accepting the necessity to
rprove termination separately, we need not change much to I1 to make it work fo

Routine
g

t
recursive routines. The idea is that you should be allowed to use inductively, when tryin
o prove a property of b , the corresponding property of calls to s.

,
t

To understand this, look again at the application of the non-recursive rule. As noted
he goal is to prove

[9.39]
{P’} call s (. . .) {Q’}

[

by proving

9.40]
{P} BODY {Q}

where P ’ and Q ’ differ from P and Q by substitutions only. So the proof of [9.39]

I
includes two steps: first prove [9.40], the corresponding property on the body; then, using
1 , derive [9.39] by carrying out the appropriate substitutions.

Routine

If the same approach is applied to recursive routines, the first step in this process –
e

v
the proof relative to the body – must be allowed to assume the property of the call, th
ery one which is the ultimate goal of the proof.

s
a

The more general rule for routine calls follows from this observation. (It i
pplicable to non-recursive routines as well, although in this case the former rule

I

suffices). The restrictions of 9.10.4 apply as before.

2
Routine

•{P [argument ← i ]} Call (called : r name; input: i; output: o) {Q [result ← o ]}

{

==>
P } r body {Q}

_ •__________________________________________________________________

}{P [argument ← i ]} Call (called : r name; input: i; output: o) {Q [result ← o ]•

The premise of this rule is of the form F ==> G , and its conclusion of the form H , where
,

t
F , G , H are pre-post formulae. The rule means: ‘‘If you can prove that F implies G
hen you may deduce H ’’. The antecedent being an implication, its proof will often be a

conditional proof. What is remarkable, of course, is that H is in fact the same as F .
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a
With the Eiffel concrete notation for preconditions and postconditions, as introduced
bove, rule I2 indicates that the instructions leading to any recursive call in the

b
Routine

ody (do clause) must guarantee the precondition (require clause) before that call, and
h

a
may be assumed to guarantee the postcondition (ensure clause) on return, wit
ppropriate actual-formal substitutions in both cases. The rule also indicates that if you

e
t
try to check the first property (precondition satisfied on call), you may recursively assum
hat property on routine entry.

You will have noted the use of the terms ‘‘may assume’’ and ‘‘must guarantee’’ in
e

c
the preceding discussion. They reflect the client-supplier relationship as derived from th
ontract theory of software construction. Here the routine is its own client and supplier,

and the alternating interpretations of the assertions’ meaning reflect this dual role.

The article that first introduced the axiomatics of recursive routines [Hoare 1971]
stressed the elegance of the recursive routine rule in particularly apt terms:

___________________________________________________________

t
The solution of the infinite regress is simple and dramatic: to permit
he use of the desired conclusion as a hypothesis in the proof of the

y
p
body itself. Thus we are permitted to prove that the procedure bod
ossesses a property, on the assumption that every recursive call

c
possesses that property, and then to assert categorically that every
all, recursive or otherwise, has that property. This assumption of

l
t
what we want to prove before embarking on the proof explains wel
he aura of magic which attends a programmer’s first introduction

_
to recursive programming.
__________________________________________________________

I

9.10.7 Termination

n any practical call, the regress had better be finite if you hope to see the result in your

t
lifetime. (This was apparent in the last chapter’s denotational study of recursion: even
hough in non-trivial cases no finite number of iterations of a function chain f will yield

sits fixpoint f , once you choose a given x you know there is a finite i such that f ( x ) i∞
f
i

(x ).)

To prove termination, it suffices, as with loops, to exhibit a variant, which here is an
integer expression of which you can prove that:

• Its value is non-negative for the first (outermost) call.

• If the variant’s value is non-negative on entry to the routine’s body, it will be at
least one less, but still non-negative, for any recursive call.
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.10.8 Recursion invariants

Like loops, recursive routines have variants. Not unpredictably, they also share with loops
the notion of invariant.

A recursion invariant is an assertion I such that the recursive routine rule, I2 ,
Routine

d
p
will apply if you use I both as precondition (P in the rule as given above) an
ostcondition (Q ).

Here the rule means that if you are able to prove, under the assumption that any call

p
preserves I , that the body preserves I as well, then you may deduce that any call indeed

reserves I . The proof and deduction must of course be made under the appropriate
actual-formal argument substitutions.

As an example of use of a recursion invariant in a semi-formal proof, consider a
procedure for printing the contents of a binary search tree:

print_sorted (t : BINARY_TREE) is

r
require

-- Print node values in orde

-- t is a binary search tree, in other words:
given

left_nodes = subtree (t left );∆
•

•r ∆ight_nodes = subtree (t right )
s

-
-- where subtree (x ) is the set of node
- in the subtree of root x

then
l : left_nodes , r : right_nodes l value ≤ t value ≤ r value• •

do

end
V- • •

if not t Void then•

• ;
p
print_sorted (t left)
rint (t value);•

• )

ensure
end

print_sorted (t right

‘‘All values in subtree (t ) have been printed in order. ’’

T

end

his assumes primitives left , right , empty and value applicable to any tree node, and a
’

e
predefined procedure print to print a value. The variant ‘‘height of subtree of root t ’
nsures termination.

Here the informal recursion invariant is ‘‘If any value in subtree (t ) has been
s

t
printed, then all values of subtree (t ) have been printed in order’’. The invariant i
rivially satisfied before the call since no node value has been printed yet. If t is a void

ttree, then subtree (t ) is an empty set and the procedure preserves the invariant since i
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• ,
t
prints nothing at all. If t is not void, then the procedure calls itself recursively on t left
hen prints the value attached to the root t , then calls itself recursively on t right . Since•

,
w
t is a binary search tree (see the precondition), this preserves the invariant. Furthermore

e know that in this case at least one value, t value , has been printed, so the invariant•

.gives the desired postcondition – ‘‘All values in subtree (t ) have been printed in order’’

Transforming this semi-formal proof into a fully formal one requires developing a
f

e
small axiomatic theory describing the target domain – binary trees. This is the subject o
xercise 9.26; the following section, which builds such a mini-theory for another target

domain, may serve as a guideline.

Since loops share the notion of invariant with recursive routines, it is natural to ask
s

w
whether the two kinds of invariant are related at all, especially for recursive routine

hich have a simple loop equivalent. The most common examples are ‘‘linearly-

w
recursive’’ routines, such as a recursive routine for computing a factorial, which may be

ritten

factorial (n : INTEGER): INTEGER is

require
-- Factorial of n

n ≥ 0
do

if n = 0 then
1

else
Result :=

Result := n factorial (n − 1)

ensure
end

*

Result = n!

T

end

o simplify the proof, let us rely on the convention that Result , before explicitly
e

t
receiving a value through assignment, has the default initialization value 0. If we prov
hat the property

Result = 0 or Result = n!

is invariant, and complement this by the trivial proof that Result cannot be 0 on exit, we
obtain the desired postcondition Result = n!.

This recursive algorithm has a simple loop counterpart with an obvious invariant:
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i: INTEGER;

from

i := 0; Result := 1

variant

n – i

invariant

Result = i !

until i = n loop

i := i + 1; Result := Result i

A

end
*

s this example indicates, although there may be a relation between a recursion invariant
and the corresponding loop invariants, the relation is not immediate.

The underlying reason was pointed out in the analysis of recursive methods in the

c
previous chapter: although a recursive computation will be executed, as its loop
ounterpart, as a ‘‘bottom-up’’ computation, the recursive formulation of the algorithm

e
d
describes it in top-down format (see 8.4.3). The loop and recursion invariants reflect thes
ifferent views of the same computation.

T

9.10.9 Proving a recursive routine

o understand the recursive routine rule in detail, it is useful to write a complete proof.

s
The object of this proof will be what is perhaps the archetypal recursive routine: the
olution to the Tower of Hanoi puzzle [Lucas 1883].

g
A

In this well-known example, the aim is to transfer n disks initially stacked on a pe
to a peg B , using a third peg C as intermediate storage. The argument n is a non-

negative integer. Only one operation is available, written

move (x, y)

Its effect is to transfer the disk on top of x to the top of y (x and y must each be one of

f
A , B , C ). The operation may be applied if and only if pegs x and y satisfy the
ollowing constraints:

• There is at least one disk on x ; let d be the top disk.

• If there is at least one disk on y , then d was above the top disk on y in the

A

original stack.

nother way to phrase the second constraint is to assume that the disks, all of different

n
sizes, are originally stacked on A in order of decreasing size, and to require that move
ever transfers a disk on top of a smaller disk.
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The proof will apply to the following procedure for solving this problem:

Hanoi (n : INTEGER; x, y, z: PEG) is
-- Transfer n disks from peg x to peg y, using z as intermediate storage.

do

if n > 0 then

Hanoi (n – 1, x, z, y);

H

move (x, y);

anoi (n – 1, z, y, x)

e

-- else do nothing

nd

A

end

lthough based on a toy example, this is an interesting routine because it is ‘‘really’’

d
recursive: unlike simpler examples of recursive computations (such as the recursive
efinition of the factorial function) it does not admit a trivial non-recursive equivalent. In

s
s
addition, its structure closely resembles that of many useful practical recursive algorithm
uch as Quicksort or binary tree traversal (see exercises 9.25 and 9.26).

s
t

The proof of termination is trivial: n is a recursion variant. What remains to prove i
hat if there are n disks on A and none on B or C , the call Hanoi (n , A , B , C ) transfers

t
c
the n disks on top of B , leaving no disks on A or C . The proof that disk order does no
hange will be sketched later.

It turns out to be easier to prove a more general property: if there are n or more
,

l
disks on A , the call will transfer the top n among them on top of those of B if any
eaving C in its original state.

Much of the proof work will be preparatory: building the right model for the objects

o
whose properties we are trying to prove. This is a general feature of proofs: often the task
f specifying what needs to be proved is as hard as the proof proper, or harder.

a
s

Here we must find a formal way to specify piles of disks and their properties. As
imple model, consider ‘‘generalized stacks’’ whose elements may be pushed or popped

g
o
by whole chunks, rather than just one by one as with ordinary stacks. The followin
perations are defined on any generalized stacks s , t , for any non-negative integer i :

s
-- Size: an integer, the number of disks on s .

s
i

-- Top: the generalized stack consisting of the i top elements of s,

-
-- in the same order as on s. Empty if i = 0.
- Defined only if 0 ≤ i ≤ s .
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s − i
-- Pop: the generalized stack consisting of the elements of s

-
-- except for the i top ones.
- Defined only if 0 ≤ i ≤ s .

s + t
-- Push: the generalized stack consisting of the elements

T

-- of t on top of those of s .

hese operations satisfy a number of properties:

[9.41]
_____________________________________________________________

G

Definition (Axioms for generalized stacks):

1 s + (t + u ) = (s + t ) + u

G

G2 s − 0 = s

3.a 0 ≤ i ≤ t ==> (s + t ) = t
ii

i i − t
t

G

G3.b t < i ≤ s + t ==> (s + t ) = s +

4 0 ≤ j ≤ i ≤ s ==> (s ) = s
ji j

)

G

G5.a 0 ≤ i ≤ t ==> (s + t ) − i = s + (t − i

5.b t ≤ i ≤ s + t ==> (s + t ) − i = s − (i − t )

G6 0 ≤ i ≤ s ==> (s − i ) + s = s
i

)

G

G7 0 ≤ i + j ≤ s ==> (s − i ) − j = s − (i + j

8 0 ≤ i ≤ s ==> s = i
i

i

G

G9 0 ≤ i ≤ s ==> s − i = s –

10 s + t = s + t
_____________________________________________________________

f
g
The rest of this discussion accepts these properties as the axioms of the theory o
eneralized stacks (also known as the specification of the corresponding ‘‘abstract data

,
s
type’’). Alternatively, you may wish to prove them using a model for generalized stacks
uch as finite sequences; chapter 10 gives a more complete example of building a model

for an axiomatic theory.

The axioms apply to any generalized stacks s , t , u and any integers i , j . Axioms
G3.b, G5.b, G7 and G10 use "+" and "–" also as ordinary integer operators.

The associativity of "+" (property G1) will make it possible to write expressions
such as s + t + u without ambiguity.
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t
The following axiom schema (for any assertion Q and any generalized stacks s and

) expresses the properties of the move operation:

[9.42]
{ s > 0 and Q [ s ← s − 1, t ← t + s ]} move (s , t ) {Q }

1

t
r
In words: the effect of move (s, t) is to replace s by s – 1 (s with its top elemen
emoved) and t by t + s (t with the top element of s added on top). The first clause of

t

1

he precondition expresses that s must contain at least one disk.
___________________________________________________________

To state this axiom is to interpret move as two assignments: the axiom rephrases

A (page 323) applied to the generalized stack assignmentsAssignment
1
;

s

t := t + s

:= s – 1

where the assignments should really be carried out in parallel, although they will

_
work in the order given (but not in the reverse order).
__________________________________________________________

e
t
We must prove that the call Hanoi (n, x, y, z) transfers the top n elements of x onto th
op of y , leaving z unchanged. Expressed as a pre-post theorem schema, for any assertion

[

Q , any integer i and any generalized stacks s , t , u , the property to prove is

9.43]
{ s ≥ i and Q [s ← s − i , t ← t + s ]} Hanoi ( i , s , t , u ) {Q }

i

e
I
Let BODY be the body of routine Hanoi as given above. To establish [9.43], rul
2 tells us that it suffices to prove the same property applied to BODY with the

a
Routine

ppropriate argument substitutions:

[9.44]
{ x ≥ n and Q [x ← x − n , y ← y + x ]} BODY {Q }

n

r
o
and that the proof is permitted to rely on [9.43] itself. This is the goal for the remainde
f this section.

Thanks to I (page 329) we can dispense with the trivial case n = 0; for
p

Conditional
ositive n , BODY reduces to the following (with assertions added as comments):

[9.45]
-- {Q }

Hanoi (n – 1, x, z, y);
1

-- {Q }
move (x, y) ;

2

-- {Q }
Hanoi (n – 1, z, y, x)

3

-- {Q }4



ROUTINES AND RECURSION 7§9.10.9 36

4 1 e
p
We must prove that the above is a correct pre-post formula if Q is Q and Q is th

recondition given in [9.44]. Since we are dealing with a compound and generalized
e

p
assignments, the appropriate technique is to work from the end, starting with th
ostcondition Q as Q , and derive successive intermediate assertions Q , Q and Q ,

s 1

4 3 2 1
uch that Q is the desired precondition.

To obtain Q , we apply [9.43] to the second recursive call; this requires substituting
t

3
he actual arguments n −1, z , y , x for i , s , t , u respectively. Then:

Q = z ≥ n −1 and Q [z ← z − (n −1), y ← y + z ]3
∆ n −1

3 l
a
Moving up one instruction, application of the move axiom [9.42] to Q , with actua
rguments x and y substituted for s and t respectively, yields:

Q = x > 0 and Q [x ← x − 1, y ← y + x ]2
∆

3

1

= x > 0 and z ≥ n −1 and

Q [x ← x − 1, y ← y + x + z , z ← z − (n −1)]

T 2

1 n −1

he only delicate part in obtaining Q is the substitution for y , derived by combining two
e

3
successive substitutions; this uses the rule for composition of substitutions ([9.10], pag
24), applied to identical a and b and generalized to simultaneous substitutions. (In this

generalization, all substitutions apply to the tuple <x, y, z>, serving as both a and b .)

Finally, applying [9.43] again to the first recursive call with actual arguments n −1,
x , z , y yields Q :1

1
∆

2

n −1
]

s

Q = x ≥ n −1 and Q [x ← x − (n −1), z ← z + x

o that, composing substitutions again:

[9.46]
Q = x ≥ n −1 and x − (n −1) > 0 and z + x ≥ n −1 and1

n −1

Q [x ← x − (n −1) − 1,

)y ← y + (x − (n −1)) + (z + x
1 n −1 n −1

z
n −1

← (z + x ) − (n −1)]

There remains to simplify Q , using the various axioms for generalized stacks [9.41].1

1Consider the first part of Q (the conditions on sizes). From axiom G9, the clause
x − (n −1) > 0 is equivalent to x ≥ n . From axioms G10 and G8,

z + x = z + x
n −1 n −1

= z + n − 1

s

≥ n − 1

o that the first line of the expression for Q [9.46] is equivalent to just x ≥ n1
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N
new new new

ow call x , y and z the replacements for x , y and z in the substitutions on Q
on the next three lines. Then:

x = (x − 1) − (n − 1)
new

∆

= x − n
-- From G7

)y = y + (x − (n −1)) + (z + x
new

∆ 1 n −1 n −1

1 n −1
x= y + (x − (n −1)) +

-- From G8 and G3.a

= y + (x − (n −1) + x )
n −1 n

-- This comes from G3.b, used from right to left
-- for i = n , s = x − (n −1) and t = x ;∆ ∆ ∆ n −1

.

= y + x

-- applicability of G3.b is deduced from G8, G9 and G10
n

∆ ∆ 1-- From G6, with s = x and i = n −

)z = (z + x ) − (n −1
new

∆ n −1

= z

-- From G5.b, justified by G8, and G2

nAs a result of these simplifications, the overall precondition Q obtained in [9.46] is i1
fact

Q = x ≥ n and Q [x ← x − n , y ← y + x ]

w

1

n

hich is the desired precondition [9.44].

n
d
The proof does not take into account disk ordering constraints, as represented by rules o
isk sizes. Here is one way to refine the above discussion so as to remove this limitation.

s
(The method will only be sketched; you are invited to fill in the details.) Add to the
pecification of generalized stacks an operation written s , so that s , an integer, is the

i i
d

s
size of the i -th disk in s from the top. Define a boolean-valued function on generalize
tacks, written s ! and expressing that s is sorted, as:

s ! = i : 2 . . s s < s∆ •
i −1 i

V-
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o adapt the specification so that it will only describe sorted stacks, add to all axioms

s
involving a subexpression of the form s + t a guard (condition to the left of the ==>
ign) of the form

s ≥ 1 t ≥ 1 ==> t < s/\
t 1

and add to the precondition of move (s, t) a similar clause stating that if t is not empty its

T

top disk is bigger than the top disk of s .

hen you need to prove that the property

i

x ! and y ! and z !

s a recursion invariant, by adding it to the postcondition Q and moving it up until it

9

yields the precondition.

.11 ASSERTION-GUIDED PROGRAM CONSTRUCTION

s
o
Among the uses of formal specifications listed in chapter 1, the most obvious application
f the axiomatic techniques developed in this chapter seem to be program verification and

language standardization.

Perhaps less immediately apparent but equally important is the application of

p
axiomatic techniques to the construction of reliable software. Here the goal is not to
rove an existing program, but to integrate the proof with the program construction

e
c
process so as to ensure the correctness of programs from the start. This may be called th
onstructive approach to software correctness.

:

•
There are several reasons why this approach deserves careful consideration

Unless you make the concern for correctness an integral part of program building,

y
it is unlikely that you will be able to produce provably correct programs. Were
ou able to prove anything at all, the most likely outcome is a proof of

•
incorrectness.

With the methods of this chapter, proofs require that the program be stuffed with
f

t
assertions. The best time to write these assertions is program design time. Many o
hem will in fact come from the preceding phases of analysis.

• In many practical cases, you will not be able to carry out complete proofs of

a
correctness, if only because of technical limitations such as the lack of a complete
xiom system for a given programming language. But the techniques of this

w
chapter can still go a long way toward ensuring correctness by helping you to

rite programs so as to pave the way for a hypothetical proof.

c
t
The rest of this chapter expands on these ideas by showing examples of how axiomati
echniques can help make the correctness concern an integral part of the software design.
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r
u

A warning is in order: the techniques developed below are neither fail-safe no
niversal. Formal proofs are the only way to guarantee correctness (and even they are

t
meaningful only to the extent that you can trust the compiler, the operating system and
he hardware). But an imperfect solution is better than the standard approach to program

9

construction, where correctness concerns play a very minor role, if any role at all.

.11.1 Assertions in programming languages

f
t
Because assertions are such a help in designing correct software, and such a good trace o
he specification and design process that led to a particular software element, it seems a

pity not to include them in the final software text.

Of course, you may always include assertions as comments. This is indeed highly
g

m
recommended if you are using a programming language that offers no better deal. Havin

ore formal support for assertions as part of the programming language proper offers a

1
number of advantages:

• The path from specification to design and implementation becomes smoother: the

t
first phase produces the assertions; the next ones yield instructions which satisfy
he corresponding pre-post formulae.

2 • If the language includes a formal assertion sublanguage, software tools can extract
l

d
the assertions from a software element automatically to produce high-leve
ocumentation about the element. This is a better approach than having

3
programmers write software documentation as a separate effort.

• Even in the absence of a program proving mechanism, a compiler may have an
t

t
option which will generate code for checking assertions at run-time (the next bes
hing to a proof). This turns out to be a remarkable debugging aid, since many

s
e
bugs will manifest themselves as violations of the consistency condition
xpressed by assertions.

4 • Assertions also have a direct connection with the important issue of exception

A

handling, which, however, falls beyond the scope of the present discussion.

number of programming languages have included some support for assertions. The first
was probably Algol W, which has an instruction of the form

ASSERT (b)

where b is a boolean instruction. Depending on a compilation option, the instruction
l

t
either evaluates b or is equivalent to a Skip . In the first case, program execution wil
erminate with an informative message if the value of b is false. The C language offers a

similar mechanism.

Such constructs, however, are mostly debugging aids – application 3 above. They
,

e
are insufficient to support the full role of assertions in the software construction process
specially applications 1 and 2.

Some languages take the notion of assertion more seriously. An example is the Anna
design language (see bibliographical notes). Another is Eiffel.

Eiffel’s mechanism, used for the examples of assertion-guided software construction
fin the rest of this discussion, directly supports all four applications above. Two aspects o
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he mechanism have already been described:

• The syntactic inclusion of invariant, variant and initialization clauses in loops

•
(page 344).

The require and ensure clauses in routines, supporting the principle of

E

‘‘programming by contract’’, as discussed on page 358.

iffel assertions appear in two other important contexts:

• A class may (and often does) have a class invariant, which expresses global

c
properties of the class’s instances. Class invariants are theoretically equivalent to
lauses added to both the precondition and postcondition of every exported routine

•
of a class, but they are better factored out at the class level.

A check instruction, of the form check Assertion end, may be used at any point

c
where you want to assert that a certain property will hold, outside of the
onstructs just discussed.

In the programming examples which follow, the notation check Assertion end will replace
the Metanot braces used earlier in this chapter, as in {Assertion}.

More generally, the examples will rely on the Eiffel notation, slightly adapted for the
,circumstance: first, some assertions will include quantified expressions ( . . . and . . .)V- ––

–

n
e
currently not supported by the Eiffel assertion sublanguage, which is based on boolea
xpressions; second, the examples do not take advantage of some specific Eiffel structures

t
i
and mechanisms (the class construct, deferred routines for specification withou
mplementation, genericity, the treatment of arrays as abstractly defined data structures

and others) which have not been described in this book.

It is often necessary, in a routine postcondition, to refer to the value an expression
e

i
had on routine entry. The discussion will use the Eiffel old notation, of which an exampl
s given by the following routine specification:2

enter (x : T; t: table of T): BOOLEAN is
-- Insert x into t ; increment count.

require
not full -- There should be room in the table

do
. . .

ensure
. . .
count = old count + 1

end

Here count has to be externally available to the routine. In Eiffel it would usually be an
a

2

ttribute of the class. Also, the argument t would normally be implicit, routine enter being part of a
class describing tables.
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.11.2 Embedding strategies

Among the control structures studied in this chapter, the most interesting ones, requiring
d

l
invention on the part of the programmer, are routines (especially recursive ones) an
oops. This discussion will focus on loops.

The inference rules for loops express the postcondition – goal – of a loop as

G = I and E∆

where I is the invariant and E is the exit condition.

u
c
This suggests that the invariant is a weakened version of the goal: weak enough that yo
an ensure its validity on loop initialization; but strong enough to yield the desired goal

when combined with the exit condition.

Figure 9.6: Embedding
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Loop construction strategies, then, may be viewed as various ways to weaken the goal.

The above figure illustrates the underlying view of loops. When looking for a

t
solution to a programming problem, you are trying to find one or more objects satisfying
he goal in a certain solution space – the curve G on the figure. G corresponds to the

d
goal. The aim is to find an element x in G . If you do not see any obvious way to hit G
irectly, you may try a loop solution, which is an iterative strategy working as follows:

• Embed G into a larger space, I . I represents the set of states satisfying the

•
invariant.

Define E so that G is the intersection of I and E . E corresponds to the exit

•
condition.

Choose as starting value for x some point x in I . Because I is a superset of G ,0
t

o
it will be easier in general to find this element than it would be to find an elemen
f G right away. Element x corresponds to the loop’s initialization.

•
0

At each step let V be the ‘‘distance’’ from x to G . V corresponds to the loop’s

•
variant.

Apply an iterative mechanism which, at each step, determines if x is in G , in
e

c
which case the iteration terminates (you have reached a solution), and otherwis
omputes the next element by applying to x a transformation B which must keep

T

x in I but will decrease V . B corresponds to the loop body.

he loop is of the form

from
x := x 0

invariant
I
tvarian

V
until x ∈ G loop

c

end
B

heck I and x ∈ G end -- (i. e. G)

We may now view loop construction as the problem of finding the best way to embed
e

s
goal spaces such as G into larger ‘‘invariant’’ spaces I , with the associated choices for th
tarting point x , the variant V , and the body B .

T
0

he following sections study two particular embedding strategies:

• Constant relaxation.

• Uncoupling.
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W

9.11.3 Constant relaxation

ith the constant relaxation strategy, you obtain the invariant I from the goal G by
l

v
substituting a variable for a constant value. The initialization will assign some trivia
alue to the variable to ensure I ; each loop iteration gets the variable’s value closer to

that of the constant, while maintaining the invariant.

The simple example of linear search in a non-sorted list provides a good illustration
of the idea.

Assume you have an array of elements of any type T, and an element x of the same
type, and you want to determine whether x is equal to any of the elements in t .

You can write the routine as a function has returning a boolean value, with the

[

postcondition

9.47]
Result = ( k : 1 . . n x = t [k ])

I

––
–

•

n other words, the result is true if and only if the array contains an element equal to x .

The function may be specified as follows (assuming n is a non-negative constant):3

has (x: T; t: array [1. .n] of T): BOOLEAN is
-- Does x appear in t ?

require
true -- No precondition

do
. . .

ensure
Result = ( k : 1 . . n x = t [k ]) -- [9.47]

I

end
––
–

•

n assertion-guided program construction, we examine the specification (the postcondition)

s
and look for a refinement which will yield a solution (the routine body). For a loop
olution, the refinement is an embedding as defined above.

,
a

To find such an embedding, we may note that any difficulty in obtaining the goal G
s given by [9.47], is the presence of the interval 1. . n. The smaller the n , the easier; with

r
R
a value such as 1 or better yet 0 the answer is trivial. For 0, it suffices to use false fo

esult.

This yields an embedding based on the constant relaxation method: introduce a fresh
variable i which will take its values in the interval 0. . n and rewrite the goal [9.47] as

In normal Eiffel usage this function would appear in a class describing some variant of the array
d

3

ata structure; as a consequence, the argument t would be implicit.
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R ––
–

•esult = ( k : 1 . . i x = t [k ]) -- I

w

and i = n

hich is trivially equivalent to the original. Call I the condition on the first line. I has
all the qualifications of an invariant:

• I is easy to ensure initially (take false for Result and 0 for i).

• I is a weakened form of the goal, since it coincides with it for i = n.

• Maintaining I while bringing i a little closer to n will not be too difficult (see

T

next).

his prompts us to look for a solution of the form

from
i := 0; Result := false ;

invariant
I
tvarian

n – i
until

i = n
loop

"Get i closer to n , maintaining the validity of I "
end

check [9.47] end

The loop body (‘‘Get i ...’’) is easy to obtain. It must be an instruction LB which makes
the following pre-post formula correct:

check I and i < n end
LB

check I and 0 ≤ n – i < old (n – i) end

e
t

The old notation makes it possible to refer to the value of the variant, n – i, befor
he loop body (although old usually applies to routines).

s
l

The simplest way to ‘‘Get i closer to n ’’ is to increase it by 1. This suggest
ooking for an instruction LB ’ such that the following is correct:

check
Result = ( k : 1 . . i x = t [k ])

a

––
–

•

nd i < n

i

end

:= i + 1; LB ’

check Result = ( k : 1 . . i x = t [k ]) end––
–

•
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i
The postcondition is very close to the precondition; more precisely, the precondition
mplies that after execution of the instruction i := i + 1 the following holds:

Result = ( k : 1 . . i −1 x = t [k ])––
–

•

so that the specification for LB ’ is:

check Result = ( k : 1 . . i −1 x = t [k ]) end
LB ’

––
–

•

check Result = ( k : 1 . . i x = t [k ]) end––
–

•

nAn obvious solution is to take for LB ’ the instructio

Result := Result or else (t [i] = x)

which application of the assignment rule (A , page 323) easily shows to satisfy
Assignment

n
t
the specification. The or else could be an or, but we do not need to perform the test o

[ i ] if Result is already true.

:This gives a correct implementation of has

has (x: T; t: array [1. . n] of T): BOOLEAN is

require
-- Does x appear in t ?

true -- No precondition

local
i: INTEGER

do
from

i := 0; Result := false
invariant

Result = ( k : 1 . . i x = t [k ])
variant

––
–

•

n – i
until

i = n
loop

i := i + 1;
Result := Result or else (t [i] = x)

ensure

end

Result = ( k : 1 . . n x = t [k ])

end
end

––
–

•
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You are invited to investigate for yourself how to carry out the obvious improvement

f
– stopping the loop as soon as Result is found to be true – in the same systematic
ramework.

This example is typical of the constant relaxation method, applicable when the

s
postcondition contains a constant such as n above and you can obtain an invariant by
ubstituting a variable such as i . The variant is the difference between the constant and

e
i
the variable; the loop body gets the variable closer to the constant and re-establishes th
nvariant.

‘‘For’’ loops of common languages support this strategy.

A

9.11.4 Uncoupling

nother embedding strategy, related to constant relaxation but different, is ‘‘uncoupling’’.
It applies when the postcondition is of the form

p ( i ) and q ( i )

for some variable i . In other words, the postcondition introduces a ‘‘coupling’’ between
e

t
two clauses p and q . You may then find it fruitful to introduce a fresh variable j , rewrit
he postcondition as

Ip ( i ) and q ( j ) --

and i = j

and use the first line as candidate loop invariant I , the variant being j –i . Because you
o

e
have ‘‘uncoupled’’ the variables in the two conditions p and q , it may be much easier t
nsure the initial validity of I . The loop body is then of the form

w

‘‘Bring i and j closer, maintaining I ’’

hich will often be done in two steps:

‘

‘‘Bring i and j closer’’;

‘Re-establish I if needed’’

As an example of this strategy, consider a variation on the preceding searching
t

i
problem, with the extra hypothesis that T has an order relation, written ≤, and the array
s sorted. This assumption may be expressed as a precondition:4

[9.48]
k : 2 . . n t [k − 1] ≤ t [k ]V •-

In Eiffel’s object-oriented software decomposition, such a property would normally be expressed
n

4

ot as the precondition of an individual routine, but as a class invariant for the enclosing class.
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The previous version of has would still work, of course, but we may want to rewrite it to

u
take advantage of t being sorted. One possibility is to write the body of the new has
nder the form

[9.49]
position := index (t, x);

Result := position ∈ 1 . . n and then x = t [position ]

t
p
where the auxiliary function index returns a position such that x either appears at tha
osition or does not appear in the array at all.

The precise specification of index ’s postcondition turns out to be perhaps the most

A

delicate part of this problem (which you are invited to try out by yourself first):

• The specification must be satisfiable in all cases: whatever the value of x is

p
relative to the array values, there must be at least one Result satisfying the
ostcondition.

B • To make the above algorithm [9.49] a correct implementation of has, the Result
e

u
must be the index of an array position where x appears, or otherwise must enabl
s to determine that x does not occur at all.

:

[

The following postcondition satisfies these requirements

9.50]
Result ∈ 0 . . n

and ( k : 1 . . Result t [k ] ≤ x ) -- p (Result)V- •

•V-and ( k : Result +1 . . n t [k ] ≥ x ) -- q (Result)

l
a
To check for condition A above, note that 0 will do for Result if x is smaller than al
rray values, and n if it is larger than all array values. (Remember once again that

x : E P is always true if E is empty.) For condition B, [9.50] implies that x appears•V-
in t if and only if

i > 0 and then t [Result ] = x

Specification [9.50] is non-deterministic: if two or more (necessarily consecutive) array
e

a
entries have value x , any of the corresponding indices will be an acceptable Result . Ther
re several ways to change the postcondition so that it defines just one Result in all cases;

we may for example change the last clause to read

( k : Result +1 . . n t [k ] > x )V- •

so that, in case of multiple equal values, Result will be the highest adequate index. It is
preferable, however, to keep the more symmetric version [9.50].

The problem, then, is to write the body for
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index (x: T; t: array [1. .n] of T): INTEGER is

-- Does x appear in t ?

require
[9.48] -- t is sorted

do
. . .

ensure
[9.50]

H

end

ow do we ensure the postcondition [9.50]? For more clarity let us use variable i instead
of Result ; the do clause may then end with Result := i. The postcondition is of the form

i ∈ 0 . . n and p ( i ) and q ( i )

swhich the uncoupling strategy suggests rewriting a

i , j ∈ 0 . . n and p ( i ) and q ( j ) -- I

l

and i = j

eading to a loop solution of the form

from

i := i ; j := j 0

invariant
0

p (i) and q ( j)

variant

distance (i, j)

until

i = j

loop

‘‘Bring i and j closer’’

T

end

his solution will be correct if and only if i satisfies p , j satisfies q , the refinement of
‘

0 0
‘Bring i and j closer’’ conserves the invariant p (i ) and q ( j ), and distance (i, j) is an
integer variant.

The initialization is trivial: we choose i to be 0 and j to be n ; p (0) and q (n ) are
t V-

0 0
rue since they are properties on empty sets.

With these initializations it appears reasonable to maintain i no greater than j
throughout the loop. This suggests a reinforced invariant:
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T
p (i) and q ( j) and 0 ≤ i ≤ j ≤ n

he most obvious way to ‘‘Bring i and j closer’’ is to increment i by 1, or alternatively
s

s
decrement j by 1, and see what it takes to keep the invariant true. Since the problem i
ymmetric in i and j , we should treat both possibilities equally.

r
w

Assuming the invariant is satisfied and i < j (the exit condition is not met yet), unde
hat conditions may we increment i or decrement j ?

Clearly, the instruction

i := i + 1

will preserve the invariant if and only if p (i + 1) is true, and

i

j := j – 1

f and only if q ( j – 1) is true.

,Look first at the i part. By definition

p (i) = ( k : 1 . . i t [k ] ≤ x )V- •

so that if t [ i + 1] is defined (in other words, for i < n):

S

p (i + 1) = p (i) and t [i + 1] ≤ x

tarting from a state where p (i ) is satisfied, then, incrementing i by 1 will preserve the
invariant if and only if

i < n and then t [i + 1] ≤ x

With respect to the j part

q ( j) = ( k : j +1 . . n t [k ] ≥ x )V- •

fwe may decrease j by 1 if and only i

j > 0 and then t [ j] ≥ x

In spite of appearances, the symmetry between the conditions on i and j is perfect;

R
simply, because in the original postcondition [9.50] p involves Result and q involves

esult + 1, it is in fact a symmetry between i and j + 1.

s
0

The guards i < n and j > 0 are in fact superfluous: the invariant include
≤ i ≤ j ≤ n , and i > j will hold as long as the exit condition is not satisfied; so

y
t
whenever the loop body is executed i +1 and j belong to the interval 1 . . n . So we ma
ry as loop body:

if
t [i + 1] ≤ x : i := i + 1

B

end
t [ j] ≥ x : j := j – 1

ecause symmetry is so strong in this problem, the solution uses the guarded conditional
(see [9.33], page 345). We must be careful, however: a guarded conditional will only
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xecute properly if, in all possible cases, at least one of the guards is true. Fortunately,

b
here this is the case: because the array is sorted and i < j is a precondition for the loop
ody, if the first guard is false, that is to say t [i + 1] > x, then the second guard, t [ j] ≥

x, is true.

The guarded conditional yields a non-deterministic instruction: if t [ i + 1] ≤ x ≤
d

c
t [ j ], then the instruction may execute either of its two branches. Using the standar
onditional instruction removes the non-determinism:

[9.51]
if t [i + 1] ≤ x then

else
i := i + 1

j := j – 1

E

end

ither form yields a simple and correct version of index:

index (x: T; t: array [1. .n] of T): INTEGER is

-- Does x appear in t ?
require

[9.48] -- t is sorted
local

i, j: INTEGER
do

from
i := 0; j := n

invariant

p (i) and q ( j) and 0 ≤ i ≤ j ≤ n
variant

j – i
until

i = j
loop

-- This could use the if . . . then . . . else form instead
if

t [i + 1] ≤ x : i := i + 1

ensure

end
end

t [ j] ≥ x : j := j – 1

[9.50] -- (cf. page 378)
end
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.
T
As you will have noted, this is not the way most people usually write sequential search

he standard form will follow from an efficiency improvement that we should carry out

r
as systematically as the above development. The price to pay for this improvement is the
emoval of the esthetically pleasant symmetry. Whenever the first guard is false, in other

l
p
words t [i + 1] > x, then assigning to j the value of i (rather than just j − 1) will stil
reserve the invariant. This suggests rewriting the conditional as

if t [i + 1] ≤ x then
i := i + 1

else
j := i

(

end

Of course, the symmetric change would also work.) As a result we may dispense with
r

t
variable j altogether by noting that loop termination occurs when either i = n o

[ i + 1] > x , yielding the more usual form for sequential search:

from
i:= 0

invariant . . . variant . . .

puntil i = n or else t[i+1] > x loo
i := i+1

Y

end

ou should complete the invariant and variant clauses of this loop.

R

9.11.5 Binary search

emoving the symmetry between i and j –1 at best yielded a marginal efficiency
e

s
improvement. A more promising avenue for improving the performance of sorted tabl
earching is based on the property that t is an array, meaning constant-time access to any

y
i
element whose index is known. This suggests ‘‘Bringing i and j closer’’ faster than b
ncrements of +1 or –1.

The idea of binary search is to aim for the middle of the interval i . . j. As Knuth
noted in the volume on searching of his Art of Computer Programming [Knuth 1973]:

Although the basic idea of binary search is comparatively straightforward, the
t

w
details can be somewhat tricky, and many good programmers have done i

rong the first few times they tried.

If you doubt this, it should suffice to take a look at exercise 9.12, which shows four

a
innocent-looking versions – all wrong. For each version there is a case in which the
lgorithm fails to terminate, exceeds the array bounds, or yields a wrong answer. Before

s
you read further, it is a good idea to try to come up with a correct version of binary
earch by yourself.
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Both binary search and the above version of function index belong to a more general

fi
class of solutions based on the same uncoupling of the postcondition, where the loop body

nds an element m in i . . j and assigns the value of m (or a neighboring value) to i or j .

e
a

In the version seen above m is i + 1 or j − 1; for binary search it will b
pproximately ( i + j ) div 2, so that we can expect a maximum number of iterations

roughly equal to log n rather than n . (The operator div denotes integer division.)2

This must be done carefully, however. In the general case we aim for a loop body of
the form

m := ‘‘Some value in 1 . . n such that i < m ≤ j’’;

if
t [m] ≤ x : i := m

1

w

end
t [m] ≥ x : j := m –

hich, in ordinary programming languages, will be written deterministically:

i

m := ‘‘Some value in 1 . . n such that i < m ≤ j’’;

f t [m] ≤ x then

else

i := m

j := m – 1

W

end

hether the conditional instruction is deterministic or not, it is essential to get all the

1

details right (and easy to get some wrong):

• The instruction must always decrease the variant j − i , by increasing i or

fi
decreasing j . If the the definition of m specified just i ≤ m rather than i < m , the

rst branch would not meet this goal.

2 • This does not transpose directly to j : requiring i < m < j would lead to an
e

m
impossibility when j − i is equal to 1. So we accept m ≤ j but then we must tak

− 1, not m , as the new value of j in the second branch.

3 • The conditional’s guards are tests on t [m ], so m must always be in the interval

4

1 . . n . This follows from the clause 0 ≤ i ≤ j ≤ n which is part of the invariant.

• If this clause is satisfied, then m ≤ n and m − 1 ≥ 0, so the conditional instruction

5

indeed leaves this clause invariant.

• You are invited to check that both branches of the conditional also preserve the

A

rest of the invariant, p ( i ) and q ( j ).

ny policy for choosing m is acceptable if it conforms to the above scheme. Two simple
choices are i + 1 and j ; they lead to variants of the above sequential search algorithm.

For binary search, m will be roughly equal to the average of i and j ,
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m ∆idpoint = ( i + j ) div 2

The value of midpoint itself is not acceptable for m , however, because it might not

r
satisfy requirement 1 above. Choosing midpoint + 1 will, however, satisfy all the above
equirements.

This yields the following new version of index , using binary search:

index (x: T; t: array [1. .n] of T): INTEGER is
-- Does x appear in t ?

require
[9.48] -- t is sorted

local
i, j, m: INTEGER

do
from

i := 0; j := n
invariant

p (i) and q ( j) and 0 ≤ i ≤ j ≤ n
variant

j – i
until

i = j
loop

m := ( i + j ) div 2 + 1 ;

if t [m] ≤ x then
i := m

else
j := m − 1

ensure
end

end

[9.50] -- cf. page 378

W

end

e can check that the loop will be executed at most log n times by proving that

2

2
log ( j − i ) is a variant. ( x is the largest integer no greater than x .) For any real

tnumbers a and b , log (a ) < log (b ) if a ≤ b / 2. Here, j − i is indeed at leas2 2
divided by 2 in both possible cases in the loop, since whenever i < j (i and j being
integers):

j − (( i + j ) div 2 + 1) ≤ ( j − i ) div 2

i − (( i + j ) div 2) ≤ ( j − i ) div 2
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To check this, consider separately the cases i + j odd and i + j even).

;
y

Of course, the version of binary search obtained here is not the only possible one
ou may wish to obtain others through variants of the uncoupling strategy.

A

9.11.6 An assessment

lthough they apply to well-known and relatively simple algorithms, the above examples
provide a good illustration of the constructive approach:

• The same framework served to derive two classes of algorithms (sequential and
o

‘
binary search). In the sorted array case, it is only at the last step (choosing how t
‘bring i and j closer’’) that different design choices lead to different computing

•
methods.

The heuristics used, constant relaxation and uncoupling, are quite general. One of
t

p
the exercises (9.24) asks you to apply uncoupling to a completely differen
roblem, sequence or array partitioning.

• We have built all versions so as to convince ourselves that they are correct and to

G

know why they are.

iven the human capacity for error and self-deception, it would be absurd to characterize
t

t
the methods illustrated here as sure recipes to obtain correct programs, or to claim tha
hey make other correctness techniques (such as testing) obsolete. Perfect or universal

f
they are not; more modestly, they constitute an important tool, among others, in the battle
or software reliability. This suffices to make them one of the most valuable application of

9

axiomatic semantics.

.12 BIBLIOGRAPHICAL NOTES

The basis of the axiomatic method is mathematical logic, based on classical rhetoric but

m
made considerably more rigorous in this century as an attempt to solve the crisis of

athematics that followed the development of set theory at the turn of the century. There

1
are many good introductions to mathematical logic, such as [Kleene 1967] or [Mendelson
964]. [Copi 1973] presents the notions of truth, validity, proof, axiom, inference etc. in a

particularly clear fashion. [Manna 1985] is especially geared towards computer scientists.

Work presenting mathematical foundations for axiomatic theories is usually rooted in
e

n
denotational semantics; this is the area of ‘‘complementary semantics’’, discussed in th
ext chapter. See the bibliographical notes to that chapter.

d
1

The first article on program proving using techniques based on assertions was [Floy
967], with a suggestive title: ‘‘Assigning Meanings to Programs’’. The paper also

introduced the notion of loop invariant, called ‘‘inductive assertion’’.

Floyd’s techniques were refined and improved in [Hoare 1969], which expressed
e

c
them as a system of axioms and inference rules associated with programming languag
onstructs. The approach was then applied to further language constructs such as routines
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l
l
[Hoare 1971] and jumps [Clint 1972], and to the specification of a large part of the Pasca
anguage [Hoare 1973b]. A comprehensive survey of Hoare semantics is given in

[Apt 1981].

The weakest precondition approach was developed by Dijkstra in an article [Dijkstra
1975] and a book [Dijkstra 1976].

These publications by Dijkstra also pioneered the ‘‘constructive approach’’ to
.

[
software correctness (9.11). [Gries 1981] is a very readable presentation of this approach
Alagić 1978] and [Dromey 1983] apply similar ideas to teaching program design,

t
algorithms and data structures. [Jones 1986] also emphasizes the use of program proving
echniques for software development. See also work by the author [Meyer 1978, 1980]

f
v
and in collaboration [Bossavit 1981], the latter describing the systematic construction o
ector algorithms for supercomputers. For an account of how the spirit of the axiomatic

t
a
method may be applied to the construction and proofs of algorithms in the very difficul
rea of concurrent programming, see the article on ‘‘on-the-fly garbage collection’’

[Dijkstra 1978].

The assertion mechanism of Anna is described in [Luckham 1985]. The assertion
e

c
mechanism of Eiffel and its application to the construction of reliable softwar
omponents are described in [Meyer 1988]. A further discussion of these topics, and the

theory of ‘‘Design by Contract’’, may be found in [Meyer 1991b].

As mentioned on page 348, Dijkstra’s non-deterministic choice and loop instructions

S
have direct applications to concurrent programming. Hoare’s CSP (Communicating

equential Processes) approach to parallelism is based in part on these ideas [Hoare 1978,
1985].

The axiomatic theory of expression typing in lambda calculus (9.3) comes from
s

i
[Cardelli 1984a], where it is applied to the more general problem of inferring proper type
n a language (Milner’s ML) where types, instead of being declared explicitly by

o
p
programmers, are determined by the system from the context and the types attached t
redefined identifiers. Cardelli’s system also handles genericity: in other words, some of

,
t
the types may include ‘‘free type identifiers’’ standing for arbitrary types. For example
he type of the identity function Id will be α α, where α stands for an arbitrary type.

9

EXERCISES

→

.1 Integers in mathematics and on computers

e
[
Write an axiomatic theory of integers, starting from the standard Peano axioms (se
Suppes 1972], page 121, or any other text on axiomatic set theory). Then adapt the

theory to account for the size limits imposed by number representation on computers.



387

M

9.2 Symmetric if instruction

EXERCISES

odify the abstract syntax and the denotational semantics of Graal, as given in chapter 5,

(
to replace the classical if...then...else. . . conditional instruction by the guarded conditional
9.9.4).

9.3 Assignment and sequencing

:Prove the following pre-post formula

{x = a and y = b}

t

{

t := x ; x := x + y ; y :=

x = a + b and y = a}

l

C

9.4 Non-deterministic conditiona

ompute A wp Q, for any assertion Q, where A is the instruction

if
x ≤ 0 : a := –x

9

end
x ≥ 0 : a := x

.5 Weakest precondition

Show that the value of guarded_if wp Q (page 346) may also be expressed as:

guarded_if wp R =

(c or c or ... or c ) and

1

1 2 n

1 d
(
(c implies (A wp R )) an
c implies (A wp R )) and

(
. . .

2 2

c implies (A wp R ))
n n

s

P

9.6 Simple proof

rove that the following pre-post formulae, involving integer variables only and assuming
perfect integer arithmetic, are theorems.
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y y −1
1 * * *{z x = K } z := z x {z x = K }

}2 {z x = K } y := y – 1; z := z x {z x = K* * *
yy

y y2
*3 *{y even and z x = K } y := y / 2; x := x {z x = K }

4 {z x = K }*
y

if
y odd : y := y – 1; z := z x*

2

{

end
y even : y := y / 2; x := x

z x = K }*
y

p

L

9.7 Proving a loo

et m and n be integers such that m > 0, n ≥ 0. From the answers to exercise 9.6,
determine the result of the following program; prove your answer.

x, y, z: INTEGER;

from
x := m ; y := n; z := 1

until y = 0 loop

if

y odd : y := y – 1; z := z x*
2

9

end
end

y even : y := y / 2; x := x

.8 Permutability of instructions

Applications such as parallel programming and the adaptation of programs to run on
o

d
parallel or vector processors (‘‘parallelization’’ or ‘‘vectorization’’), often require t
etermine whether the order of two instructions may be reversed. This exercise

D

investigates such permutability criteria.

efine two instructions A and B to be equivalent, and write

A ≡ B
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if and only if for any assertion Q

EXERCISES

A wp Q = B wp Q

Define that the instructions permute, written A perm B, if and only if

1

A; B ≡ B; A

– Consider assignment instructions A and B:

• A is x := e

• B is y := f

where e, f are expressions (none of the expressions considered in this exercise may
fcontain function calls). Let V and V be the sets of variables occurring in e and

e f

fe
rrespectively. Give a sufficient condition on V and V fo

A perm B

to hold. Prove the result using the rules for assignment and sequence.

2 – Assume A is of the form

x := x + e

mand B is of the for

x := x + f

where e and f are expressions, none of which contains x, and + is an operation which is
both commutative and associative. Prove that it is true in this case that

A perm B

9.9 Another assignment rule

Can you imagine a ‘‘forward rule’’ for assignment (see page 325) ? (Hint: Introduce
e

u
explicitly the value that the variable being assigned to had before the assignment. The rul
ses an existential quantifier.)

P

9.10 Array assignment

rove theorems [9.14] (page 328). Hint: Remember to treat the assignment as an
operation on the whole array.
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.11 Simple loop construction from invariants

e
i
Write loops to compute the following values for any n by finding first the appropriat
nvariants, using assertion-guided techniques (9.11).

2

1 f = n! (factorial of n)

F , the n-th Fibonacci number, defined by
n

0F = 0

1F =1

i i −1 i −2 1

9

F = F + F for i >

.12 Binary search: failed attempts

The figure on the adjacent page shows four attempts at writing a program for binary
e

r
search. Each program should set Result to true if and only if the value x appears in th
eal array t , assumed to be sorted in increasing order.

e
B
The programs use div for integer division. Variable found, where used, is of typ

OOLEAN.

Show that all of these programs are erroneous; it suffices for this to show that for each
n

i
purported solution there exist values of the array t and the element x that produce a
ncorrect solution (Result being set to true although x does not appear in t or conversely)

r
i
or will result in abnormal behavior at execution (out-of-bounds memory reference o
nfinite loop).

s

M

9.13 Indexed loop

ost languages provide a ‘‘do’’ or ‘‘for’’ loop structure in which the iteration is controlled
e

i
by an index ranging over a finite range (usually an arithmetic progression over th
ntegers, although it could be any finite set, such as a finite, sequential data structure like

l
b
a linear list). In the simplest case, looping over a contiguous integer interval, the loop wil
e written as something like

dfor i: a. . b loop A en
i

w
i

here A is some instruction, usually dependent on the value of i.

Give a proof rule for such an instruction.
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f

(P1)

Figure 9.7: Four (wrong) programs for binary search

EXERCISES

rom

i := 1; j := n

until i = j loop

m := (i + j ) div 2;

if t [m] ≤ x then

i := m
else

j := m

R

end;
end

esult := (x = t [i])

f

(P2)

rom

i := 1; j := n; found := false

until i = j and not found loop

m := (i + j ) div 2;

if t [m] < x then

i := m + 1
nelseif t [m] = x the

found := true
else

j := m – 1

R

end;
end

esult := found

(P3)

from
i := 0; j := n

until i = j loop
m := (i + j + 1) div 2;
if t [m] ≤ x then

i := m + 1
else

j := m

i

end;
end

f i ≥ 1 and i ≤ n then
)

else
Result := (x = t [i]

Result := false

(

end

P4)

from

i := 0; j := n + 1

until i = j loop

m := (i + j ) div 2;

if t [m] ≤ x then

i := m + 1
else

j := m

i

end;
end

f i ≥ 1 and i ≤ n then

)
else

Result := (x = t [i]

Result := false
end
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9.14 Repeat... until

lGive a proof rule for the Pasca

repeat . . . until . . .

instruction. You may use the observation that such a loop is readily expressed in terms of

9

the while loop.

.15 Equivalences between loops

:

1

Consider two loops of the following forms

. while c loop

while c and c loop A end;1 1

22 d

2

end

while c and c loop A en

. while c loop

if

c : A

2

1 1

2

P

end

end

c : A

rove that any invariant of loop 2 is also an invariant of loop 1.

r
l
Can you give an intuitive reason why an invariant of loop 1 might not be invariant fo
oop 2?

9.16 Precise requirements on variants

Consider a loop with continuation condition c and variant V (in the sense that the
antecedents of rule IT , page 336, are satisfied). Show that

Loop

c

(

V = 0 implies not

Hint: Proof by contradiction).
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D

9.17 Weakest preconditions for loops

EXERCISES

efine H , the necessary and sufficient condition for loop l to yield postcondition Q after
a

i
t most i iterations (i ≥ 0). You should first find independently an inductive definition of

H in the manner of the definition of G ([9.31], page 342), and then prove its consistency
i i

i
.

9

with the definition of G

.18 Keeping track of the clock

(Due to Paul Eggert.) Consider Graal extended with two notions: clock counter and non-

p
deterministic choice from integer intervals. This means two new instructions, with
ossible concrete syntax

• clock t

• choose t by e

In both instructions t is an integer variable; in the second, e is an integer expression.

e
c
The clock instruction assigns to t the current value of the machine clock. The machin
lock is positive, never has the same value twice, and is always increasing.

e
i
The choose instruction assigns to t an integer value in the interval 0 . . e −1 . Th
mplementation is free to use any value in that interval.

.

2

1 – Write axiomatic semantic definitions for these two instructions

– Use your semantics to prove that the following loop always terminates:

from

clock i

puntil i = 0 loo

clock j;

nif i < j the

choose i by i

9

end
end

.19 Restrictions on routines

Express the restrictions on routines for rule I1 (9.10.4) as static semantic constraints
b

Routine

Routine
y defining a V validity function (see 6.2).
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9.20 Composition of substitutions

Prove the rule for composing substitutions ([9.10], page 324), using the definition of

9

function subst. Hint: use structural induction on the structure of Q .

.21 Simultaneous substitution

Define formally a function

simultaneous (Q : Expression ; el : Expression* ; il : Identifier* )

o
f
which specifies multiple simultaneous substitution (page 354) in a manner similar t
unction subst for single substitution ([9.9], page 323). Hint: it is not appropriate to use a

9

list over . . . apply . . . expression on el or il ; why?

.22 In-out arguments

Extend rule I1 (page 353) to deal explicitly with in-out arguments.

9

Routine

.23 Loops as recursive procedures

A loop of the form

while c loop a end

may also be written as

call s

where s is a procedure with the following body:

U

if c then a ; call s end

sing this definition, prove the loop rule (9.7.6) from the recursive routine rule (9.10.6).

V

9.24 Partitioning a sequence

arious algorithms require partitioning a sequence. This operation is used in particular

P

for sorting arrays (next exercise) and for producing ‘‘order statistics’’.

artitioning is applicable if a total order relation exists on sequence elements. Partitioning
e

a
s means rearranging the order of its elements to put it in the form t ++ < p > ++ u , wher
ny element of t is less than or equal to p , and any element of u is greater than or equal
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f
t
to p . Value p , the pivot, is a sequence element, chosen arbitrarily; for the purpose o
his exercise the pivot will be the element that initially appeared at the leftmost position.

p
The only two permitted operations are swap ( i , j ), which exchanges the elements at
ositions i and j , and the test s (i ) ≤ s ( j ), which compares the values of the elements

A

at positions i and j .

general method for partitioning is to ‘‘burn the candle from both ends’’, the candle
,

‘
being the sequence deprived of its first element (the pivot). Maintain two integer cursors
‘left’’ and ‘‘right’’, initialized to the leftmost and rightmost positions. At each step,

r
increase the left cursor until it is under an element greater than the pivot, and decrease the
ight cursor until it is under an element lesser than the pivot. The two elements found are

c
out of order, so swap them; then start the next step. The process ends when the two
ursors meet; then you can swap the first sequence element (the pivot) with the element at

S

cursor position.

tarting from this informal description, derive a correct algorithm for sequence

H

partitioning, using the constructive methods described in 9.11.

int: The ‘‘candle-burning’’ process follows from the strategy of uncoupling, as discussed

9

in 9.11.4 and 9.11.5.

.25 Quicksort

A well-known algorithm for sorting an array is Quicksort, for which a routine may be
written (in a simplified form applicable to sequences) as:

sorted (s: X*): X* is
-- Produce a sorted permutation of s .

)
local

-- (There must be a total order relation on X .

t, u: X*
do

if s LENGTH ≤ 1 then•

Result := s
else

< t, u> := partitioned (s);

u

t := sorted (t);

:= sorted (u);

ensure
end

Result := t ++ u

-- Result is sorted, in other words:
)i : 2 . . Result LENGTH Result ( i − 1) ≤ Result (i• •V-

end
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ere partitioned is a routine, derived from the previous exercise, which given a sequence
a

p
s of length 2 or more returns two non-empty sequences t and u such that t ++ u is

ermutation of s , and all elements of t are less than or equal to all elements of u .

e
(
After putting this routine in a form suitable for application of the recursive routine rul
I2 , page 359), prove its correctness.

H
Routine

int: You may follow the example of the proof for routine Hanoi (9.10.9).

P

9.26 Inorder traversal of binary search trees

rove rigorously the routine for printing the contents of a binary search tree in order

o
(page 361). You will need to adapt the routine so that it produces a list of values as
utput.


