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Axiomatic semantics

9.1 OVERVIEW

As introduced in chapter 4, the axiomatic method expresses the semantics of a
programming language by associating with the language a mathematical theory for
proving properties of programs written in that language.

The contrast with denotational semantics is interesting. The denotational method, as
studied in previous chapters, associates a denotation with every programming language
construct. In other words, it provides a model for the language.

This model, a collection of mathematical objects, is very abstract; but it is a model.
As with all explicit specifications, there is a risk of overspecification: when you choose
one among several possible models of a system, you risk including irrelevant details.

Some of the specifications of chapters 6 and 7 indeed appear as just one possibility
among others. For example, the technique used to model block structure (chapter 7) looks
very much like the corresponding implementation techniques (stack-based allocation). This
was intended to make the model clear and realistic; but we may suspect that other,
equally acceptable models could have been selected, and that the denotational model is
more an abstract implementation than a pure specification.

The axiomatic method is immune from such criticism. It does not attempt to provide
an explicit model of a programming language by attaching an explicit meaning to every
construct. Instead, it defines proof rules which make it possible to reason about the
properties of programs.
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In a way, of course, the proof rules are meanings, but very abstract ones. More
importantly, they are ways of reasoning about programs.

Particularly revealing of this difference of spirit between the axiomatic and
denotational approaches is their treatment of erroneous computations:

» A denotational specification must associate a denotation with every valid language
construct. As noted in 6.1, a valid construct is structurally well-formed but may
still fail to produce a result (by entering into an infinite computation); or it may
produce an error result. For non-terminating computations, modeling by partial
functions has enabled us to avoid being over-specific; but for erroneous
computations, a denotational model must spill the beans and say explicitly what
special “error” vaues, such as unknown in 6.4.2, the program will yield for
expressions whose value it cannot properly compute. (See also the discussion in
6.4.4.)

* In axiomatic semantics, we may often dea with erroneous cases just by making
sure that no proof rule applies to them; no special treatment is required. This may
be called the unobtrusive approach to erroneous cases and undefinedness.

You may want to think of two shopkeepers with different customer policies:
Billy’s Denotational Emporium serves all valid requests (“No construct too big or
too small” is its slogan), athough the service may end up producing an error
report, or fail to terminate; in contrast, a customer with an erroneous or overly
difficult request will be politely but firmly informed that the management and
staff of Ye Olde Axiomatic Shoppe regret their inability to prove anything useful
about the request.

Because of its very abstractness, axiomatic semantics is of little direct use for some of the
applications of forma language specifications mentioned in chapter 1, such as writing
compilers and other language systems. The applications to which it is particularly relevant
are program verification, understanding and standardizing languages, and, perhaps most
importantly, providing help in the construction of correct programs.

9.2 THE NOTION OF THEORY

An axiomatic description of a language, it was said above, is a theory for that language.
A theory about a particular set of objects is a set of rules to express statements about
those objects and to determine whether any such statement is true or false.

As aways in this book, the word “statement” is used here in its ordinary sense of a property
that may be true or false — not in its programming sense of command, for which this book
always uses the word “instruction”.
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9.2.1 Form of theories

A theory may be viewed as a formal language, or more properly a metalanguage, defined
by syntactic and semantic rules. (Chapter 1 discussed the distinction between language
and metalanguage. Here the metalanguage of an axiomatic theory is the formalism used
to reason about languages.)

The syntactic rules for the metalanguage, or grammar, define the meaningful
statements of the theory, called well-formed formulae: those that are worth talking about.
“Well-formed formula’ will be abbreviated to “formula’ when there is no doubt about
well-formedness.

The semantic rules of the theory (axioms and inference rules), which only apply to
well-formed formulae, determine which formulae are theorems and which ones are not.

9.2.2 Grammar of a theory

The grammar of a theory may be expressed using standard techniques such as BNF or
abstract syntax, both of which apply to metalanguages just as well as to languages.

An example will illustrate the general form of a grammar. Consider a simple theory
of natural integers. Its grammar might be defined by the following rules (based on a
vocabulary comprising letters, the digit 0 and the symbols =, <, =>, = and’):

1 « The formulae of the metalanguage are boolean expressions.
2 + A boolean expression is of one of the four forms
a=p
a<p
oy
y =2
where a and 3 are integer expressions and y and o are boolean expressions.
3 « Aninteger expression is of one of the three forms
0
n
o’
where n is any lower-case letter from the roman alphabet and a is any integer
expression.
In the absence of parentheses, the grammar is ambiguous, which is of no consequence for

this discussion. (For a fully formal presentation, abstract syntax, which eliminates
ambiguity, would be more appropriate.)

According to the above definition, the following are well-formed formulae:
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0=0
0% 0
m"’ < 0"

0=0=0=#0

The following, however, are not well-formed formulae (do not belong to the
metalanguage of the theory):

0<1 -- Uses a symbol which is not in the vocabulary of the theory.
0<'n’ -- Does not conform to the grammar.

9.2.3 Theorems and derivation

Given a grammar for a theory, which defines its well-formed formulae, we need a set of
rules for deriving certain formulae, called theorems and representing true properties of
the theory’s objects.

The following notation expresses that a formula f is a theorem:
— f

Only well-formed formulae may be theorems: there cannot be anything interesting to say,
within the theory, about an expression which does not belong to its metalanguage. Within
the miniature theory of integers, for example, it is meaningless to ask whether 0 < 1 may
be derived as a theorem since that expresson simply does not belong to the
metalanguage. Here as with programming languages, we never attempt to attach any
meaning to a structurally invalid element. The rest of the discussion assumes all formulae
to be well-formed.

The restriction to well-formed formulae is similar, at the metalanguage level, to
the conventions enforced in the specification of programming languages. as noted
in 6.1, semantic descriptions apply only to statically valid constructs.

To derive theorems, a theory usually provides two kinds of rules. axioms and
inference rules, together called “rules”.

9.2.4 Axioms

An axiom is a rule which states that a certain formula is a theorem. The example theory
might contain the axiom
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F 0<O

This axiom reflects the intended meaning of * as the successor operation on integers:
it expresses that zero is less than the next integer (one).

9.2.5 Rule schemata

To characterize completely the meaning of * as *successor”, we need another axiom
complementing A ;:

successor . )
For any integer expressions m and n:

F m<n = m <n’

This expresses that if m is less than n, the same relation applies to their successors.

A ooy 1S NOL exactly an axiom but what is called an axiom schema because it
refers to arbitrary integer expressions m and n. We may view it as denoting an infinity
of actual axioms, each of which is obtained from the axiom schema by choosing actual
integer expressions for m and n. For example, choosing 0’’ and O for m and n yields

the following axiom:

|_ OH <O — 0”1 <Oi

In more ordinary terms, this says: 2 less than 0 implies 3 less than 1” (which happens to
be a true statement, although not a very insightful one).
In practice, most interesting axioms are in fact axiom schemata.

The following discussion will simply use the term *“axiom”, omitting “schema’
when there is no ambiguity. As a further convention, single letters such as m and n will
stand for arbitrary integer expressions in a rule schema: in other words, we may omit the
phrase “For any integer expressionsm and n”.

9.2.6 Inferencerules

Inference rules are mechanisms for deriving new theorems from others. An inference rule
is written in the form
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and means the following:

If fl, f2, e, fn are theorems, then fO is a theorem.

The formulae above the horizontal bar are called the antecedents of the rule; the formula
below it is called its consequent.

As with axioms, many inference rules are in fact inference rule schemata, involving
parameterization. *“ Inference rule” will be used to cover inference rule schemata as well.

The mini-theory of integers needs an inference rule, useful in fact for many other
theories. The rule is known as modus ponens and makes it possible to use implication in
inferences. It may be expressed as follows for arbitrary boolean expressions p and q:

MP

PP =

q

This rule brings out clearly the distinction between logical implication ( => ) and
inference: the => sign belongs to the metalanguage of the theory: as an element of its
vocabulary, it is similar to <, ', 0 etc. Although this symbol is usualy read aloud as
“implies”, it does not by itself provide a proof mechanism, as does an inference rule. The
role of modus ponens is precisely to make => useful in proofs by enabling q to be
derived as a theorem whenever both p and p => q have been established as theorems.

Another inference rule, essentia for proofs of properties of integers, is the rule of
induction, of which a simple form may be stated as:

IND
¢0), o) = @)
¢ (n)

9.2.7 Proofs

The notions of axiom and inference rule lead to a precise definition of theorems:

Definition (Theorem): A theorem t in a theory is a well-formed
formula of the theory, such that t may be derived from the axioms
by zero or more applications of the inference rules.
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The mechanism for deriving a theorem, called a proof, follows a precise format, already
outlined in 4.6.3 (see figure 4.10). If the proof rigorously adheres to this format, no
human insight is required to determine whether the proof is correct or not; indeed the task
of checking the proof can be handed over to a computer program. Discovering the proof
requires insight, of course, but not checking it if it is expressed in all rigor.

The format of a proof is governed by the following rules:
1 < The proof is a sequence of lines.
2+ Each lineis numbered.

3+ Each line contains a formula, which the line asserts to be a theorem. (So you may
consider that the formula on each line is preceded by an implicit | .)

4 + Each line aso contains an argument showing unambiguously that the formula of
the line is indeed a theorem. This is called the justification of the line.

The justification (rule 4) must be one of the following:

A« The name of an axiom or axiom schema of the theory, in which case the formula
must be the axiom itself or an instance of the axiom schema.

B« A list of references to previous lines, followed by a semicolon and the name of an
inference rule or inference rule schema of the theory.

In case B, the formulae on the lines referenced must coincide with the antecedents of the
inference rule, and the formula on the current line must coincide with the consequent of
the rule. (In the case of a rule schema, the coincidence must be with the antecedents and
consequents of an instance of the rule.)

As an example, the following is a proof of the theorem

Foi<i

(that is to say, every number is less than its successor) in the the above mini-theory.

[9.1]
Number  Formula Justification
M.1 0<0O A,
M.2 I <i’ = i’ <i” SLIGCESSOr
M.3 i <i’ M.1, M.2; IND
On line M.2 the axiom schema A is instantiated by taking i for m and i’ for n.

SUCCESSor

On line M. 3 the inference rule IND is instantiated by taking ¢ (n) to bei <i’. Note that
for the correctness of the proof to be mechanically checkable, as clamed above, the
justification field should include, when appropriate, a description of how a rule or axiom
schema is instantiated.
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The strict format described here may be somewhat loosened in practice when there is
no ambiguity; it is common, for example, to merge the application of more than one rule
on a single line for brevity (as with the proof of figure 4.10). The present discussion,
however, is devoted to a precise analysis of the axiomatic method, and it needs at least
initially to be a little pedantic about the details of proof mechanisms.

9.2.8 Conditional proofs and proofs by contradiction

[This section may be skipped on first reading. ]

Practical proofs in theories which support implication and negation often rely on two
useful mechanisms: conditional proofs and proofs by contradiction.

A conditional proof works as follows:

[9.2]

Definition (Conditional Proof): To prove P —> Q by conditional
proof, prove that Q may be derived under the assumption that P is
a theorem.

A conditional proof, usually embedded in a larger proof, will be written in the form
illustrated below.

Number Formula Justification

i-1

i1 P Assumption

i.2

i.n Q

i P =>Q Conditiona Proof
i+1

Figure 9.1: A conditional sub-proof

The goa of the proof is a property of the form P implies Q, appearing on a line
numbered i. The proof appears on a sequence of lines, called the scope of the proof and
numbered i .1, i.2, ..., i.n (for somen = 1). These lines appear just before linei. The
formula stated on the first line of the scope, i .1, must be P; the justification field of this
line, instead of following the usua requirements given on page 305, smply indicates
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“Assumption”. The formula proved on the last line of the scope, i.j, must be Q. The
justification field of line i simply indicates “ Conditional Proof” .

Conditional proofs may be nested; lines in internal scopes will be numbered i .j .k,
i.j.k.l etc.

The proof of the conclusion Q in linesi.2toi.n may use P, from linei.l, asa
premise. It may also use any property established on a line preceding i .1, if the line is
not part of the scope of another conditional proof. (For a nested conditiona proof, lines
established as part of enclosing scopes are applicable.)

P is stated on line i .1 only as assumption for the conditional proof; it and any
formula deduced from it may not be used as justifications outside the scope of that proof.

Proofs by contradiction apply to theories which support negation:

Definition (Proof by Contradiction): To prove P by contradiction,
prove that false may be derived under the assumption that - P isa
theorem.

The general form of the proof is the same as above; here the goa on linei is P,
with *“Contradiction”, instead of “Conditional Proof”, in its justification field. The
property proved on the last line of the scope, 1., must be false.

9.2.9 Interpretations and models

As presented so far, a theory is a purely formal mechanism to derive certain formulae as
theorems. No commitment has been made as to what the formulae actualy represent,
except for the example, which was interpreted as referring to integers.

In practice, theories are developed not just for pleasure but aso for profit: to deduce
useful properties of actua mathematical entitiess To do so requires providing
interpretations of the theory. Informally, you obtain an interpretation by associating a
member of some mathematical domain with every element of the theory’s vocabulary, in
such a way that a boolean property of the domain is associated with every well-formed
formula. A model is an interpretation which associates a true property with every theorem
of the theory. The only theories of interest are those which have at least one model.

When a theory has a model, it often has more than one. The example theory used
above has a model in which the integer zero is associated with the symbol O, the
successor operation on integers with the symbol ', the integer equality relation with = and
so on. But other models are also possible; for example, the set of al persons past and
present (assumed to be infinite), with O interpreted as modeling some specific person (say
the reader), x’ interpreted as the mother of x, x <y interpreted as “y is a maternal
ancestor of x” and so on, would provide another model.
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Often, a theory is developed with one particular model in mind. This was the case
for the example theory, which referred to the integer model, so much so that the
vocabulary of its metalanguage was directly borrowed from the language of integers.
Similarly, the theories developed in the sequel are developed for a specific application
such as the semantics of programs or, in the example of the next section, lambda
expressions. But when we study axiomatic semantics we must forget about the models
and concentrate on the mechanisms for deriving theorems through purely logical rules.

9.2.10 Discussion

As a conclusion of this quick review of the notion of theory and proof, some
gualifications are appropriate. As defined by logicians, theories are purely formal objects,
and proof is a purely formal game. The aim pursued by such rigor (where, in the words
of [Copi 1973], “a system has rigor when no formula is asserted to be a theorem unless it
is logically entailed by the axioms’) is to spell out the intellectua mechanisms that
underlie mathematical reasoning.

It is well known that ordinary mathematical discourse is not entirely formal, as this
would be unbearably tedious; the proof process leaves some details unspecified and skips
some steps when it appears that they do not carry any conceptual difficulty.

The need for a delicate balance between rigor and informality is well accepted in
ordinary mathematics, and in most cases this works to the satisfaction of everyone
concerned — although “accidents” do occur, of which the most famous historically is the
very first proof of Euclid’s Elements, where the author relied at one point on geometrical
intuition, instead of restricting himself to his explicitly stated axioms. Formal logic, of
course, is more demanding.

Although purely forma in principle, theories are subject to some plausibility tests.
Two important properties are:

» Soundness. a theory is sound if for no well-formed formula f the rules allow
deriving both f and - f.

» Completeness: a theory is complete if for any well-formed formula f the rules
allow the derivation of f or - f.

Both definitions assume that the metalanguage of the theory includes a symbol - (not)
corresponding to denial.

Soundness is aso called “non-contradiction” or *consistency”. It can be shown that a
theory is sound if and only if it has a model, and that it is complete if and only if every
true property of any model may be derived as a theorem.

An unsound theory is of little interest; any proposed theory should be checked for its
soundness. One would also expect all “good” theories to be complete, but this is not the
case. among the most importants results of mathematical logic are the incompleteness of
such theories as predicate calculus or arithmetic. The study of completeness and
soundness, however, falls beyond the scope of this book.
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9.3 AN EXAMPLE: TYPED LAMBDA CALCULUS

[This section may be skipped on first reading. It assumes an understanding of sections 5.4
to 5.10.]

Before introducing theories of actual programming languages, it is interesting to
study a small and elegant theory, due to Cardelli, which shows well the spirit of the
axiomatic method, free of any imperative concern.

Chapter 5 introduced the notion of typed lambda calculus and defined (5.10.3) a
mechanism which, when applied to a lambda expression, yields its type. The theory
introduced below makes it possible to prove that a certain formula has a certain type —
which is of course the same one as what the typing mechanism of chapter 5 would
compute.

The theory’s formulae are al of the form
b | et

where e is atyped lambda expression, t is atype and b is a binding (defined below). The
informal meaning of such aformulais:

“Under b, e hastypet.”

Recall that a type of the lambda calculus is either:
1 « Oneamong a set of basic predefined types (such as N or B).

2 « Ofthefooma — B, where a and B are types.

In case of ambiguity in multi-arrow type formulae, parentheses may be used; by default,
arrows associate to the right.

A binding is a possibly empty sequence of <identifier, type> pairs. Such a sequence
will be written under the form
X:a+y:B+zy

and may be informally interpreted as the binding under which x has type a and so on.
The notation also uses the symbol + for concatenation of bindings, asin b + x: a where
b is a binding. The same identifier may appear twice in a binding; in this case the
rightmost occurrence will take precedence, so that under the binding

X:a+y:B+xy

X has type y. One of the axioms below will express this property formally.

In typed lambda calculus, we declare every dummy identifier with a type (as in
A X:a « e). This means that the types of all bound identifier occurrences in a typed
lambda expression are given in the expression itself. As for the free identifiers, their types
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will be determined by the environment of the expression when it appears as a sub-
expression of a larger expression. So if an expression contains free identifier occurrences
we can only define its type relative to the possible bindings of these identifiers.

To derive the type of an expression e, then, is to prove a property of the form
b | e«

for some type a. The binding b may only contain information on identifiers occurring
free in e (any other information would be irrelevant). If no identifier occurs freein e, b
will be empty.

Let us see how a system of axioms and inference rules may capture the type

properties of lambda calculus. In the following rule schemata, e and f will denote
arbitrary lambda expressions, x an arbitrary identifier and b an arbitrary binding.

The first axiom schema gives the basic semantics of bindings and the “rightmost
strongest” convention mentioned above:

Right

b+x:a | x:a

In words: “Under binding b extended with type a for x, x has type a” — even if b gave
another type for x.

Deducing types of identifiers other than the rightmost in a binding requires a ssimple
inference rule schema:

Perm

b | x:a

b+y:B | x:a

(if x and y are different identifiers). In words. “If x has type a under b, x still has type
o under b extended for any other identifier y with some type (3”.

To obtain the rules for typing the various forms of lambda expressions, we must
remember that a lambda expression is one of atom, abstraction or application.

Atoms (identifiers) are already covered by Right: their types will be whatever the
binding says about them. We do not need to introduce the notion of predefined identifier
explicitly since the theory will yield a lambda expression’s type relative to a certain
binding, which expresses the types of the expression’s free identifiers. If a formula is
incorrect for some reason (as a lambda expression involving an identifier to which no type
has been assigned), the axiomatic specification will not rgect it; instead, it simply makes
it impossible to prove any useful type property for this expression.

Abstractions describe functions and are covered by the following rule:
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IAbstraction
b+x:a | e

b | {Ax:a-e}:a - B

This rule captures the type semantics of lambda abstractions: if assigning type a to x
makes it possible to assign type B to e, then the abstraction A x: a - e describes a
function of typea — .

In a form of the lambda calculus that would support generic functions with implicit
typing (inferred from the context rather than specified in the text of the expression), this
rule could be adapted to:

! Generic_abstraction
b+x:a | e

b | {Ax.-e};a -9

making it possible, for example, to derive a — a, for any a, as type of the function:

ld & A x.X

and similarly for other generic functions. But we shall not pursue this path any further.

In an axiomatic theory covering programming languages rather than lambda calculus,
a pair of rules similar to Right and I, . ... could be written to account for typing in
block-structured languages, where innermost declarations have precedence.

Finally we need an inference rule for application expressions:

IApplicaIion
b | fia - B b | e

b | f(e)p

In other words, if a function of type a — [3 is applied to an argument, which must be of
type a, the result is of type 3. This completes the theory.

This theory is powerful enough to derive types for lambda expressions. It is
interesting to compare the deduction process in this theory with the *computations” of
types made possible by the techniques introduced in 5.10. That section used the following
expression as example:

AX:N - NeAy:N - NeAzZ: N« X ({AX:N-y (X)} (2))
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E.l X:NoN+y:NoN+2z:N | x:i NoN
Right, Perm
E.2 X:NoN+y:NoN+zN+x:N | zz N
Right, Perm
E.3 X:NoN+yYy:NoN+zZN+x:N | x: N
Right
E.4 X:NoN+y:NoN+zZN+x:N | y: NN
Right, Perm
E.5 XiNoN+y:NoN+zZN+x:N | y(x): N
E3 E4 1,
E.6 XiNoN+Y:NoN+zZ:N | AxiN-y (X): NoN
E5 1y,
E7 X:NoN+Yy:NoN+z:N | {Ax:N-y x)} (2): N
E2 E6 |,
E.8 X:NoN+Y:NoN+zZ:N | Xx ({Ax:N-y X)}(2): N
E.1l, E7; IApp
E9 X:NoN+Y:NoN | AzZNex ({Ax:N-y X)} (2):
N-N
E.8; IAbst
E10 X:NoN | AYy:iNoN«AZN-x ({AXx:N-y (X)} (2):
(N-N)-(N-N)
E9 1y,
E.11 | AXcN«AYy:NSNeAzZ:Nex ({AXx:N-y x)} (2):
(N>N)->((N>N)-(N-N))
E.10; IAbst

Figure 9.2: A typeinference in lambda calculus
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The figure on the adjacent page shows how to derive the type of this expression in the
theory exposed above. You are invited to compare it with the type computation of figure
5.4, Whlch it closely parallels. (The subscripts in N olication and |, o ion NAve been
abbreviated as App and Abst respectively on the flgures

The rest of this chapter investigates axiomatic theories of programming languages,
which mostly address dynamic semantics. the meaning of expressions and instructions.
This example just outlined, which could be transposed to programming languages, shows
that the axiomatic method may be applied to static semantics as well.

9.4 AXIOMATIZING PROGRAMMING LANGUAGES

9.4.1 Assertions

The theories of most interest for this discussion apply to programming languages; the
formulae should express relevant properties of programs.

For the most common class of programming languages, such properties are
conveniently expressed through assertions. An assertion is a property of the program’'s
objects, such as

X+y>3

which may or may not be satisfied by a state of the program during execution. Here, for
example, a state in which variables x and y have values 5 and 6 satisfies the assertion;
one in which they both have value O does not.

For the time being, an assertion will simply be expressed as a boolean expression in
concrete syntax, as in this example; this represents an assertion satisfied by all states in
which the boolean expression has value true. A more precise definition of assertions in
the Graal context will be given below (9.5.2).

9.4.2 Preconditions and postconditions

The formulae of an axiomatic theory for a programming language are not the assertions
themselves, but expressions involving both assertions and program fragments. More
precisely, the theory expresses the properties of a program fragment with respect to the
assertions that are satisfied before and after execution of the fragment. Two kinds of
assertion must be considered:

* Preconditions, assumed to be satisfied before the fragment is executed.
» Postconditions, guaranteed to be satisfied after the fragment has been executed.

A program or program fragment will be said to be correct with respect to a certain
precondition P and a certain postcondition Q if and only if, when executed in a state in
which P is satisfied, it yields a state in which Q is satisfied.
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The difference of words — assumed vs. ensured — is significant: we treat
preconditions and postconditions differently. Most significant program fragments are only
applicable under certain input assumptions: for example, a Fortran compiler will not
produce interesting results if presented with the data for the company’s payroll program,
and conversely. The precondition should of course be as broad as possible (for example,
the behavior of the compiler for texts which differ from correct Fortran texts by a small
number of common mistakes should be predictable); but the specification of any redlistic
program can only predict the complete behavior of the program for a subset of all
possible cases.

It is the responsibility of the environment to invoke the program or program
fragment only for cases that fall within the precondition; the postcondition binds the
program, but only in cases when the precondition is satisfied.

So a pre-post specification is like a contract between the environment and the
program: the precondition obligates the environment, and the postcondition obligates the
program. If the environment does not observe its part of the deal, the program may do
what it likes; but if the precondition is satisfied and the program fails to ensure the
postcondition, the program is incorrect. These ideas lie at the basis of a theory of
software construction which has been termed programming by contract (see the
bibliographical notes).

Defined in this way, program correctness is only a relative concept: there is no such
thing as an intrinsically correct or intrinsicaly incorrect program. We may only tak
about a program being correct or incorrect with respect to a certain specification, given by
a precondition and a postcondition.

9.4.3 Partial and total correctness

The above discussion is vague on whose responsibility it is to ensure that the program
terminates. Two different approaches exist: partial and total correctness.

The following definitions characterize these approaches; they express the correctness,
total or partial, of a program fragment a with respect to a precondition P and a
postcondition Q.

Definition (Total Correctness). A program fragment a is totally
correct for P and Q if and only if the following holds: Whenever a
is executed in any state in which P is satisfied, the execution
terminates and the resulting state satisfies Q.
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Definition (Partial Correctness). A program fragment a is partially
correct for P and Q if and only if the following holds: Whenever a
is executed in any state in which P is satisfied and this execution
terminates, the resulting state satisfies Q.

Partial correctness may also be called conditional correctness: to prove it, you are only
required to prove that the program achieves the postcondition if it terminates. In contrast,
proving total correctness means proving that it achieves the postcondition and terminates.

You might wonder why anybody should be interested in partial correctness. How
good is the knowledge that a program would be correct if it only were so kind as to
terminate? In fact, any non-terminating program is partially correct with respect to any
specification. For example, the following loop

while 0 =0 do
print ("We try harder!")
end;
print (" We have proved Fermat’s last theorem")

is partialy correct with respect to the precondition true and a postcondition left for the
reader to complete (actually, any will do).

The reason for studying partial correctness is pragmatic: methods for proving
termination are often different in nature from methods for proving other program
properties. This encourages proving separately that the program is partially correct and
that it terminates. If you follow this approach, you must never forget that partial
correctness is a useless property until you have proved termination.

9.4.4 Varieties of axiomatic semantics

The work on axiomatic semantics was initiated by Floyd in a 1967 article (see the
bibliographical notes), applied to programs expressed through flowcharts rather than a
high-level language.

The current frame of reference for this field is the subsequent work of Hoare, which
proposes a logical system for proving properties of program fragments. The well-formed
formulae in such a system will be called pre-post formulae. They are of the form

{P} a{Q}

where P is the precondition, a is the program fragment, and Q is the postcondition.
(Hoare's origina notation was P {a} Q, but this discussion will use braces according to
the convention of Pascal and other languages which treat them as comment delimiters.)
The notation expresses partial correctness of a with respect to P and Q: in this method,
termination must be proved separately.
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So a Hoare theory of a programming language consists of axioms and inference rules
for deriving certain pre-post formulae. This approach may be called pre-post semantics.

Another approach was developed by Dijkstra. Its aim is to develop, rather than a
logica theory, a calculus of programs, which makes it possible to reason on program
fragments and the associated assertions in a manner similar to the way we reason on
arithmetic and other expressions in calculus. through the application of well-formalized
transformation rules. Another difference with pre-post semantics is that this theory handles
total correctness. This approach may be called wp-semantics, where wp stands for
“weakest precondition”; the reason for this name will become clear later (9.8).

We will look at these two approaches in turn. Of the two, only the pre-post method
fits exactly in the axiomatic framework as defined above. But the spirit of wp-semantics is
close.

95 A CLOSER LOOK AT ASSERTIONS

The theory of axiomatic semantics, in either its “pre-post” or “wp” flavor, applies to
formulae whose basic constituents are assertions. To define the metalanguage of the
theory properly, we must first give a precise definition of assertions and of the operators
applicable to them.

Because assertions are properties involving program objects (variables, constants,
arrays etc.), the assertion metalanguage may only be defined formally within the context
of a particular programming language. For the discussion which follows that language
will be Graal.

9.5.1 Assertions and boolean expressions

An assertion has been defined as a property of program objects, which a given state of
program execution may or may not satisfy.

Graal, in common with al usua programming languages, includes a construct which
seems very close to this notion: the boolean expression. A boolean expression aso
involves program objects, and has a value which is true or false depending on the values
of these objects. For example, the boolean expression x + y > 3 has value true in a state
if and only if the sums of the values that the program variables x and y have in this state
is greater than three.

Such a boolean expression may be taken as representing an assertion as well — the
assertion satisfied by those states in which the boolean expression has value true.

Does this indicate a one-to-one correspondence between assertions and boolean
expressions? This is actually two questions:
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1 < Given an arbitrary boolean expression of the programming language, can we
always associate an assertion with it, as in the case of x + y > 3?

2 « Can any assertion of interest for the axiomatic theory of a programming language
be expressed as a boolean expression?

For the axiomatic theory of Graal given below, the answer to these questions turns out to
be yes. But this should not lead us confuse assertions with boolean expressions; there are
both theoretical and practical reasons for keeping the two notions distinct.

On the theoretical side, assertions and boolean expressions belong to different
worlds:

* Boolean expressions appear in programs. they belong to the programming
language.

» Assertions express properties about programs. they belong to the formulae of the
axiomatic theory.

On the practical side, languages with more powerful forms of expressions than Graal,
including all common programming languages, may yield a negative answer to both
guestions 1 and 2 above. To express the assertions of interest in such languages, the
formalism of boolean expressions is at the same time too powerful (not al boolean
expressions can be interpreted as assertions) and not powerful enough (some assertions
are not expressible as boolean expressions).

Examples of negative answers to question 1 may arise from functions with side-
effects: in most languages you can write a boolean expression such as

f(x) >0

where f is a function with side-effects. Such boolean expressions are clearly inadequate
to represent assertions, which should be purely descriptive (“applicative’”) statements
about program states.

As an example of why the answer to question 2 could be negative (not all assertions
of interest are expressible as boolean expressions), consider an axiomatic theory for any
language offering arrays. We may want to use an axiomatic theory to prove that any state
immediately following the execution of a sorting routine satisfies the assertion

Vi:l.n-1-t[i]<t/[i+]

where t is an array of bounds 1 and n. But this cannot be expressed as a boolean
expression in ordinary languages, which do not support quantifiers such as V.

Commonly supported boolean expressions are just as unable to express a requirement
such as “the values of t are a permutation of the original values’” — another part of the
sorting routine's specification.

To be sure, confusing assertions and boolean expressions in the specification of a
language as simple as Graal would not cause any serious trouble. It is indeed often
convenient to express assertions in boolean expression notation, as with x + y > 3 above.
But to preserve the theory’s general applicability to more advanced languages we should
resist any temptation to identify the two notions.
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9.5.2 Abstract syntax for assertions

To keep assertions conceptually separate from boolean expressions, we need a specific
abstract syntactic type for assertions. For Graal it may be defined as:

Assertion & exp: Expression

with a static validity function expressing that the acceptable expressions for exp must be
of type boolean:

[9.3]
V pcsartion 8¢ Assertion, tm: Type_map] 4
Expression [a. exp, tm] A expression_type (a. exp, tm) = bt

This yields the following complete (if rather pedantic) form for the assertion used earlier
as example under the form x + y > 3:

[9.4]
Assertion
(exp: Expression (Binary

(terml: Expression (binary
(terml: Variable (id: "X");
term2: Variable (id: "y");
op: Operator (Arithmetic_op (Plus))));

term2: Constant (Integer_constant (3));

op: Operator (Relational_op (Gt)))))

or if we just use plain concrete syntax for expressions:
Assertion (exp: X + y > 3)

For simplicity, the rest of this chapter will use concrete syntax for simple assertions and
their constituent expressions; furthermore, it will not explicitly distinguish between an
assertion an the associated expression when no confusion is possible. So the above
assertion will continue to be written x + y > 3 without the enclosing Assertion (exp: ...).

In the same spirit, the discussion will freely apply boolean operators such as and
orand not to assertions; for example, P and Q will be used instead of

Assertion (exp: Expression (Binary
(terml: P.exp;
term2: Q.exp;
op: Operator (Boolean_op (And)))))

It is important, however, to bear in mind that these are only notational facilities.

The next chapter shows how to give assertions a precise semantic interpretation in
the context of denotational semantics.
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9.5.3 Implication

In stating the rules of axiomatic semantics for any language, we will need to express
properties of the form: “Any state that satisfies P satisfies Q. This will be written using
the infix implies operator as

P implies Q

When such a property holds and the reverse, Q implies P, does not, P will be said said
to be stronger than Q, and Q weaker than P.

The implies operator takes two assertions as its operands, its result, however, is not
an assertion but simply a boolean value that depends on P and Q. This value is true if
and only if Q is satisfied whenever P is satisfied. P implies Q is a well-formed formula
of the metalanguage of axiomatic semantics, not a programming language construct.

9.6 FUNDAMENTALS OF PRE-POST SEMANTICS

The basic concepts are now in place to introduce axiomatic theories for programming
languages such as Graal, beginning with the pre-post approach.

This section examines general rules applicable to any programming language; the
next section will discuss specific language constructs in the Graal context.

9.6.1 Formulae of interest in pre-post semantics

The formulae of pre-post semantics are pre-post formulae of the form {P} a {Q}. The
purpose of pre-post semantics is to to derive certain such formulae as theorems. The
intuitive meaning of a pre-post formula is the following:

[9.5]

Interpretation of prepost formulae: A prepost formula
{P} a {Q} expresses that a is partialy correct with respect to
precondition P and postcondition Q.

From the definition of partial correctness (page 314), this means that the computation of
a, started in any state satisfying P, will (if it terminates) yield a state satisfying Q. The
next chapter will interpret this notion in terms of the denotational model.
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9.6.2 The rule of consequence

The first inference rule (in fact, as the subsequent rules, a rule schema) is the language-
independent rule of consequence, first introduced in 4.6.2. It states that “less
informative” formulae may be deduced from ones that carry more information. This
concept may now be expressed more rigorously using the implies operator on assertions:

CONS
{P} a{Q}, P impliesP, Q impliesQ
{P'} a{Q}

9.6.3 Facts from elementary mathematics

The axiomatic theory of a programming language is not developed in a vacuum. Programs
manipulate objects which represent integers, real numbers, characters and the like. When
we attempt to prove properties of these programs, we may have to rely on properties of
these objects. This means that our axiomatic theories for programming languages may
have to embed other, non-programming-language-specific theories.

Assume that in a program manipulating integer variables only, we are able (as will
indeed be the case with the axiomatic theory of Graal) to prove

[9.6]
- {x+x>2) y=x+ x{y> 1},

but what we really want to prove is

[9.7]
= {x>1}y=x+x{y>1

Before going any further you should make sure that you understand the different notations
involved. The formulae in braces {...} represent assertions, each defined, as we have seen, by
the associated Graal boolean expression. Occurrences of arithmetic operators such as + or > in
these expressions denote Graal operators — not the corresponding mathematical functions, which
would be out of place here. If programming language constructs (such as the Graal operator
for addition) were confused with their denotations (such as mathematical addition), there would
be no use or sense for formal semantic definitions.

How can we prove [9.7] assuming we know how to prove [9.6]? The rule of
consequence is the normal mechanism: from the antecedents

[9.6]
{x+x>2} y:=x+x{y>1}
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[9.8]
{x>1} implies {x+ x> 2}

direct application of the rule of consequence will yield [9.7].

This assumes that we can rely on the second antecedent, [9.8]. But we cannot
simply accept [9.8] as a trivial property from elementary arithmetic. Actualy, its formula
does not even belong to the language of elementary arithmetic; as just recalled, it is not a
mathematical property but a well-formed formula of the Graal assertion language.
Deductions involving such formulae require an appropriate theory, transposing to
programming language objects the properties of the corresponding objects in mathematics
— integers, boolean values, real numbers.

When applied to actual programs, written in an actual programming languages and
meant to be executed on an actual computer, this theory cannot be a blind copy of
standard mathematics. For integers, it needs to take size limitations and overflow into
account; this is the object of exercise 9.1. For “real” numbers, it needs to describe the
properties of their floating-point approximations.

For the study of Graal, which only has integers, we will accept arithmetic at face
value, taking for granted all the usual properties of integers and booleans. The rest of this
discussion assumes that the theory of Graa is built on top of another axiomatic theory,
caled EM for elementary mathematics. EM is assumed to include axioms and inference
rules applicable to basic Graal operators (+, —, <, >, and etc.) and reflecting the properties
of the corresponding mathematical operators. Whenever a proof needs a property such as
[9.8] above, the justification will simply be the mention “EM™.

EM also includes properties of the mathematical implication operation, transposed to
the implies operation on assertions. An example of such a property is the transitivity of
implication: for any assertions P, Q, R,

F ((P implies Q) and (Q implies R)) => (P implies R)

Chapter 10 will use the denotational model to define the semantics of assertions in a
formal way, laying the basis for a rigorously established EM theory, although this theory
will not be spelled out.

Using EM, the proof that [9.7] follows from [9.6] may be written as:

T1 [96] {x+x>2} y:=x+x {y>1} (proved separately)
T2 x>1 implies x+ x>2 EM
T3 [9.7]{x>1} x:=x+x {y>1} T1, T2; CONS

The EM rules used in this chapter are all straightforward. In proofs of actual programs,
you will find that axiomatizing the various object domains may be a major part of the
task. One of the proofs below (the *“tower of Hanoi” recursive routine, 9.10.9), as well
as exercises 9.25 and 9.26, provide examples of building theories adapted to specific
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problems. But some object domains are hard to axiomatize. For example, producing a
good theory for floating-point numbers and the associated operations, as implemented by
computers, is a difficult task. Such problems are among the major practical obstacles that
arise in efforts to prove full-scale programs.

9.6.4 The rule of conjunction

A language-independent inference rule similar in scope to the rule of consequence is
useful in some proofs. This rule states that if you can derive two postconditions you may
also derive their logical conjunction:

CONJ

{P} a{Q}, {P}a{R}
{P} a{Q and R}

Note that conversely if you have established — {P} a{Q and R}, then you may derive
both - {P} a{Q} and |- {P} a{R}. This property does not need to be introduced as
arule of the theory but follows from the rule of consequence, since the following are EM
theorems:

(Q and R) implies Q
(Q and R) implies R

Wp-semantics, as studied later in this chapter, will enable us to determine whether there is
a corresponding “rule of disunction” for the or operator (see 9.9.4).

9.7 PRE-POST SEMANTICS OF GRAAL

We now have all the necessary background for the axiomatic theory of Graal instructions.

9.7.1 Skip

The first instruction to consider is Skip. The pre-post axiom schema is predictably neither
hard nor remarkable.

AS(ip

~  {P} Sip {P}

Sip does not do anything, so what the user of this instruction may be guaranteed on exit
is no more and no less than what he is prepared to guarantee on entry.
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9.7.2 Assignment

The axiom schema for assignment uses the notion of substitution. For any assertion Q:

AA$i gnment

F  {Q[x « e]} Assignment (target: x; source: €) {Q}

This rule introduces a new notation: Q [x « e], read as “Q with x replaced by e”,
is the substitution of e for all occurrences of x in Q. This notation is applicable when Q
and e are expressions and x is a variable; it immediately extends to the case when Q is
an assertion.

Substitution is a purely textual operation, involving no computation of the
expression: to obtain Q [x < e], you take Q and replace occurrences of x by e
throughout. We need to define this notion formally, of course, but let us first look at a
few examples of substitution. As mentioned above, the expressions apply arithmetic and
relational operations in standard concrete syntax.

3[Xx « y+1] = 3
Zx [x «y+1] =z%7

X[X «y+l] = y+1

K =x)Ix cy+1 = (y+) - (y+1)]
x+y)[x « y+1] = (y+1) +y

(X +y)[X « x+y+1] = (x+y+1) +y

o o B~ W N P
T 1T 1T 1T 1T T

In the first two examples, x does not occur in Q, so that Q [x — e] isidentical to
Q (a constant in the first case, a binary expression not involving x in the second). In
example 3, Q isjust the target x of the substitution, so that the result is e, herey + 1. In
example 4, x appears more than once in Q and al occurrences are substituted. Example 5
shows a case when a variable, here y, appears in both Q and e; note that rules of
ordinary arithmetic would allow replacement of the right-hand side by 2x y +1, but thisis
outside the substitution mechanism. Finally, example 6 shows the important case in which
X, the variable being substituted for, appears in e, the replacement.

We need a way to define substitution formally. Let
Q[x « e] 4 subst (Q, e, x.id)

where function subst, a simplified version of the substitution function introduced in 5.7
for lambda calculus (see figure 5.2), is defined by structural induction on expressions:
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[9.9]
subst (Q: Expression, e: Expression, x: S) A
case Q of
Constant : Q |
Variable : if Q.id= xtheneelse Q end |
Binary :
Expression (Binary (
terml: subst (Q.terml, e, X);
term2: subst (Q.term2, e, X);
end op: Q.0p))

We may need to compose substitutions, using the following rule:

[9.10]
Qla «f)[b ~g]=Q[a « (f [b ~ g])]

This property does not hold in all cases (a counter-example is easy to produce) but is
correct in the two cases for which we will need it: when a and b are the same identifier;
and when b does not occur in Q. The proof by structural induction, using the definition
of function subst, is the subject of exercise 9. 20.

In the pre-post theory, subst will only be applied to boolean expressions (associated with
assertions); but as these may be relational expressions involving sub-expressions of any
type, we need subst to be defined for general expressions.

The pre-post axiom schema for assignment (A, an ment) USES substitution to describe
the result of an assignment. The idea is quite smple: whatever is true of x after the
assignment X := e must have been true of e before.

The following are ssimple examples of the use of the axiom schema. Carry out the
substitutions by yourself to see the mechanism at work.

H {y>z-2} x=x+1{y>z-2}
{2+2=5} x:=x+1 {2+2=5}

1

2 ~

3 H {y>0} x:=y {x>0}

4 - {x+1>0} x:=x+1 {x>0}

Example 1 shows that an assertion involving only variables other than the target of an
assignment is preserved by the assignment. The assertion of the second example only
involves constants and is similarly maintained. Note that the rule says nothing about the
precondition and postcondition being “true” or “false”: al that example 2 says is that if
two plus two equaled five before the assignment this will still be the case afterwards — a
theorem, although a useless one since its assumption does not hold.
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Examples 3 and 4 result from straightforward application of substitution. For the
latter, the assignment rule does not by itself yield a proof of

{x>-1} x:=x+1 {x>0}

For this, EM and the rule of consequence are needed. The proof may be written as
follows:

Al {x+1>0} x=x+1{x>0 A

Assignment
A2 x>-1 implies x+1 >0 EM
A3 {x>-1} x:=x+1 {x>0} Al, A2; CONS

Three important comments apply to the assignment rule.

First, the rule as given works “backwards’: it makes it possible to deduce a
precondition Q [v — e] from the postcondition Q rather than the reverse. A forward rule
is possible (see exercise 9.9), but it turns out to be less easy to apply. The observation
that proofs involving assignments naturally work by sifting the postcondition back through
the program to obtain the precondition has important consequences on the structure and
organization of these proofs.

In a simple case, however, the backward rule yields an immediate forward property,
If the source expression e for an assignment is a plain variable, rather than a constant or
a composite expression, then for any assertion P:

[9.11]
F {P} Assignment (target: x ; source: €) {P [e — Xx]}

provided x does not occur in P. To derive this, use A, ., taking P [e — X] for
Q; then Q [x « e] isP by the rule for composition of su%stitutions ([9.10], page 324),
which is applicable here thanks to the assumption that x does not occur in P.

The second comment reflects on the nature of assignment. This instruction is one of
the most imperative among the features that distinguish programming from the
“applicative” tradition of mathematics (1.3). An assignment is a command, not a
mathematical formula; it specifies an operation to be performed at a certain time during
the execution of a program, not a relation that holds between mathematical entities. As a
consequence, it may be difficult to predict the exact result of an assignment instruction in
a program, especialy since repeated assignments to the same variable will cancel each
other’s effect.

Axiom AASS“‘]ment establishes the mathematical respectability of assignment by
enabling us to interpret this most unabashedly imperative of programming language
constructs in terms of a “pure” — that is to say, applicative — mathematical concept:

substitution.
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The third comment limits the applicability of the rule. As given above, this rule only
applies to languages (such as Graal) which draw a clear distinction between the notions of
expression and instruction. In such languages, expressions produce values, with no effect
on the run-time state of the program; in contrast, instructions may change the state, but do
not return a value. This separation is violated if an expression may produce side-effects,
usually through function calls. Consider for example a function

asking_for_trouble (x: in out INTEGER): INTEGER is

do
X:=x+1,
global :=global + 1;
Result := 0
-- The function’s returns as result the final value of
-- the predefined variable Result (Eiffel convention)
end

where global is a variable external to asking_for_trouble in some fashion but declared
outside of the scope of asking_for_trouble; for example global may be externa in C, part
of a COMMON in Fortran, declared in an enclosing block in Pascal, in the enclosing
package in Ada or in the enclosing class in Eiffel. The following pre-post formulae are
false in this case even though they would directly result from applying (with a
proper rule for functions):

{global = 0} u :=asking_for_trouble (a) {global = O}
{a= 0} u:=asking_for_trouble (a) {a= 0}

AAssi gnment

It is possible to adapt A_ . to account for possible side-effect in expressions, but
this makes the theory significantly more complex. Since, however, most programming
languages allow functions to produce side-effects, we need a way to describe the
semantics of the corresponding calls. A solution, aready suggested in the discussion of
denotational semantics (7.7.2), is to limit the application of A, . to assignments
whose source expression does not include any function call. Then to deal with an
assignment whose right-hand side is a function call, such as

[9.12]
y = asking_for_trouble (X)

we consider that, in abstract syntax, this is not an assignment but a routine cal; the
abstract syntax for such an instruction includes an input argument, here x, and an output
result, here y. The instruction then falls under the scope of the inference rule for such
routine calls, given later in this chapter (9.10.2).

Only for the purposes of a proof do you actually need to trandlate an assignment of
the [9.12] form into a routine call; the trandation, done in abstract syntax, leaves the
origina concrete program unchanged. (As noted in chapter 7, this is an example of the
“two-tiered specifications” discussed in 4.3.4.)
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Of course, functions which produce arbitrary side-effects are bad programming
practice since they damage referential transparency. We should certainly not condone a
function such as asking_for_trouble. But in practice many functions will need to change
the state in some perfectly legitimate ways. For example any function that creates and
returns a new object does perform a side-effect (by allocating memory), athough from the
caller’s viewpoint it smply computes a result (the object) and is referentialy transparent.

Because it is difficult to define useful universal rules for distinguishing between
“good” and “bad” side-effects, most programming languages, even the few whose
designers worried about the provability of programs, allow side-effects in functions, with
few or no restrictions. To prove properties of assignments involving functions, then, you
should treat them as routine calls using the transformation outlined above.

The existence of such a formal mechanism is not an excuse for undisciplined use of
side-effects in expressions, especially those which do not even involve a function call, as
with the infamous value-modifying C expressions of the form x++ or ——x.

9.7.3 Dealing with arrays and records

The assignment axiom, as given above, is directly applicable to smple variables. How can
we deal with assignments involving array elements or record fields?

Plain substitution will not work. Take for example the Pascal array assignment
tli]=t[jl+1

Then by naive application of axiom A we could prove a property such as:

Assignment
[9.13]
{t[il=0 t[i] =t[jl+1 {t[j]=0}

Here the substitution appears trivial since the assignment’s target, t [i], does not occur in
the postcondition.

Unfortunately, the above is not a theorem since the assignment will fail to ensure the
postcondition if i = j. The problem here is a fundamental property of arrays, dynamic
indexing: when you see a reference to an array element, t [i], the program text does not
tell you which array element it denotes. So it is only at run time that you will find out
whether t [i] and t [j] denote the same array elements or different ones. Such a
situation, where two different program entities may at run time happen to denote the same
object, is known as dynamic aliasing.

One solution is to consider an assignment to an array element as an assignment to
the whole array. More precisely, we may treat this operation as a separate instruction,
with abstract syntax

Array assign & target: Variable; index: Expression ; source: Expression
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The associated rule is a variant of AAssignmnt:
Array_assign

F  {QI[t « t(i:e)]} Array assign (target:t; index:i; source: e) {Q}

The new notation introduced, t (i : ), denotes an array which is identical to t except
that its value a index i is e. This property may be described by two axioms:

AArray

H i #] impliest(i:e)[j]=t[]]
H i =] impliest(i:e)[j]=e
These rules yield the following two theorems (replacing [9.13]):

[9.14]
F o {i#zjandt[j]=0 t[i] =t[j]+1 {t[j]=0}
F {i=jandt[j]=0 t[i] =t[jl+1 {t[j]=1

The proof is left as an exercise (9.10)

We may use a similar method to deal with objects of record types. (See aso the
denotational model in 7.2.) If x is such an object, and a is one of the component tags,
we should treat the assignment Xx.a := e as an assignment to x as a whole. In line with
the technique used for arrays, x (a: e) is defined as denoting an object identical to x
except that its a component is equal to v. The axioms schemata for this operation are
simpler with records than with arrays, as here there is no dynamic aliasing: an array index
may only be known at run-time, but the tag of a reference to a record field is known
statically™.

A

Record

F  (x(a:e)).b=x.b
F (x(a:e).a=e

where: x is an object of arecord type; a and b are different component tags of this type;
dot notation x .t denotes access to the component of x with tag t.

To obtain a variant of the assignment axiom applicable to record components, just

imitate A Array_assign after introducing the suitable abstract syntax.

1 In object-oriented languages such as Eiffel or Smalltalk, the technique known as dynamic
binding means that in some cases the actual tag must be computed at run-time.
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9.7.4 Conditional

The remaining instructions are not primitive commands, but control structures used to
construct complex instructions from simpler ones; as a consequence, their semantics is
specified through inference rules (actually rule schemata) rather than axioms.

Here is the inference rule for conditionals;

| Conditional

{P and c} a{Q}, {P and not c} b {Q}

{P} Conditional (test: c; thenbranch: a; elsebranch: b) {Q}

Let us see what this means. Assume you are requested to prove the correctness, with
respect to P and Q, of the instruction given in abstract syntax at the bottom of the rule,
which in more casual notation would appear as

if cthen a else b end

Since the result of executing this instruction is to execute either a or b, you may proceed
by proving separately that both a and b are correct with respect to P and Q; however in
the case of a you may “and’ the precondition with ¢, since this branch will only be
executed when c is initialy satisfied; and similarly with not ¢ for the other branch.

As an example of using this rule, consider the proof of the following program
fragment, which you may recognize as an extract from Euclid’'s algorithm, in its variant
using subtraction rather than division. (The proof of the extract will be used later as part
of the proof of the complete algorithm.)

[9.15]
{mn,x,y>0and x # yand gcd (x,y) =gcd (m, n)}
if x>y then
X:=X—-Yy
else

y=y—-xX
end

{m,n, x,y>0andgcd (x,y) =gcd (m, n)}
where al variables are of type INTEGER, gcd (u, v) denotes the greatest common

divisor of two positive integers u and v and the notation u, v, w, ... > 0 is used as a
shorthand for

u>0 and v>0 and w>0 and ...
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C1

C2

C3

C4

C5

C6

C7

{mnx—-y,y>0andgcd (x -y,y)=gcd (m, n)}
X:=X—-Y

{m,n,x, y>0andgcd (x,y)=gcd (m, n)} A pssignment

m,n, X y>0and x#yand
ged (X,y)=gcd (m,n)and x>y
implies
mn x—-y,y>0andged (x —y,y)=gcd (m, n) EM

{m,n, x,y>0and x #y and
gced (x,y) =gcd (m, n) and x >y}
XI=X—-Y
{mn,x,y>0andgcd (x,y) =gcd (m, n)} C1, C2; CONS

{mn, x,y—x>0and gcd (x,y —x) =gcd (m, n)}
y=y—-xX

{m, n, x,y>0andgcd (x,y) =gcd (m, n)} AASSignment

m, n, x,y>0and x#yand
ged (X,y) =ged (m, n) and not x>y
implies
mn,y—x,y>0andgcd (X,y —x)=gcd (m, n) EM

{m,n, x,y>0and x #y and
gced (X,y) =ged (m, n) and not x >y}
y=y—-xX
{m, n, x,y>0andgcd (x,y) =gcd (m, n)} C4, C5; CONS

{m,n, x,y>0and x #y and
ged (x,y) =ged (m, n)}
CONDIT

{mn,x,y>0andgcd (x,y) =gcd (m, n)} C3, C6; IConditiona]

Figure 9.3: Proof involving a conditional instruction
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The proof of [9.15] is given in full detail on the adjacent page. CONDIT denotes the
conditional instruction under scrutiny. P and Q being the precondition and postcondition,
the proof proceeds by establishing two properties separately:

 {Pand x>y} x:=x-y{Q} (Line C3)
l_ {Pandy>x}y::y—x{Q} (LlneC6)

Both cases are direct applications of the EM property that

[9.16]
F u>v>0 implies gcd (u, v) =gcd (U-v, V)

[9.16] as well as the precondition and postcondition of [9.15] illustrate the *unobtrusive
approach” to undefinedness mentioned at the beginning of this chapter. The greatest common
divisor of two integers is only defined if both are positive. To deal with this problem, the
assertions of [9.15] include clauses, anded with the rest of these assertions, stating that the
elements whose ged is needed are positive; the formula in [9.16] uses a similar condition as the
left-hand side of an implies.

Rather than introducing explicit rules stating when an expression’s value is defined and when it
is not, it is usually simpler, as here, to permit the writing of potentially undefined expressions,
but to ensure through the axioms and inference rules of the theory that one can never prove
anything of interest about their values.

9.7.5 Compound

Two rules are needed to deal with compound instructions. The first, an axiom schema,
expresses that a zero-element compound is equivalent to a ip:

AOCompound

F {P} Compound (<>) {P}

The second rule enables us to to combine the properties of more than one compound. It
assumes ¢ is a compound and a is an instruction.

Compound

{P} c{Q}, {Qa{R

{P} ¢ +#+<a> {R

The derivation shown below illustrates the technique for proving properties of compounds,
based on these two rules. The property to proveis

{mn>0 x:=m;y:=n{mn,x,y>0and gcd (X,y)=gcd (m, n)}
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SI1 {m,n >0}
implies
{m,n,m n>0andgcd (m, n) =gcd (M, n)} EM

S22 {mnmn>0and gcd (m,n)=gcd (m, n)}
X:=m
{m,n,x,n>0and gcd (x, n) =gcd (M, n)} AAssignment
S3 {m n>0}
X:=m
{m,n,x,n>0and ged (x,n)=gcd (M, n)} S1, S2; CONS

A {mn,x,n>0andgcd (X, n) =gcd (M, n)}

y:=n

{m,n, x,y>0andgcd (x,y) =gcd (m, n)} AASSI.gnment
S5 {mn>0}

X:=my:=n

{m,n, x,y>0andgcd (x,y) =gcd (m, n)} S3, 4 1

Compound

Figure 9.4: Proof involving a compound instruction

9.7.6 Loop

The last construct to study is the loop, for which the rule is predictably more delicate. It
is an inference rule, as follows:

ILoop

{l'and c} b {1}

{1} Loop (test: c; body: b) {I and not c}
This rule embodies two properties of loops. In concrete syntax, the loop considered is

while c do b end

First, the postcondition includes not ¢ because the continuation condition ¢ will not hold
upon loop exit (otherwise the loop would have continued). Note that ILOOIO is a partia
correctness rule, which is of little interest if the loop does not terminate. Y ou must prove
termination separately, using techniques explained below.
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The second property relates to an assertion |, called a loop invariant, which is
assumed to be such that:

{I and ¢} b{l}

In other words, if | is satisfied before an execution of b, | will still be satisfied after that
execution — hence the name “invariant”. The actual precondition in this hypothesis is
actually not just I but I and c since executions of b are of interest only when they
occur as part of loop iterations, that is to say when c is satisfied. The rule expresses that
if the truth of 1 is maintained by one execution of b (under c), then it will aso be
maintained by any number of executions of b, and hence by a loop having b as body.

The expressions | and ¢ and | and not ¢ appearing in lLoop A€ @ slight abuse of language
since and and not as defined (page 318) take assertions as operands, whereas ¢ is just a Graal
boolean expression. The correct notations would use Assertion (exp: c) rather than c.

What is a loop invariant? The consequent of the rule gives a hint. Its postcondition
represents what the loop is supposed to achieve, its “goa”. This god is

| and not ¢

which makes the invariant | appear as a weakened form of the goal. But | is also the
precondition of the consequent. This means that | is weak enough to be satisfied in the
state preceding execution of the loop, but strong enough to yield the desired goa on exit
when combined with the exit condition.

As an example, take Euclid's algorithm for computing the greatest common divisor
of two positive integers m and n:

X:=m;y:=n;

while x # yloop

if x>y then
X:=X-Y
ese
y:=y—-X
end
end;
g:=X

The proofs of the previous examples show that that this loop admits the following
property as invariant:

[INV]
x>0andy >0andgcd (x,y) =gcd (m, n)
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The invariant is satisfied before the loop begins, since by straightforward application of

AAssignment’ ICompound and EM:

F {m>0andn >0}
X:=m;y:=n
{x>0andy >0and gcd (x,y) =gcd (m, n)}

So on loop exit we may infer both the invariant, hence ged (x, y) = gcd (m, n), and the
exit condition x = y; the conjunction of these assertions impliesx =y =gcd (m, n).

Note how INV matches the informal notion of a *“weakened form of the goal”:
e INV yieldsx = gcd (m, n), that is to say essentially the goal, when x =Y.

* But INV is aso weaker (more general) than this goal. In fact it is weak enough to
be satisfied trivially by taking x =m,y =n.

You may consider an execution of the loop, then, as a process designed to maintain INV,
making it a little stronger (closer to the goal) on each iteration. The last part of this
chapter (9.11) shows how this view leads to a systematic approach for building correct
software.

Below is the formal proof. It uses a few abbreviations: LOOP for the loop, CONDIT
for the loop body (which is the conditional instruction studied previously), and EUCLID
for the whole program fragment.

L1 {m,n>0}

X:=my:=n

{x,y>0andgcd (x,y)=gcd (m, n)} S5 (see page 332), CONS
L2 {mn>0} x:=my:=n{INV} L1, definition of INV
L3 {INV and x# y} CONDIT {INV} C7 (see page 329), CONS

L4 {INV} LOOP {INV and x = y} |

Loo
LS {m n>0} x:=m;y:=n; LOOP {INV and x =y} L2,pL4; ICOmlOOUInd
L6 {x,y>0andx=y implies gcd (X,y) =x EM
L7 INV and x=vy implies gcd (m, n) = x L6, definition of INV, EM
L8 {INV and x=y} g:=x{g=gcd (m, n)} L7; CONS
L9 {m,n>0} EUCLID {g=gcd (m, n)} L5, L8; CONS

Figure 9.5: Proof involving a loop
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9.7.7 Termination

The previous rules are partial correctness rules; this leaves the termination problem open.
As programmers know all too well, loops may fail to terminate; they are the only
construct studied so far that introduces this possibility, although of a course a compound
or conditional may also not terminate if one of its constituents does not.

The inference rule for loops, ILoop, is clearly applicable to terminating constructs
only. Otherwise the problem of automatic programming would be easy: to solve any
computing problem characterized by an output condition Q, use a program of the form

while not Q loop ip end

Using any assertion as invariant, rule || makes it possible to infer Q upon exit. The
problem, of course, is that usually there will be no exit at all. The above loop rule is of
no help here.

To prove termination, you may attempt to find a suitable loop variant, according to the
following definition.

Definition (Variant): A variant for aloop is an expression V of type
integer, involving some of the program’s variables, and whose
possible run-time values may be proved to satisfy the following two
properties:

* The value of V is non-negative before the execution of the loop.

e If the vaue of V is non-negative and the loop continuation
condition is satisfied, an execution of the loop body will decrease
the value of V by at least one while keeping it non-negative.

If these two conditions are satisfied, execution of the loop will clearly terminate,
since you cannot go on indefinitely decreasing the value of an integer expression which
never becomes negative.

As an example, the expression
V 4 max (X,Y)
is an appropriate variant for the loop in the EUCLID program fragment.

More general variants may be used: rather than integer, the type of the variant expression could
be any well-founded set, that is to say any set in which every decreasing sequence is finite. An
example of well-founded set other than N is the set of nodes of a possibly infinite tree, where
m < n is defined as “m is an ancestor of n or n itself”. However the use of integer variants
entails no loss of generaity: if v is a variant in any well-founded set, then there is aso an
integer variant |v|, defined for any value n of v as the longest length of a decreasing sequence
starting at n.
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A variant may be viewed as an expression of the program’s variables which, prior to each
iteration of the loop, provides an upper bound on the number of remaining iterations. To
prove that the loop terminates, you must exhibit such a bound. If your sole purpose is to
prove termination, you are not required to guarantee that the bound is close to the actual
number of remaining iterations, but a close enough bound will help you estimate the
program’s efficiency.

This informal description of the method for proving termination may now be made
more precise. Consider a pre-post formula of the form

{P} Loop (test: c; body: b) {Q}

To prove rigoroudly that the loop terminates when started with precondition P satisfied,
you must find an appropriate variant expression V and prove the following properties.

[9.17]
P implies (V =2 0)
[9.18]
{(v=0)andc} z:=V;b {0V <z}

Here z is assumed to be a fresh variable of type integer, not appearing in the loop or
the rest of the program. This variable is used to record the value of the variant before
execution of the loop body b, to express that b decreases V strictly. The concrete form
z =V, b has been used as an abbreviation for

Compound (<Instruction (Assignment (source: V ; target: z)), b>)

Using this method, you are invited to carry out formally the proof that EUCLID
terminates.

Note: it seems useless to have the condition V = 0, rather than just V > 0, in the
precondition of [9.18]. Since the postcondition shows that V is decreased by at
least one, V could not possibly have had value O before the execution of b. Can
you see why it isin reality essential to use = rather than >? (For an answer, see
exercise 9.17).

The termination rule may be merged with ILOOID to yield a total correctness rule:

ITL oop -- T for termination: total correctness rule

(I and c) impliesV > 0, {l'andc} z:=V;b {I and (V <z)}

{1} Loop (test: c; body: b) {I and not c}
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Recall that |1 (the invariant) must be an assertion, treated here as a boolean expression, V
(the variant) is an integer expression, and z is a fresh integer variable not appearing
elsewhere in the program fragment considered.

The new rule handles both partial correctness and termination. As compared to

[9.18], the second antecedent of the rule has a simpler postcondition: 0 < V is not needed
there any more, since (because of the first antecedent):

| and (V < 0) implies (not c)

so that the loop stops whenever V becomes non-positive. In essence, the condition
c implies (V > 0) has been integrated into the invariant.

This rule completes the pre-post theory of basic Graal. The treatment of other
language features in this framework (arrays, pointers and procedures) will be outlined
below (9.10).

9.8 THE CALCULUS OF WEAKEST PRECONDITIONS

The previous section has given the pre-post semantics of the Graal constructs. It is
interesting to consider these constructs again from a complementary viewpoint: weakest
precondition semantics.

9.8.1 Overview and definitions

In pre-post semantics, the assertions used to characterize an instruction are not necessarily
the most “interesting” ones. For a formula of pre-post semantics:

[9.19]
~ {P} a{Q}

the rule of consequence will also yield

[9.20]
~ {P}a{Q}

for any P’ stronger than P and Q' weaker than Q (“stronger” and “weaker” were
defined on page 319). Thus [9.19] may be said to be more interesting than [9.20], as the
latter may be derived from the former and so is less informative. More generaly, we
may define “more interesting than” as an order relation between formulae: the weaker the
precondition, and the stronger the postcondition, the more interesting (informative) the
formula.
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When the aim is to prove specific properties of a given program, we often need to
derive formulae which are not the most interesting among all possible ones. But when we
define the semantics of a language we should look for the most interesting statements
about the instructions of that language. All axioms and inference rules given in the
preceding section, except for the properties of loops, are indeed “most interesting”
specifications of instructions, in the sense that the given Q is the strongest possible
postcondition for the given P, and P is the weakest possible precondition for Q.

Even so, we have many possible choices of pre-post pairs to characterize any
particular instruction. It is legitimate to restrict the potential for arbitrary choice by fixing
one of the two assertions. For example any instruction a may be characterized by the
answer to either of the following questions:

 For an arbitrary assertion P, what is the strongest assertion Q such that
{P} a{Q}?
e For an arbitrary assertion Q, what is the weakest assertion P such that
{P} a{Q}?
In both cases, we view an instruction as an assertion transformer, that is to say, a
mechanism that associates with a given precondition or postcondition the most interesting
postcondition or precondition (respectively) which corresponds to it through the
instruction.

The method to be described now, due to Dijkstra, follows this approach. Of the two
guestions asked, the more fruitful turns out to be the second: given an instruction and a
postcondition, find the weakest precondition. This is due to both a technical and a
conceptual reasons.

» The technical reason, already apparent in the above presentation of pre-post
semantics, is that for common languages it is easier to express preconditions as
functions of postconditions than the reverse.

» The conceptual reason has to do with the use of axiomatic techniques for program
construction. A program is built to satisfy a certain goal, expressed as a property
of the output results — that is to say, a certain postcondition. It is natura to
construct the program by working backwards from the postcondition, choosing
preconditions as the weakest possible (least committing on the input data).

The weakest precondition approach is based on these observations. it defines the
semantics of a programming language through a set of rules which associate with every
construct an assertion transformer, yielding for any postcondition the weakest
corresponding precondition.

Three other features distinguish the theory given below from the above pre-post
theory: it does not require, at least in principle, the invention of a variant and invariant; it
directly handles total correctness; finally, it deals with non-deterministic constructs
(which, however, could also be specified with pre-post semantics).
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9.8.2 Basic definitions
The basic objects of the theory are wp-formulae (wp for weakest precondition) written
under the general form

[9.21]
awpQ

where a is an instruction and Q an assertion. Such a formula denotes, not a property
which is either true or false (as was the case with a pre-post formula), but an assertion,
defined as follows:

[9.22]

Definition (Weakest Precondition): The wp-formulaa wp Q, where
a is an ingtruction and Q an assertion, denotes the weakest
assertion P such that a is totally correct with respect to
precondition P and postcondition Q

The expression “calculus of weakest preconditions” indicates the ambition of the
theory: to provide a set of rules for manipulating programs and their associated assertions
in a purely formal way, similar to how mathematical formulae are manipulated in ordinary
arithmetic or algebra. To compute an expression such as (x2 - y3)2, you merely apply
well-defined transformation rules; these rules are defined by structural induction on the
structure of expressions. Similarly, the calculus of weakest preconditions provides rules
for computing a wp Q for a class of instructions a and assertions Q; the rules defined
inductively on the structure of a and Q if a and Q are complex program objects.

Unfortunately, the calculus of programs and assertions is not as easy as elementary
arithmetic; computing a wp Q remains a difficult or impossible endeavor as soon as a
contains a loop. The theory nevertheless yields important insights and is particularly
useful in connection with the constructive approach to program correctness, discussed
below in 9.11.

9.8.3 True and false as postconditions

The theory relies on a set of simple axioms. The first one, called the “Law of the
excluded miracle” by Dijkstra, states that no instruction can ever produce the
postcondition False:

[9.23]
F a wp False = False
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This is an axiom schema, applicable to any instruction a. In words. The weakest
precondition that ensures satisfaction of False after execution of a is False itself. Since it
is impossible to find an initial state for which False is satisfied, there is no state from
which a will ensure False.

Having seen that, for consistency, a wp False must be False for any instruction a,
you may legitimately ask what a wp True is. True is the assertion that all states satisfy.
But do not conclude hastily that a wp True is True for any a. If an instruction is started
in a state satisfying True, that is to say in any state, the fina state will indeed satisfy
True — provided there is a fina state; in other words, provided a terminates. So
a wp True is precisely the weakest precondition that will ensure termination of a.

This property is the first step towards establishing the calculus of weakest
preconditions as a theory not just of correctness but of total correctness.

9.8.4 The rule of consequence

It is interesting to see how the rule of consequence (CONS, page 320) appears in this
framework:

[9.24]
Q impliesQ’

(& wp Q) implies (a wp Q")

In words: if Q is stronger than Q’, then any initial condition which guarantees that
instruction a will terminate in a state satisfying Q aso guarantees that a will terminate in
a state satisfying Q’. That is to say, one may derive new properties from “more
interesting” ones.

9.8.5 The rule of conjunction

The rule of conjunction has a similarly simple wp-equivalent:

[9.25]
~ awp(QandQ")=(awpQ)and(@wpQ)

You are invited to study by yourself the practical meaning of this rule.

9.8.6 The rule of digunction

The corresponding rule for boolean “or” may be written as:

[9.26]
F awp(QorQ)=(@wpQ)or(awpQ)
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This rule requires more careful examination; as will turn out, it is satisfied for Graal
and ordinary languages, but not for more advanced cases. At this point you are invited to
ponder the meaning of this rule and decide for yourself whether it is a theorem or not.
(For an answer, see 9.9.4 below.)

9.8.7 &ip and Abort

We are now ready to start studying the wp-rules for language constructs. The axiom
schema for the Skip instruction is predictably trivial:

- SkipwpQ=Q
for any assertion Q.

An instruction (not present in Graal) that would do even less than Sip is Abort,
characterized by the following axiom schema:

 Abort wp Q = False

In other words, Abort cannot achieve any postcondition Q — not even True, the least
committing of all. Quoting from [Dijkstra 1976]:

This one cannot even “do nothing” in the sense of “leaving things as they
are”; it really cannot do a thing.

“Leaving things as they are” is a reference to the effect of Skip.

You may picture Abort as a non-terminating loop: by failing to yield a final state, it
fails to ensure any postcondition at al. But this view, although not necessarily wrong, is
overspecifying: al the rule expresses is the impossibility of proving anything of interest
about Abort. This is another example of the aready noted unobtrusiveness of the
axiomatic method, where the “meaning” of a program consists solely of what you may
prove about it. What Abort “does’ practically, like looping forever or crashing the
system, is irrelevant to the theory. To paraphrase Wittgenstein's famous quote: What one
cannot prove about, one must not talk about.

9.8.8 Assignment

The wp-rule for assignments is:

[9.27]
 Assignment (target: x ; source: €) wp Q = Q [X « €]

This is the same as the corresponding pre-post rule (A Assignment” P08 323), with the
supplementary information that Q [Xx « e] is not just one possible precondition but the
most interesting — weakest.
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9.8.9 Conditional

The wp-rule for conditional instructions is also close to the pre-post rule (I
329):

[9.28]
I Conditional (test: c ; thenbranch: a ; elsebranch: b) wp Q =

(c implies (a wp Q)) and ((not ¢) implies (b wp Q))

Conditional ’ page

In words:. for the instruction if ¢ then a else b end to terminate in a state where Q is
satisfied, the two possible scenarios in the initial state — c¢ satisfied, ¢ not satisfied —
must both lead to a fina state where Q is satisfied; in other words, the initial state must
satisfy both of the following properties:
» If ¢ is satisfied, the condition for a to terminate and ensure a state where Q is
satisfied.
e If ¢ is not satisfied, the condition for b to terminate in a state where Q is
satisfied.
As before, this wp-rule expresses that the precondition of the pre-post rule was weakest.
Yet here it also includes something else: a termination property. The rule implies that a
conditional instruction will terminate if and only if every branch terminates whenever its
guard is true. Here the “guard” of a branch is the condition under which it is executed
(c for the thenbranch and not c for the elsebranch).

9.8.10 Compound

For compounds too the wp-rules directly reflect the pre-post rules (page 331):
[9.29]

F Compound (<>) wp Q= Q
[9.30]

- (¢ + <a>)wpQ=cwp(@awp Q)

In the second rule, ¢ is an arbitrary compound and a an arbitrary instruction.

9.8.11 Loop

We may expect the rule for loops to be more difficult; also, it is interesting to see how
the theory handles total correctness.

The basic wp-rule for loops is:
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[9.31]
-

given
| & Loop (test: c; body: b) -- i.e. whilec do b end
G, & notcand Q;
G & cand(bwG_)) - fori >0

then
lwpQ=3n:N-G,

end

The rule may be explained as follows. For the loop to terminate in a state satisfying Q,
it must do so after a finite number of iterations. So the weakest precondition is of the

form
G0 or G1 or 62 or

where, for i 2 0, G, is the weakest precondition for the loop to terminate after exactly i
iterations in a state satisfying Q. A loop started in an initial state o terminates after i
iterations in a state satisfying Q if and only if:

e Fori =0:
— No iteration is performed, so o satisfies not c.
— o satisfies Q.

e Fori >0:
— One iteration is performed, so o satisfies c.

— This iteration brings the computation to a state from which the loop
performs exactly i-1 further iterations and then terminates in a state
satisfying Q: in other words, o satisfiesb wp G, _,.

By combining these cases, we obtain the above inductive definition of G, .

Rather than G, it is sometimes more convenient to use H,, the condition for | to yield Q
after at most i iterations (see exercise 9.17).

Rule [9.31] addresses total correctness. But it is not directly useful in practice: to
check whether | wp Q is satisfied it would require you to check a potentially infinite
number of conditions. This can only be done through a proof by induction, which in fact
amounts to using an invariant and variant, as with the pre-post approach. The connection
between the wp-rule and the pre-post rules is expressed by the following theorem, which
reintroduces the invariant | and the variant V:
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[9.32]

Theorem (Invariant and variant in wp-semantics): Let | be a loop
with body b and test ¢, | an assertion and V an integer-valued
function of the state. If for any value z 0N

(I and c and V = z) implies
((z>0)and (b wp (I and (0 <V <2))))
then:
I implies (I wp (I and not c))

This theorem is equivalent to the inference rule IT __ (page 336). Its proof requires
an appropriate model of the axiomatic theory, which will be introduced in the next
chapter.

9.8.12 A concrete notation for loops

In a systematic approach to program construction, you should think of loop variants and
invariants not just as *“decoration” to be attached to a loop if a proof is required, but as
components of the loop, conceptually as important as the body or the exit condition.
Abstract and concrete syntax should reflect this role.

Whenever the rest of this chapter needs to express loops in concrete syntax, it will
use the Eiffel notation for loops, which is a direct consequence of the above discussion
and looks as follows:

from

Compound - - Initialization
invariant

Assertion
variant

Integer_expression
until

Boolean_expression - - Exit condition
loop

Compound - - Loop body
end

Like other uses of assertions in Eiffel, the invariant and variant clauses are optional.

The execution of such a loop consists of two parts, which we may call A and B. Part A
simply executes the initialization Compound. Part B does nothing if the exit condition is
satisfied; otherwise it proceeds with the loop body, and starts part B again.
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In other words this is like a Pascal or Graa “while” loop, with its initialization
included (from clause), and an exit test rather than a continuation test.

The reason for including the initiaization follows from the axiomatic semantics of
loops as studied above: every loop must have an initialization, whose aim is to ensure the
initial validity of the invariant. (In some infrequent cases where the context of the loop
guarantees the invariant the initialization Compound is empty.)

The reason for using an exit condition (until rather than while) is to make
immediately visible what the outcome of the loop will be. By looking at the loop, you see
right away the postcondition that will hold on loop exit:

G & | andE

where | isthe invariant and E the exit condition.

In the constructive approach, as discussed below (9.11), we will design loop
algorithms by starting from G, the goal of the algorithm, and deriving | and E through
various heuristics.

9.9 NON-DETERMINISM

A class of constructs enjoys a particularly simple characterization by wp-rules (although
pre-post formulae would work too): non-deterministic instructions. A non-deterministic
instruction is one whose effect is not entirely characterized by the state in which it is
executed.

Simple examples of non-deterministic instructions are the guarded conditional and
the guarded loop.

9.9.1 The guarded conditional

In concrete syntax (see exercise 9.2 for abstract syntax), the guarded conditional may be
written as follows:

[9.33]
if
c,:a;[]
c,: a,[]
-0
c, ' a
end

where there are n branches (n = 0). The ¢, called guards, are boolean expressions, and
the a are instructions.
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Informally, the semantics of this construct is the following: the effect of the
instruction is undefined if it is executed in a state in which none of the guards is true;
otherwise, execution of the instruction is equivalent to execution of one a such that the
corresponding guard ¢, is true.

The standard if ¢ then a else b end of Graal and most common languages may be
expressed as a specia case of this construct:

[9.34]
if

c:al]
notc: b
end

The guarded conditional has three distinctive features: first, it treats the various possible
cases in a more symmetric way than the if...then... else... conditional; second, it is non-
deterministic; third, it may fail — produce an undefined result.

The first property, symmetry, follows directly from the above informal specification.
The non-determinism comes from the absence in that specification of any prescription as
to which of all possible branches is selected when more than one guard is true. So the
instruction

[9.35]
if
x20: x:=x+1[]
X<0: x=x-1
end

could yield x = -1 as well as x = +1 when started with x = 0.

This suggests the following axiom schema, which is both a generaization and a
simplification of the wp-rule for the standard conditiona ([9.28], page 342); guarded if
denotes the above construct [9.33].

[9.36]

guarded ifwp Q =
(c,orc,..orc) and
(c, implies (a, wp Q)) and
(c, implies (a, wp Q)) and
... and
(c, implies (a, wp Q))
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Note how simply this axiom expresses the non-determinism of the construct’s informal
semantics. For guarded if to ensure satisfaction of Q, there must be a branch whose
guard c is true and whose action a ensures Q. There may be more than one such
branch; if so, it does not matter which one is selected, as only the result, Q, counts. The
axiom states this through the first and clause.

The axiom also captures the last of the construct’s three key properties listed above:
regardless of Q, the weakest precondition is False — that is to say, non-satisfiable by any
state — if none of the ¢ is true. This means that guarded_if is informally equivalent in
this case to Abort, since we may not prove anything about it.

Many people are shocked by this convention when they first encounter the symmetric
if: should guarded_if not behave like Skip, not Abort, when no guard is satisfied?

There are serious arguments, however, for the interpretation implied by [9.36]. One
of the dangers of the if ... then ... else construct is that it lumps the last case with all
unforeseen cases in the else branch. More precisely, assume a programmer has identified
n cases for which a different treatment is required. The usual way to write the
corresponding instruction is the following (using the Algol 68-Ada-Eiffel abbreviation
elsaif to avoid useless nesting of conditionals):

if c, then a,

elsalf c, then a,

elseif c _, thena _,

ese a end

-- No need to specify that the last branch corresponds to the case
-- ¢, true, ¢ fadse(1<j <n-1)

The risk is to forget a case. When al of the ¢, including c_, are false, the instruction
executes &, which is almost certainly wrong; but the error may be hard to catch.

In the guarded conditional, on the other hand, every branch is explicitly preceded by
its guard and executed only if the guard is true. If no guard is satisfied, a good
implementation will produce an error message and stop execution, or raise an exception,
or loop forever; this is better than proceeding silently with a wrong computation.

9.9.2 The guarded loop

The other basic non-deterministic construct is the guarded loop, which may be written as:
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[9.37]
loop
c,:a;[]
c,: a,l[]
-0
c, 6 a
end

with the following informal semantics: if no C is true, the instruction does nothing;
otherwise it executes one of the a such that ¢ is true, and the process starts anew. The
formal wp-rule for this construct is left for your pleasure (work from [9.31], page 342,
and [9.36], page 346). The rule should make it clear, as [9.36], that it does not matter
which branch is chosen when several are possible.

Here the case in which no ¢, is satisfied is not an error but normal loop termination.
In particular, for n = 0, the guarded loop is equivalent to Skip, not to Abort as with the
guarded conditional.

9.9.3 Discussion

Why should one want to specify non-deterministic behavior? There are two main reasons.

The first reason is that non-deterministic programs may be useful to model non-
deterministic behavior of the real world, as in real-time systems. (The non-determinism is
not necessarily in the events themselves, but sometimes only in our perception of them;
however the end result is the same.)

The second reason is the desire not to overspecify, mentioned at the start of this
chapter: if it does not matter which branch of (say) a conditional is selected in a certain
case, as both branches will lead to equally acceptable results, then the programmer need
not choose explicitly. The goal here is abstraction: when a feature of the implementation
is irrelevant to the specification, you should be able to leave it implicit.

How can we implement a non-deterministic construct such as the guarded conditional
or loop? You must not think that such an implementation needs to use some kind of
random mechanism for choosing between possible alternatives. All that the rules say is
that whenever more than one ¢, is satisfied, every corresponding a must yield the desired
postcondition, and then any of the corresponding branches may be selected. Any
implementation which observes this specification is correct.

Examples of correct implementations include: one that test the guards in the order in
which they are written, and takes the first branch whose guard is true (as with the if ...
then ... elsaif ...); one that starts from the other end; one that behaves like the first on
even-numbered days and like the second on odd-numbered days; one that uses a random
number generator to find the order in which it will evaluate the guards; one that starts n
parallel processes to evaluate the guards (or asks n different nodes on a network), and
chooses the branch whose guard is first (or last) computed as true; and many others.
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No proof of properties of the construct is correct if it relies on knowledge about the
actual policy used for choosing between competitive true guards. But as long as the proof

is only based on the official, policy-independent rules, any implementation that abides by
these rules is acceptable.

One way to picture the situation is to imagine that a demon is in charge of
choosing between acceptable branches when more than one guard is true. The
demon does not have to be erratic, although he may well be; some demons are
bureaucrats who aways follow the same routine, others take pleasure in
constantly changing their policies to defeat any attempt at second-guessing. But
regardless of the individua psychology of the demon that has been assigned to us
by the Central Office of Demon Services, he is in another room, and we are not
allowed to look.

9.9.4 Therule of digunction

The above remarks are the key to the pending issue of the rule of digunction ([9.26],
page 340). The (so far tentative) rule may be written as

[9.38]
given
lhs 2 awp(QorQ');

rhs & (awp Q)or (awpQ’)
then

Ilhs = rhs

1>

end

The rule expresses an equality between two assertions, that is to say a two-way

implication: according to this rule, whenever a state satisfies lhs, it satisfies rhs, and
conversely.

Look first at rhs. This assertion is true of states o such that one or both of the
following holds:

* a, started in o, is guaranteed to terminate in a state satisfying Q.
e a, started in 0, is guaranteed to terminate in a state satisfying Q' .

Each of these conditions implies that a, started in o, is guaranteed to terminate in a state
satisfying Q or Q' ; in other words, that state o satisfies Ihs. So rhs implies |hs.
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Assume conversely that o satisfies Ihs. Instruction a, started in o, is guaranteed to
terminate in a state satisfying Q or satisfying Q’. Does this imply that o is ether
guaranteed to terminate in a state satisfying Q or guaranteed to terminate in a state
satisfying Q' ? The answer is yes in the absence of non-deterministic constructs. since a,
started in o, is aways executed in the same fashion, a guarantee that it ensures Q or Q’
means either a guarantee that it ensures Q or a guarantee that it ensures Q.

This is no longer true, however, if we introduce non-deterministic constructs.
Assume for example that a is “toss a coin”, Q is the property of getting heads and Q’
of getting tails. Before tossing the coin you are guaranteed to get heads or tails: so
a wp (Q or Q') istrue. But you are not guaranteed to get heads: thus a wp Q is false;
soisa wp Q' and hence their or. Tossing a coin may be viewed as an implementation
of the following program:

[TOSS]
if
true : produce heads []

true : produce tails
end

where

produce _heads wp (result = heads) = True
produce_heads wp (result = tails) = False
produce _tails wp (result = heads) = False
produce tails wp (result =tails) = True

This discussion assumes a non-deterministic coin-tossing process, with an unpredictable
result: the coin is tossed by a demon, who does not reveal his tossing policies. To see this
formally note that

TOSS wp ((result = heads) or (result = tails))
= TOSS wp True
= True

but if we apply the non-deterministic conditional axiom ([9.33], page 345) we see that

TOSS wp (result = heads)
= (true implies (produce_heads wp (result = heads)) and
(true implies (produce _tails wp (result = heads))

= (produce_heads wp (result = heads)) and
(produce tails wp (result = heads))

True and False
False

and TOSS wp (result = tails) is smilarly False. By tossing a coin we are sure to get
either heads or tails; but we can neither be sure to get heads nor be sure to get tails.
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9.10 ROUTINES AND RECURSION

The presentation of language features in denotational semantics summarized the role of
routines in software development (7.7.1). Now we must see what axiomatic semantics
has to say about them.

This section will show how to derive properties of software elements containing
routine calls, including recursive ones.

9.10.1 Routines without arguments
Consider first routines with no arguments and no results. The abstract syntax of a routine
declaration is then just:

Routine 2 name: Identifier; body: Instruction

and a routine call (new branch for the abstract syntax production describing instructions)
just involves the name of the routine:

Call 2 called: Identifier

Then a call instruction simply stands for the insertion of the corresponding routine body
at the point of call. This is readily trandated into an inference rule (for any routine
declaration r):

10,

Routine

{P} r.body {Q}
{P} Call (called: r.name) {Q}

The rule expresses that any property of the body yields a similar property of the call.

9.10.2 Introducing arguments

Routines without arguments are not very exciting; let us see how arguments affect the
picture. The discussion will first introduce arguments; then, as was done in 7.7 for the
denotational specification, it will show how we can avoid complicating the specification
by treating argument and result passing as assignment.

In many languages, the arguments to a routine may be of three kinds. “in”
arguments, passed to the routine; results, also called “out” arguments, computed by the
routine; and “in-out” arguments, which are both consumed and updated. In some
languages such as Algol W or Ada, routine declarations qualify each argument with one
of these modes.
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As in 7.7.5, it is convenient to restrict the discussion to in arguments and out
arguments, from now on respectively called arguments and results. Calers may ill
obtain the effect of in-out arguments by including variables in both the argument and
result actual lists, subject to limitations given below.

A further simplification is to write every routine with exactly one (in) formal
argument and one result, both being lists (finite sequences). This is not a restriction in
practice since lists may have any number of elements. Proof examples given below in
concrete syntax will follow the standard style, with individually identified arguments and
result; but grouping arguments and results into two lists makes the theoretical presentation
Clearer.

Routines are commonly divided into functions, which return a result, and procedures,
which do not. A procedure call stands for an instruction; a function call stands for an
expression. Our routines cover both functions and procedures, but for consistency it will
be preferable to treat all calls as instructions. A routine which represents a procedure will
have an empty result list; a routine representing a procedure or function with no
arguments will have an empty argument list.

The call instruction now has the following abstract syntax, generalized from the form
without arguments given page 351.

Call 2 called: Identifier; input: Expression* ; output: Variable*

The elements of the actual input list may be arbitrary expressions, whose value will be
passed to the routine; the actual output elements will have their value computed by the
routine, so they must be variables (or, more generaly, elements whose value may be
changed at execution time, such as arrays or records).

For a routine f representing a function, a call using i as actual arguments and o0 as
actual results, described in abstract syntax as

Call (called: f.name; input: i; output: 0)

corresponds to what is commonly thought of as an assignment instruction with a function
call on the right-hand side:

0:=f (i)

so that the discussion below will allow us to derive an axiomatic semantics for such
assignments, which the earlier discussion (see page 326) had specifically excluded from
the scope of the assignment axiom.

Because every routine has exactly one argument list and one result list, there is no
need to make the formal argument and result explicit. We may simply keep the abstract
syntax

Routine 2 name: Identifier; body: Instruction

with the convention that every body accesses its argument and result lists through
predefined names: argument and result. (Eiffel uses this convention for results, as seen
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below.) We do not alow nesting of routine texts, so any use of these names
unambiguously refers to the enclosing routine. We must of course make sure that no
“normal” variable is called argument or result.

With these conventions, we may derive a first rule for routines with arguments by
interpreting a call instruction
Call (called: f.name; input: i; output: 0)
as the sequence of instructions (in mixed abstract-concrete syntax)
argument :=1i;

f.body;

0 = result

(Section 7.7.6 gave a more precise equivalence, taking into account possible name clashes
in block structure. The above equivalence suffices for this discussion.)

Taking this interpretation literally, assume that we know the axiomatics of the body
in the form of a theorem or theorem schema

{P} called.body {Q}

Then we can use the assignment axiom to include the first instruction above, the
initialization of argument :

{P [argument — i]} argument :=i; called.body; { Q}

It appears at first more difficult to include the final instruction, the assignment to o. But
here result includes only variables, as opposed to composite expressions or constants, so
the forward rule for assignment ([9.11], page 325) applies if o does not occur in P. It
yields for the whole instruction sequence the pre-post formula

{P [argument — i]}
argument := i; called.body; o := result

{Q [result — 0]}

In other words, taking the instruction sequence to represent the call: if the body is
characterized by a precondition P and a postcondition Q, which may involve the local
variables argument and result representing the arguments, then any cal will be
characterized by precondition P applied to the actual inputs i instead of argument, and
postcondition Q applied to the actual results o instead of the formal result.

This yields the first version of the rule for routines with arguments, applicable to a
non-recursive routine r . Some restrictions, given below, apply.
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11

Routine

{P} r.body {Q}

{P [argument ~ i]} Call (called: r.name; input: i; output: 0) {Q [result — 0]}

This rule admits a simple weakest precondition version:

given

c 4 Call (called: r.name; input: i; output: 0)
then

cwp Q' = (r.body wp (Q' [0 « result])) [argument — i]
end

Here Q’, an arbitrary assertion subject to the restrictions below, corresponds to
Q [result — 0] in the pre-post rule.

9.10.3 Simultaneous substitution

In rule 11 . and its weakest precondition counterpart, the source and targets of
substitutions are list variables, representing lists of formal and actual arguments and
results. Since the original definition of substitution applied to atomic variables, we must
clarify what the notation means for lists.

The generdization is straightforward: if vl is a list of variables and € a list of
expressions, take

QM ~ d]

to be the result of replacing ssmultaneously in Q every occurrence of vl (1) with € (1),
every occurrence of vl (2) with el (2) etc. For example:

(x+y) [<xy> <372 =(3+7)

X+ Y [<XYy> « <y, x> =(y +X)

The simultaneity of substitutions is essential. In the second example, if the substitutions
were executed in two steps in the order given, the first step would yield (y +y), which
the second would transform into (x + x) — not the desired result. A formal definition of
simultaneous substitution, generalizing the subst function for single substitutions ([9.9],
page 323), is the subject of exercise 9.21.

The simultaneity requirement only makes sense if all the elements in the variable list
vl are different: if x appeared as both vI (j) and vl (k) with j # k, the result would be
ambiguous since you would not know whether to substitute el (j) or e (k) for x. The
absence of duplicate variables is one of the constraints listed below on the application of
11

Routine *
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The example proofs that follow list arguments individually, rather than collectively
as list elements. To avoid introducing lists in such a case, it is convenient to use the
notation

Qx; —a,..x «al
as a synonym for

Q [<Xy i X, > « <2, .., a >]

9.10.4 Conditions on arguments and results

The application of rule 11 . = assumes that the call satisfies some constraints. One,

already noted, is absence of recursion; we shall see below how to make the rule useful for

recursive routines. Let us first study the other seven constraints, which could be expressed

as static semantic validity functions (exercise 9.19). The constraints are the following:

1 « Noidentifier may occur twice in the formal argument list.

* No identifier may occur twice in the formal result list.

* No identifier may occur in both the formal argument list and the formal result list.

* In any particular call, no variable may occur twice in the actual output result list.

» No variable local to the body of the routine may have the same name as a variable
accessible to the calling program unit, unless it occurs in neither the precondition
P nor the postcondition Q.

6 <+ No element of the result list may appear in P.

7 < If the postcondition Q involves any element of the argument list, then the
corresponding element of the actual input list may not occur in the output list
(that is to say, it may not be used as an in-out argument).

We aready encountered the first four constraints in the denotational specification (7.7.4
and 7.7.7).

Congtraints 1 and 2 follow directly from the consistency condition for simultaneous
substitutions, as given above. From a more practical point of view, a duplicate identifier
in the argument or result formal list would amount to a duplicate declaration; occurrences
of the identifier in the routine body would then be ambiguous.

The latter observation also applies to an identifier appearing in both formal lists,
justifying constraint 3.

Constraint 4 precludes any call which uses the same variable twice as actual result.
Assume this constraint is violated and consider a routine

g b~ W0 N
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s (out X, y: INTEGER) is
do -- BODY

x=0; y:=1
end
whose body makes the following pre-post formula hold:

 {true} BODY{x =0 and y =1}

Then rule 11 could be used to deduce the contradictory result

Routine

{true} call s (a,a){a =0 and a =1}

From a programmer’s viewpoint, this means that the outcome would depend on the order
in which the final values of the formal results (here x and y) are copied into the
corresponding actual arguments on return from a call — a decision best left to the compiler
writers and kept out of the language manual. Many programming language specifications
indeed include constraint 4.

Nothing in constraints 1 to 4 precludes an expression from occurring more than once
in the actual input list, or a variable from occurring in both the actual input and output
lists. The latter case achieves the effect of in-out arguments.

Constraint 5 precludes sharing of local variable names between the routine and any
of its callers. Such “puns’ would cause incorrect application of the rule: if a local
variable of r occursin P or Q, then it will aso occur in P [i —~ argument] or Q [0 ~
result], and may yield an incorrect property of its namesake in the calling program.
Lambda calculus raised similar problems (5.7).

A name clash of this kind, resulting from the independent choice of the same
identifier in different program units, may be removed by manua renaming; more
conveniently, compilers and formal proof systems can disambiguate the names statically.
The denotational specification of block structure described one way of doing this in a
formal system (see 7.2, especially 7.2.3). The same techniques could be applied here,
removing the need for constraint 5. (This constraint had no equivalent in the denotational
discussion of routines, which could afford to be more tolerant precisely because it
assumed a block structure mechanism as a basis.)

Constraint 5 is not a serious impediment for programmers or program provers:

* It does not prevent routines from accessing global variables, as long as there is no
name conflicts with locally declared variables. It is important to let routines
access externally declared variables, especially if they use globals in the
disciplined style enforced by object-oriented programming.

 If the local variable is used in neither the precondition nor the postcondition, no
harm will result. In this case the computation performed by the routine uses the
variable for internal purposes, but its properties do not transpire beyond the
routine's boundaries. This means that constraint 5 is essentially harmless in
practice, since meaningful pre-post assertions for a routine have no business
referring to anything else than argument, result and global variables.
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You may then interpret constraint 5 as a requirement on language implementers,
specifying that each routine which uses a certain variable name must allocate a different
variable for that name (and in the case of recursive routines, studied below, that every
call to a routine must allocate a new instance of the variable).

Constraints 6 and 7 are in fact special cases of constraint 5, applying to the variable
lists argument and result, implicitly declared in every routine, and hence raising many
apparent cases of possible name clashes between routines and their callers. Constraint 6
was necessary to apply the forward assignment rule (page 353).

To avoid any harm from such clashes, we must first exclude any element of result
from the precondition P; since result is to be computed by the routine, its presence in the
precondition would be meaningless anyway. This is constraint 6.

The presence of input (or any of its elements) in Q is a problem only if the calling
routine uses its own input (or the corresponding element of its input) as result (or part of
it). Assume for example a routine with a single integer argument and a single integer
result, whose body computes

result := argument + 1

Then with true as precondition P we may deduce

result = argument + 1

as postcondition Q. Now assume a call in which the caller’s argument is used as both
actual argument and actual result; this is expressly permitted, to allow the effect of in-out
arguments. But then blind application of 11 without constraint 7, would allow us to
infer, as postcondition for the call, that

Routine’

argument = argument + 1

which is absurd. Constraint 7 specifically prevents this. It does not prohibit the presence
of argument in Q if argument is not used as actual result for the call. As you are invited
to check, this case does not raise any particular problem; nor does the possible presence
of argument in P or result in Q.

9.10.5 A concrete notation for routines

Like invariants and variants for loops, routine preconditions and postconditions play such
a key role in building, understanding and using software that they deserve to be part of
the abstract and concrete syntax for routines, on a par with the argument list or the body.

When they need a concrete syntax, subsequent examples of routines will use the
Eiffel notation, which results from the preceding discussion and rule 11 .~ (and
supports the extended rule for recursive routines given below). An Eiffel routine is of the
form
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routine_name (argument: TYPE; argument: TYPE; ...): RESULT TYPE is
-- Header comment (non-formal)

require
Precondition
do
Compound
ensure

Postconditions
end

expressing the precondition and the postcondition as part of the routine text, through the
require and ensure clauses. Like other uses of assertions, these clauses are optional.

A cal to the routine is correct if and only if it satisfies the Precondition; if the
routine body is correct, the caller may then rely on the postcondition on routine return.
This is the idea, already mentioned above (page 314), of Design by Contract. A routine
call is a contract to perform a certain task. The caller is the “client”, the called routine is
the “supplier”. As in every good contract, there are advantages and obligations for both
parties:

» The precondition is an obligation for the client; for the supplier, it is a benefit,

since, as expressed by 11, . . it relieves the routine body from having to care
about cases not covered by the precondition.

 For the postcondition the situation is reversed.

An Eiffel routine, as given by the above form, is a function, returning a result. That
result is a single element rather than a list. This is sufficient for the examples below;
generalization to a list of results would be immediate. The examples below will use the
Eiffel convention for computing the result of a function: any function has an implicitly
declared variable called Result, of type RESULT_TYPE, to which values may be assigned
in the body; its final value is the result returned to the caller.

The notation also supports procedures, which do not return a result. A routine is a
procedure if its header does not include the part

: RESULT_TYPE

9.10.6 Recursion

Rule 11 ... it was said above, is not applicable to recursive routines. This is not
because it is wrong in this case, but rather because it becomes useless.

The problem is that the rule only enables you to prove a formula of the form

F {P} call s(..){Q}
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if you can prove the corresponding property of the body b of s, with appropriate actual-
formal argument substitutions. If s is recursive, however, its body will contain at least
one cal to s, so that proving properties of b will require proving properties of calls to s,
which because of the inference rule will require proving properties of.... The proof
process itself becomes infinitely recursive.

If, as with loops, we take a partial correctness approach, accepting the necessity to
prove termination separately, we need not change much to 11, . = to make it work for
recursive routines. The idea is that you should be allowed to use inductively, when trying
to prove a property of b, the corresponding property of callsto s.

To understand this, look again at the application of the non-recursive rule. As noted,
the goal is to prove

[9.39]
(P} cals(.) {Q}

by proving

[9.40]
{P} BODY {Q}

where P’ and Q' differ from P and Q by substitutions only. So the proof of [9.39]
includes two steps: first prove [9.40], the corresponding property on the body; then, using
11 derive [9.39] by carrying out the appropriate substitutions.

Routine’
If the same approach is applied to recursive routines, the first step in this process —
the proof relative to the body — must be allowed to assume the property of the call, the
very one which is the ultimate goal of the proof.

The more general rule for routine calls follows from this observation. (It is
applicable to non-recursive routines as well, athough in this case the former rule
suffices). The restrictions of 9.10.4 apply as before.

2Routi ne

{P [argument ~ i]} Call (called: r.name; input: i; output: 0) {Q [result — 0]}
=>

{P} r.body {Q}

{P [argument ~ i]} Call (called: r.name; input: i; output: 0) {Q [result — o]}

The premise of this rule is of the form F => G, and its conclusion of the form H, where
F, G, H are pre-post formulae. The rule means. “If you can prove that F implies G,
then you may deduce H”. The antecedent being an implication, its proof will often be a
conditional proof. What is remarkable, of course, isthat H isin fact the sasme as F.
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With the Eiffel concrete notation for preconditions and postconditions, as introduced
above, rule 12 . indicates that the instructions leading to any recursive call in the
body (do clause) must guarantee the precondition (require clause) before that call, and
may be assumed to guarantee the postcondition (ensure clause) on return, with
appropriate actual-formal substitutions in both cases. The rule also indicates that if you
try to check the first property (precondition satisfied on call), you may recursively assume

that property on routine entry.

You will have noted the use of the terms “may assume” and “must guarantee” in
the preceding discussion. They reflect the client-supplier relationship as derived from the
contract theory of software construction. Here the routine is its own client and supplier,
and the alternating interpretations of the assertions' meaning reflect this dual role.

The article that first introduced the axiomatics of recursive routines [Hoare 1971]
stressed the elegance of the recursive routine rule in particularly apt terms:

The solution of the infinite regress is simple and dramatic: to permit
the use of the desired conclusion as a hypothesis in the proof of the
body itself. Thus we are permitted to prove that the procedure body
possesses a property, on the assumption that every recursive call
possesses that property, and then to assert categorically that every
call, recursive or otherwise, has that property. This assumption of
what we want to prove before embarking on the proof explains well
the aura of magic which attends a programmer’s first introduction
to recursive programming.

9.10.7 Termination

In any practical call, the regress had better be finite if you hope to see the result in your
lifetime. (This was apparent in the last chapter's denotational study of recursion: even
though in non-trivial cases no finite number of iterations of a function chain f will yield
its fixpoint f_, once you choose a given x you know there is a finite i such that f (x) is

f. (x).)
|

To prove termination, it suffices, as with loops, to exhibit a variant, which here is an
integer expression of which you can prove that:

* Its value is non-negative for the first (outermost) call.

 If the variant’s value is non-negative on entry to the routine’s body, it will be at
least one less, but still non-negative, for any recursive call.
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9.10.8 Recursion invariants

Like loops, recursive routines have variants. Not unpredictably, they also share with loops
the notion of invariant.

A recursion invariant is an assertion | such that the recursive routine rule, 12, .,
will apply if you use | both as precondition (P in the rule as given above) and
postcondition (Q).

Here the rule means that if you are able to prove, under the assumption that any call
preserves |, that the body preserves | as well, then you may deduce that any call indeed
preserves |. The proof and deduction must of course be made under the appropriate
actual-formal argument substitutions.

As an example of use of a recursion invariant in a semi-formal proof, consider a
procedure for printing the contents of a binary search tree:

print_sorted (t: BINARY_TREE) is
-- Print node values in order

require
-- t isabinary search tree, in other words:
given
left nodes & subtree (t.left);
right_nodes 2 subtree (t.right)
-- where subtree (x) is the set of nodes
-- in the subtree of root x
then
V| : left_nodes, r : right_nodes - | .value < t.value < r .value
end
do

if not t.VVoid then

print_sorted (t.left);
print (t.value);
print_sorted (t.right)
end
ensure

“All values in subtree (t) have been printed in order.”
end

This assumes primitives left, right, empty and value applicable to any tree node, and a
predefined procedure print to print a value. The variant “height of subtree of root t”
ensures termination.

Here the informa recursion invariant is “If any value in subtree (t) has been
printed, then al values of subtree (t) have been printed in order”. The invariant is
trivially satisfied before the call since no node value has been printed yet. If t is a void
tree, then subtree (t) is an empty set and the procedure preserves the invariant since it
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prints nothing at all. If t is not void, then the procedure calls itself recursively on t .left,
then prints the value attached to the root t, then calls itself recursively on t.right. Since
t is a binary search tree (see the precondition), this preserves the invariant. Furthermore,
we know that in this case at least one value, t.value, has been printed, so the invariant
gives the desired postcondition — “All values in subtree (t) have been printed in order”.

Transforming this semi-formal proof into a fully forma one requires developing a
small axiomatic theory describing the target domain — binary trees. This is the subject of
exercise 9.26; the following section, which builds such a mini-theory for another target
domain, may serve as a guideline.

Since loops share the notion of invariant with recursive routines, it is natural to ask
whether the two kinds of invariant are related at all, especialy for recursive routines
which have a smple loop equivalent. The most common examples are “linearly-
recursive’ routines, such as a recursive routine for computing a factorial, which may be
written

factorial (n: INTEGER): INTEGER is

-- Factoria of n
require
n=0
do
if n=0then
Result := 1
else
Result := n x factorial (n — 1)
end
ensure
Result = n!
end

To simplify the proof, let us rely on the convention that Result, before explicitly
receiving a value through assignment, has the default initialization value 0. If we prove
that the property

Result = 0 or Result = n!

is invariant, and complement this by the trivial proof that Result cannot be 0 on exit, we
obtain the desired postcondition Result = n!.

This recursive algorithm has a simple loop counterpart with an obvious invariant:
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i: INTEGER,;
from
i :=0; Result :=1
variant
n-—i
invariant
Result =i!
until i = n loop
i :=1+1; Result := Result » i
end

As this example indicates, although there may be a relation between a recursion invariant
and the corresponding loop invariants, the relation is not immediate.

The underlying reason was pointed out in the analysis of recursive methods in the
previous chapter: although a recursive computation will be executed, as its loop
counterpart, as a ‘“bottom-up” computation, the recursive formulation of the algorithm
describes it in top-down format (see 8.4.3). The loop and recursion invariants reflect these
different views of the same computation.

9.10.9 Proving a recursive routine

To understand the recursive routine rule in detail, it is useful to write a complete proof.
The object of this proof will be what is perhaps the archetypal recursive routine: the
solution to the Tower of Hanoi puzzle [Lucas 1883].

In this well-known example, the aim is to transfer n disks initially stacked on a peg
A to a peg B, using a third peg C as intermediate storage. The argument n is a non-
negative integer. Only one operation is available, written

move (X, Y)

Its effect is to transfer the disk on top of x to the top of y (X and y must each be one of
A, B, C). The operation may be applied if and only if pegs x and y satisfy the
following constraints:

» Thereis at least one disk on x; let d be the top disk.

» |If there is a least one disk on y, then d was above the top disk on y in the
original stack.

Another way to phrase the second constraint is to assume that the disks, all of different
sizes, are originally stacked on A in order of decreasing size, and to require that move
never transfers a disk on top of a smaller disk.
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The proof will apply to the following procedure for solving this problem:

Hanoi (n: INTEGER,; x, y, z: PEG) is
-- Transfer n disks from peg x to peg y, using z as intermediate storage.

do
if n> 0 then
Hanoi (n—1, %, z, Y);
move (X, y);
Hanoi (n—-1, z, vy, X)
-- else do nothing
end
end

Although based on a toy example, this is an interesting routine because it is “realy”
recursive: unlike simpler examples of recursive computations (such as the recursive
definition of the factorial function) it does not admit a trivial non-recursive equivalent. In
addition, its structure closely resembles that of many useful practical recursive algorithms
such as Quicksort or binary tree traversal (see exercises 9.25 and 9.26).

The proof of termination is trivial: n is a recursion variant. What remains to prove is
that if there are n disks on A and none on B or C, the call Hanoi (n, A, B, C) transfers
the n disks on top of B, leaving no disks on A or C. The proof that disk order does not
change will be sketched later.

It turns out to be easier to prove a more general property: if there are n or more
disks on A, the call will transfer the top n among them on top of those of B if any,
leaving C inits original state.

Much of the proof work will be preparatory: building the right model for the objects
whose properties we are trying to prove. This is a genera feature of proofs: often the task
of specifying what needs to be proved is as hard as the proof proper, or harder.

Here we must find a formal way to specify piles of disks and their properties. As a
simple model, consider *“generalized stacks’” whose elements may be pushed or popped
by whole chunks, rather than just one by one as with ordinary stacks. The following
operations are defined on any generalized stacks s, t, for any non-negative integer i :

E
-- Size: an integer, the number of disks on s.

Si
-- Top: the generalized stack consisting of the i top elements of s,
-- in the same order ason s. Empty if i = 0.

-- Defined only if 0<i < |g].
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These operations satisfy a number of properties:

[9.41]
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-- Pop: the generalized stack consisting of the elements of s

-- except for the i top ones.
-- Defined only if 0<i < |g].

-- Push: the generalized stack consisting of the elements

-- of t on top of those of s.

Gl
G2

G3.a
G3.b
G4
G5.a
G5.b
G6
G7
G8
G9
G10

T T 1T T T T T T T T T

T

Definition (Axioms for generalized stacks):

s+t +u)y=(s+t)+u

s-0=s
0<ic< |t

It] <i < |s| +|t
0<j<i<]s
0<i < |t

It <i<|s| + |t
0<ic<|s
O<i +j <9
0<i < s
0<i < s

s+t = s +[t|

A A

J

$ 4

(s+t)i =ti

(s+t)i = g

) =
(S+1)—i=s+(t—i)
(s+t)—-i=s—-(-[t)

(s—i)+si =s
(s-i)-j=s-(@+])
S| =i

[s—if = [s] —i

The rest of this discussion accepts these properties as the axioms of the theory of
generalized stacks (also known as the specification of the corresponding “abstract data
type’). Alternatively, you may wish to prove them using a model for generalized stacks,
such as finite sequences, chapter 10 gives a more complete example of building a model

for an axiomatic theory.

The axioms apply to any generalized stacks s, t, u and any integersi, j. Axioms
G3.b, G5.b, G7 and G10 use "+" and "-" also as ordinary integer operators.

The associativity of "+" (property G1) will make it possible to write expressions
such ass +t + u without ambiguity.
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The following axiom schema (for any assertion Q and any generalized stacks s and
t) expresses the properties of the move operation:

[9.42] .
F {|s| >0and Q [s « s-1, t « t+s ]} move (s, t) {Q}

In words. the effect of move (s, t) is to replace s by s — 1 (s with its top element
removed) and t by t +s (t with the top element of s added on top). The first clause of
the precondition expresses that s must contain at least one disk.

To state this axiom is to interpret move as two assignments: the axiom rephrases
Anssignment (page 323) applied to the generalized stack assignments

ti=t+s

si=s-1
where the assignments should really be carried out in paralel, athough they will
work in the order given (but not in the reverse order).

We must prove that the call Hanoi (n, X, y, 2) transfers the top n elements of x onto the
top of y, leaving z unchanged. Expressed as a pre-post theorem schema, for any assertion
Q, any integer i and any generalized stacks s, t, u, the property to prove is

[9.43] .
{Is|]ziand Q [s « s—i, t « t+s']} Hanoi (i,s,t,u) {Q}

Let BODY be the body of routine Hanoi as given above. To establish [9.43], rule
120 uine t€llS Us that it suffices to prove the same property applied to BODY with the
appropriate argument substitutions:

[9.44] .
{IX Z2nand Q [x « x-n, y « y+x |} BODY {Q}

and that the proof is permitted to rely on [9.43] itself. This is the goa for the remainder
of this section.

Thanks to I i (P20e 329) we can dispense with the trivial case n = 0O; for
positive n, BODY reduces to the following (with assertions added as comments):

[9.45]

- {Ql}
Hanoi (n—1, X, z, y);

- {Qz}
move (X, Y) ;

- {Qg}

Hanoi (n—1,z Yy, X)

o {Q4}
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We must prove that the above is a correct pre-post formula if Q, is Q and Q, is the
precondition given in [9.44]. Since we are dealing with a compound and generalized
assignments, the appropriate technique is to work from the end, starting with the
postcondition Q as Q 2 and derive successive intermediate assertions Qs Q, and Q.
such that Q is the desired precondition.

To obtain Q,, we apply [9.43] to the second recursive call; this requires substituting
the actual argumentsn-1, z, y, x fori, s, t, u respectively. Then:

Q; 8 |zl2n-1andQ [z ~ z-(n-1), y « y+zn_]]
Moving up one instruction, application of the move axiom [9.42] to Q,, with actual
arguments x and y substituted for s and t respectively, yields:

Q, 8 [x>0and Q[x « x~-1, y « y+X]

|x| >0and |z| 2n-1and

QX « x=-1, ¥ « y+x1+zn_l, zZ « z—-(n-1)]

The only delicate part in obtaining Q, is the substitution for y, derived by combining two
successive substitutions; this uses the rule for composition of substitutions ([9.10], page

324), applied to identical a and b and generalized to simultaneous substitutions. (In this
generalization, all substitutions apply to the tuple <x, y, z>, serving as both a and b.)

Finaly, applying [9.43] again to the first recursive call with actua arguments n—1,
X,z,y yields Q:

Q, & [xl2n-land Q,[x « x—(n-1), z « z+xn_]]
so that, composing substitutions again:

[9.46] 11
Q,=Ix 2n-1and [x - (n-1)| >0and |z +x | 2n-1and
QX « x—-(n-1) -1,
1 n-1n-1
y «y+x-(n-1)) +(@z+x )
z « (z+x" ) - (n-D)]
There remains to simplify Q,, using the various axioms for generalized stacks [9.41].

Consider the first part of Q, (the conditions on sizes). From axiom G9, the clause
X = (n-1)| > 0isequivalent to |x| = n. From axioms G10 and G8,

n-1 n-1

[z +x" =7 +[x |
=|zl +n-1
>n-1

so that the first line of the expression for Q, [9.46] is equivalent to just [x| > n
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Now call x Ynew and z  ~the replacements for x, y and z in the substitutions on Q
on the next three lines. Then:

X B8 x-1)-(n-1

new
= X-n
-- From G7
1 n-1n-1
Yoy 2 Y+ X-(n-1)) +(z+x )
=y + (x=(n-1) +x"
-- From G8 and G3.a
=y +x-(n-1)+x" )"
-- This comes from G3.b, used from riglht to left
—fori &n,s8x-(n-Y)andt Ax"
-- applicability of G3.b is deduced from G8, G9 and G10.
= y + Xn
-- From G6, withs &x andi 2 n-1
Zoy 2 (2 +x" N - (n-1)

=z
-- From G5.b, justified by G8, and G2

As a result of these simplifications, the overall precondition Q, obtained in [9.46] is in
fact

Q,=IxlznandQ [x « x —n,y cy+x]

which is the desired precondition [9.44]. O

The proof does not take into account disk ordering constraints, as represented by rules on
disk sizes. Here is one way to refine the above discussion so as to remove this limitation.
(The method will only be sketched; you are invited to fill in the details) Add to the
specification of generalized stacks an operation written s, so that s, an integer, is the
size of the i-th disk in s from the top. Define a boolean-valued function on generalized
stacks, written s! and expressing that s is sorted, as:

sl 8 Vi:2..|s

*S1<S
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To adapt the specification so that it will only describe sorted stacks, add to all axioms
involving a subexpression of the form s +t a guard (condition to the left of the =
sign) of the form

Is| =1 A [tj=21 = t  <s

t] 1
and add to the precondition of move (s, t) a similar clause stating that if t is not empty its
top disk is bigger than the top disk of s.

Then you need to prove that the property
x! and y! and z!

IS a recursion invariant, by adding it to the postcondition Q and moving it up until it
yields the precondition.

9.11 ASSERTION-GUIDED PROGRAM CONSTRUCTION

Among the uses of formal specifications listed in chapter 1, the most obvious applications
of the axiomatic techniques developed in this chapter seem to be program verification and
language standardization.

Perhaps less immediately apparent but equally important is the application of
axiomatic techniques to the construction of reliable software. Here the goal is not to
prove an existing program, but to integrate the proof with the program construction
process so as to ensure the correctness of programs from the start. This may be called the
constructive approach to software correctness.

There are several reasons why this approach deserves careful consideration:

* Unless you make the concern for correctness an integral part of program building,
it is unlikely that you will be able to produce provably correct programs. Were
you able to prove anything at all, the most likely outcome is a proof of
incorrectness.

» With the methods of this chapter, proofs require that the program be stuffed with
assertions. The best time to write these assertions is program design time. Many of
them will in fact come from the preceding phases of anaysis.

e In many practical cases, you will not be able to carry out complete proofs of
correctness, if only because of technical limitations such as the lack of a complete
axiom system for a given programming language. But the techniques of this
chapter can till go a long way toward ensuring correctness by helping you to
write programs so as to pave the way for a hypothetical proof.

The rest of this chapter expands on these ideas by showing examples of how axiomatic
techniques can help make the correctness concern an integral part of the software design.
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A warning is in order: the techniques developed below are neither fail-safe nor
universal. Formal proofs are the only way to guarantee correctness (and even they are
meaningful only to the extent that you can trust the compiler, the operating system and
the hardware). But an imperfect solution is better than the standard approach to program
construction, where correctness concerns play a very minor role, if any role at all.

9.11.1 Assertionsin programming languages

Because assertions are such a help in designing correct software, and such a good trace of
the specification and design process that led to a particular software element, it seems a
pity not to include them in the final software text.

Of course, you may always include assertions as comments. This is indeed highly
recommended if you are using a programming language that offers no better deal. Having
more formal support for assertions as part of the programming language proper offers a
number of advantages:

1 < The path from specification to design and implementation becomes smoother: the
first phase produces the assertions; the next ones yield instructions which satisfy
the corresponding pre-post formulae.

2  If the language includes a formal assertion sublanguage, software tools can extract
the assertions from a software element automatically to produce high-level
documentation about the element. This is a better approach than having
programmers write software documentation as a separate effort.

3 « Even in the absence of a program proving mechanism, a compiler may have an
option which will generate code for checking assertions at run-time (the next best
thing to a proof). This turns out to be a remarkable debugging aid, since many
bugs will manifest themselves as violations of the consistency conditions
expressed by assertions.

4 + Assertions adso have a direct connection with the important issue of exception
handling, which, however, falls beyond the scope of the present discussion.

A number of programming languages have included some support for assertions. The first
was probably Algol W, which has an instruction of the form

ASSERT (b)

where b is a boolean instruction. Depending on a compilation option, the instruction
either evaluates b or is equivalent to a Sip. In the first case, program execution will
terminate with an informative message if the value of b is false. The C language offers a
similar mechanism.

Such constructs, however, are mostly debugging aids — application 3 above. They
are insufficient to support the full role of assertions in the software construction process,
especially applications 1 and 2.

Some languages take the notion of assertion more seriously. An example is the Anna
design language (see bibliographical notes). Another is Eiffel.

Eiffel’s mechanism, used for the examples of assertion-guided software construction
in the rest of this discussion, directly supports all four applications above. Two aspects of
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the mechanism have already been described:

* The syntactic inclusion of invariant, variant and initialization clauses in loops
(page 344).

 The require and ensure clauses in routines, supporting the principle of
“programming by contract”, as discussed on page 358.

Eiffel assertions appear in two other important contexts:

A class may (and often does) have a class invariant, which expresses global
properties of the class's instances. Class invariants are theoretically equivaent to
clauses added to both the precondition and postcondition of every exported routine
of aclass, but they are better factored out at the class level.

» A check instruction, of the form check Assertion end, may be used at any point
where you want to assert that a certain property will hold, outside of the
constructs just discussed.

In the programming examples which follow, the notation check Assertion end will replace
the Metanot braces used earlier in this chapter, as in { Assertion}.

More generally, the examples will rely on the Eiffel notation, dightly adapted for the
circumstance: first, some assertions will include quantified expressions (V ... and 3 ...),
currently not supported by the Eiffel assertion sublanguage, which is based on boolean
expressions; second, the examples do not take advantage of some specific Eiffel structures
and mechanisms (the class construct, deferred routines for specification without
implementation, genericity, the treatment of arrays as abstractly defined data structures
and others) which have not been described in this book.

It is often necessary, in a routine postcondition, to refer to the value an expression
had on routine entry. The discussion will use the Eiffel old notation, of which an example
is given by the following routine specification:2

enter (x: T; t: table of T): BOOLEAN is
-- Insert x into t ; increment count.

require
not full -- There should be room in the table
do
ensure
count = old count + 1
end

2 Here count has to be externally available to the routine. In Eiffel it would usualy be an
attribute of the class. Also, the argument t would normally be implicit, routine enter being part of a
class describing tables.
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9.11.2 Embedding strategies

Among the control structures studied in this chapter, the most interesting ones, requiring
invention on the part of the programmer, are routines (especially recursive ones) and
loops. This discussion will focus on loops.

The inference rules for loops express the postcondition — goal — of a loop as
G A landE

where | isthe invariant and E is the exit condition.

This suggests that the invariant is a weakened version of the goal: weak enough that you
can ensure its validity on loop initialization; but strong enough to yield the desired goal
when combined with the exit condition.

Figure 9.6: Embedding
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Loop construction strategies, then, may be viewed as various ways to weaken the goal.

The above figure illustrates the underlying view of loops. When looking for a
solution to a programming problem, you are trying to find one or more objects satisfying
the goa in a certain solution space — the curve G on the figure. G corresponds to the
goal. Theam isto find an element x in G. If you do not see any obvious way to hit G
directly, you may try aloop solution, which is an iterative strategy working as follows:

e Embed G into a larger space, 1. | represents the set of states satisfying the
invariant.

» Define E so that G is the intersection of | and E. E corresponds to the exit
condition.

* Choose as starting value for x some point x, in I. Because | is a superset of G,
it will be easier in general to find this element than it would be to find an element
of G right away. Element x, corresponds to the loop’s initialization.

* At each step let V be the “distance” from x to G. V corresponds to the loop’s
variant.

* Apply an iterative mechanism which, at each step, determines if x isin G, in
which case the iteration terminates (you have reached a solution), and otherwise
computes the next element by applying to x a transformation B which must keep
x in| but will decrease V. B corresponds to the loop body.

The loop is of the form

from
- _x =X,
invariant
I
variant
V
until x 0 G loop
B

end
check | and x 0 Gend -- (i.e. G)

We may now view loop construction as the problem of finding the best way to embed
goal spaces such as G into larger “invariant” spaces |, with the associated choices for the
starting point x ,, the variant V, and the body B.

The following sections study two particular embedding strategies:
» Constant relaxation.
» Uncoupling.
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9.11.3 Constant relaxation

With the constant relaxation strategy, you obtain the invariant 1 from the goa G by
substituting a variable for a constant value. The initialization will assign some trivial
value to the variable to ensure | ; each loop iteration gets the variable’s value closer to
that of the constant, while maintaining the invariant.

The ssimple example of linear search in a non-sorted list provides a good illustration
of the idea.

Assume you have an array of elements of any type T, and an element x of the same
type, and you want to determine whether x is equal to any of the elementsin t.

You can write the routine as a function has returning a boolean value, with the
postcondition

[9.47]
Result=(d k:1..n.x =t [K])

In other words, the result is true if and only if the array contains an element equal to x.
The function may be specified as follows (assuming n is a non-negative constant):3

has (x: T; t: array [1..n] of T): BOOLEAN is
-- Does x appear int?
require
true -- No precondition
do

ensuré”
Result=(d k:1..n+.x =t [k]) --[9.47]
end

In assertion-guided program construction, we examine the specification (the postcondition)
and look for a refinement which will yield a solution (the routine body). For a loop
solution, the refinement is an embedding as defined above.

To find such an embedding, we may note that any difficulty in obtaining the goa G,
as given by [9.47], is the presence of the interval 1..n. The smaller the n, the easier; with
a value such as 1 or better yet 0 the answer is trivial. For O, it suffices to use false for
Resullt.

This yields an embedding based on the constant relaxation method: introduce a fresh
variable i which will take its values in the interval 0..n and rewrite the goal [9.47] as

3 In normal Eiffel usage this function would appear in a class describing some variant of the array
data structure; as a consequence, the argument t would be implicit.
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Result=(d k:1..i -x=t[k]) -1
and i=n
which is trivially equivalent to the original. Call | the condition on the first line. | has
al the qualifications of an invariant:
* | iseasy to ensure initially (take false for Result and O for ).
* | isaweakened form of the goal, since it coincides with it for i = n.

* Maintaining | while bringing i a little closer to n will not be too difficult (see
next).

This prompts us to look for a solution of the form

from

i :=0; Result := false;
invariant

I
variant

n—i
until

i=n
loop

"Get i closer to n, maintaining the validity of | "
end

check [9.47] end

The loop body (“Get i...”) is easy to obtain. It must be an instruction LB which makes
the following pre-post formula correct:

check | and i <nend
LB
check and 0<n-i<old (n—i)end

The old notation makes it possible to refer to the value of the variant, n — i, before
the loop body (although old usually applies to routines).

The simplest way to “Get i closer to n” is to increase it by 1. This suggests
looking for an instruction LB’ such that the following is correct:

check
Result=(d k:1..i «x =t [k])
and i <n
end
i:=i+ 1; LB’

check Result = (d k:1..i « x =t [k]) end
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The postcondition is very close to the precondition; more precisely, the precondition
implies that after execution of the instruction i := i + 1 the following holds:

Result = (3 k:1..i-1-x =t [K])

so that the specification for LB’ is:

check Result = (3 k: 1..i-1.x =t [K]) end
LB’
check Result = (d k:1..i « x =t [k]) end

An obvious solution is to take for LB’ the instruction

Result := Result or else (t [i] = X)

which application of the assignment rule (A Assgnment® PO 323) easily shows to satisfy
the specification. The or else could be an or, but we do not need to perform the test on
t [i] if Result is aready true.

This gives a correct implementation of has:

has (x: T; t: array [1..n] of T): BOOLEAN is
-- Does x appear int?

require
true -- No precondition
local
i: INTEGER
do
from
i ;= 0; Result := false
invariant
Result =(d k:1..i «x =t [k])
variant
n-—i
until
i=n
loop
=i+ 1
Result := Result or else (t [i] = X)
end
ensure
Result=(d k:1..n.x =t [K])
end

end
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You are invited to investigate for yourself how to carry out the obvious improvement
— stopping the loop as soon as Result is found to be true — in the same systematic
framework.

This example is typical of the constant relaxation method, applicable when the
postcondition contains a constant such as n above and you can obtain an invariant by
substituting a variable such asi. The variant is the difference between the constant and
the variable; the loop body gets the variable closer to the constant and re-establishes the
invariant.

“For” loops of common languages support this strategy.

9.11.4 Uncoupling

Another embedding strategy, related to constant relaxation but different, is “uncoupling”.
It applies when the postcondition is of the form

p (i) and q (i)

for some variable i. In other words, the postcondition introduces a *“coupling” between
two clauses p and g. You may then find it fruitful to introduce a fresh variable j, rewrite
the postcondition as

p(i)andg (j) -1

andi =j
and use the first line as candidate loop invariant I, the variant being |j—i|. Because you

have “uncoupled” the variables in the two conditions p and q, it may be much easier to
ensure the initial validity of 1. The loop body is then of the form

“Bring i and j closer, maintaining |

which will often be done in two steps:
“Bring i and j closer”;
“Re-establish | if needed”

As an example of this strategy, consider a variation on the preceding searching
problem, with the extra hypothesis that T has an order relation, written <, and the array t
is sorted. This assumption may be expressed as a precondition:*

[9.48]
Vk:2.n-t[k-1 <t [K]

4 In Eiffel’s object-oriented software decomposition, such a property would normally be expressed
not as the precondition of an individual routine, but as a class invariant for the enclosing class.
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The previous version of has would still work, of course, but we may want to rewrite it to
take advantage of t being sorted. One possibility is to write the body of the new has
under the form

[9.49]
position := index (t, X);

Result := position [01.. n and then x =t [position]

where the auxiliary function index returns a position such that x either appears at that
position or does not appear in the array at all.

The precise specification of index’s postcondition turns out to be perhaps the most
delicate part of this problem (which you are invited to try out by yourself first):

A e« The specification must be satisfiable in all cases. whatever the value of x is
relative to the array values, there must be at least one Result satisfying the
postcondition.

B < To make the above algorithm [9.49] a correct implementation of has, the Result
must be the index of an array position where x appears, or otherwise must enable
us to determine that x does not occur at all.

The following postcondition satisfies these requirements:

[9.50]
Result [JO.. n
and (Vk: 1..Result - t [K] < X) —- p (Result)
and (Vk:Result+1..n -t [k] =2x) -- q (Result)

To check for condition A above, note that O will do for Result if x is smaller than all
array values, and n if it is larger than all array values. (Remember once again that
V x:E . P isaways true if E is empty.) For condition B, [9.50] implies that x appears
int if and only if

i >0and thent [Result] = x

Specification [9.50] is non-deterministic: if two or more (necessarily consecutive) array
entries have value x, any of the corresponding indices will be an acceptable Result. There
are several ways to change the postcondition so that it defines just one Result in al cases;
we may for example change the last clause to read

(Vk:Result+1..n « t [k] > x)

so that, in case of multiple equal values, Result will be the highest adequate index. It is
preferable, however, to keep the more symmetric version [9.50].

The problem, then, is to write the body for
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index (x: T; t: array [1..n] of T): INTEGER is
-- Does x appear int?

require
[9.48] -- t is sorted
do
ensure
[9.50]
end

How do we ensure the postcondition [9.50]? For more clarity let us use variable i instead
of Result; the do clause may then end with Result := i. The postcondition is of the form

i 0O0..n and p (i) and q (i)
which the uncoupling strategy suggests rewriting as

i,jd00..n and p (i) and g () -1
andi =

leading to a loop solution of the form

from

=g ]= 1,
invariant

p (i) and q(j)
variant

distance (i, j)
until

i =]
loop

“Bringi and j closer”
end

This solution will be correct if and only if i, satisfies p, j, satisfies g, the refinement of
“Bring i and j closer” conserves the invariant p(i) and q(j ), and distance (i, j) is an
integer variant.

The initialization is trivial: we choosei,tobe 0O and j,toben; p (0) and g (n) are
true since they are V' properties on empty sets.

With these initializations it appears reasonable to maintain i no greater than |
throughout the loop. This suggests a reinforced invariant:
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p@) and q(j) and 0<i<j<n
The most obvious way to “Bring i and j closer” isto increment i by 1, or aternatively
decrement | by 1, and see what it takes to keep the invariant true. Since the problem is
symmetricini and j, we should treat both possibilities equally.

Assuming the invariant is satisfied and i < | (the exit condition is not met yet), under
what conditions may we increment i or decrement | ?

Clearly, the instruction

=i+ 1
will preserve the invariant if and only if p (i + 1) istrue, and
j=i-1

if and only if q (j — 1) istrue.
Look first at the i part. By definition,
p@i)=NVk:1..it[k]<x)
sothat if t [i + 1] is defined (in other words, for i < n):
p@i+1)=p(@ and t[i +1] <x
Starting from a state where p (i) is satisfied, then, incrementing i by 1 will preserve the
invariant if and only if

i<nandthent[i + 1] <X

With respect to the j part

g(j)=NVk:j+l..n -t [k] =x)
we may decrease | by 1 if and only if

j>0andthent][j] =x

In spite of appearances, the symmetry between the conditions on i and j is perfect;
simply, because in the original postcondition [9.50] p involves Result and g involves
Result + 1, itisin fact a symmetry betweeni and j + 1.

The guards i <n and j >0 are in fact superfluous. the invariant includes
O<i <j<n,andi >] will hold as long as the exit condition is not satisfied; so
whenever the loop body is executed i +1 and j belong to the interval 1.. n. So we may
try as loop body:

if
tli+1<sx:i=i+1]]
tfjl=zx: j=7-1

end

Because symmetry is so strong in this problem, the solution uses the guarded conditional
(see [9.33], page 345). We must be careful, however: a guarded conditional will only
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execute properly if, in al possible cases, at least one of the guards is true. Fortunately,
here this is the case: because the array is sorted and i <j is a precondition for the loop
body, if the first guard is false, that isto say t [i + 1] > x, then the second guard, t [j] =
X, IS true.

The guarded conditional yields a non-deterministic instruction: if t [i +1] < x <

t [j ], then the instruction may execute either of its two branches. Using the standard
conditional instruction removes the non-determinism:

[9.51]
if t[i + 1] < xthen
i=i+1
else
i=i-1
end

Either form yields a smple and correct version of index:

index (x: T; t: array [1..n] of T): INTEGER is

-- Does x appear int?
require

[9.48] -- t is sorted

local
i, j: INTEGER
do
from
i:=0;j:=n
invariant
p@andg(j)and0<i<j<n
variant
j—i
until
i=j
loop
-- This could use the if ... then ... else form instead
if
tli+1<x:i=i+1[]
t[j]=zx: j=j-1
end
end
ensure

[9.50] -- (cf. page 378)
end
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As you will have noted, this is not the way most people usualy write sequential search.
The standard form will follow from an efficiency improvement that we should carry out
as systematically as the above development. The price to pay for this improvement is the
removal of the esthetically pleasant symmetry. Whenever the first guard is false, in other
words t [i + 1] > x, then assigning to j the value of i (rather than just | — 1) will still
preserve the invariant. This suggests rewriting the conditiona as

if t[i + 1] < xthen
=i+ 1
else
j =i
end

(Of course, the symmetric change would also work.) As a result we may dispense with
variable | altogether by noting that loop termination occurs when either i =n or
t [ +1] >x, yielding the more usual form for sequential search:

from
i:=0

invariant ... variant ...

until i = nor elset[i+1] > x loop
=i+l

end

Y ou should complete the invariant and variant clauses of this loop.

9.11.5 Binary search

Removing the symmetry between i and j—1 a best yielded a margina efficiency
improvement. A more promising avenue for improving the performance of sorted table
searching is based on the property that t is an array, meaning constant-time access to any
element whose index is known. This suggests “Bringing i and j closer” faster than by
increments of +1 or —1.

The idea of binary search is to am for the middle of the interval i..j. As Knuth
noted in the volume on searching of his Art of Computer Programming [Knuth 1973]:

Although the basic idea of binary search is comparatively straightforward, the
details can be somewhat tricky, and many good programmers have done it
wrong the first few times they tried.

If you doubt this, it should suffice to take a look at exercise 9.12, which shows four
innocent-looking versions — all wrong. For each version there is a case in which the
algorithm fails to terminate, exceeds the array bounds, or yields a wrong answer. Before
you read further, it is a good idea to try to come up with a correct version of binary
search by yourself.
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Both binary search and the above version of function index belong to a more general
class of solutions based on the same uncoupling of the postcondition, where the loop body
finds an element m ini..j and assigns the value of m (or a neighboring value) toi or j.

In the version seen above m is i +1 or j —1; for binary search it will be
approximately (i + j) div 2, so that we can expect a maximum number of iterations
roughly equal to log, n rather than n. (The operator div denotes integer division.)

This must be done carefully, however. In the general case we aim for a loop body of
the form

m:=“Somevaluein 1l..nsuchthati <m<j”;
if
t[m<x:i:=m[]
tm=x:j:=m-1
end

which, in ordinary programming languages, will be written deterministically:

m:=“Somevaluein1l..nsuchthati <m<j”;

if t [m] < x then
i:=m
else
ji=m=-1
end

Whether the conditional instruction is deterministic or not, it is essential to get al the
details right (and easy to get some wrong):

1 < The instruction must always decrease the variant j —i, by increasing i or
decreasing j . If the the definition of m specified just i < m rather thani < m, the
first branch would not meet this goal.

2 « This does not transpose directly to j: requiring i < m < j would lead to an
impossibility when j —i isequa to 1. So we accept m < j but then we must take
m — 1, not m, as the new value of j in the second branch.

3 ¢ The conditional’s guards are tests on t [m], so m must aways be in the interval
1..n. Thisfollows from the clause 0 < i < j < n which is part of the invariant.

4  « |f this clause is satisfied, then m < n and m — 1 > 0, so the conditional instruction
indeed leaves this clause invariant.

5 < You are invited to check that both branches of the conditional also preserve the
rest of the invariant, p (i) and q ().

Any policy for choosing m is acceptable if it conforms to the above scheme. Two ssimple
choicesarei + 1 and j; they lead to variants of the above sequential search algorithm.

For binary search, m will be roughly equal to the average of i and j,
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midpoint 2 (i +j) div 2

§9.11.5

The value of midpoint itself is not acceptable for m, however, because it might not
satisfy requirement 1 above. Choosing midpoint + 1 will, however, satisfy all the above

requirements.

This yields the following new version of index, using binary search:

index (x: T; t: array [1..n] of T): INTEGER is
-- Does x appear int?

require
[9.48] -- t is sorted
local
i, j, m INTEGER
do
from
i:=0;j:=n
invariant
p@andg(j)and0<i<j<n
variant
j—i
until
=]
loop
m = (i +j)div2+1;
if t [m] < xthen
i:=m
else
ji=m-1
end
end
ensure

end [9.50] -- cf. page 378

We can check that the loop will be executed at most | log, n| times by proving that
|log, (j —1)| is avariant. (| x| is the largest integer no greater than x.) For any real
numbers a and b, [log, (@) < |log, (b)| if a <b/2. Here, j —i isindeed at least
divided by 2 in both possible cases in the loop, since whenever i <j (i and j being

integers):

j— (i +j)div2+1) < (j —i)div 2

i —((i +j)div2 < (j -i)div 2



§9.11.5 ASSERTION-GUIDED PROGRAM CONSTRUCTION 385

(To check this, consider separately the casesi + | odd andi + j even).

Of course, the version of binary search obtained here is not the only possible one;
you may wish to obtain others through variants of the uncoupling strategy.

9.11.6 An assessment

Although they apply to well-known and relatively simple algorithms, the above examples
provide a good illustration of the constructive approach:

» The same framework served to derive two classes of algorithms (sequential and
binary search). In the sorted array case, it is only at the last step (choosing how to
“bring i and j closer”) that different design choices lead to different computing
methods.

» The heuristics used, constant relaxation and uncoupling, are quite general. One of
the exercises (9.24) asks you to apply uncoupling to a completely different
problem, sequence or array partitioning.

* We have built all versions so as to convince ourselves that they are correct and to
know why they are.

Given the human capacity for error and self-deception, it would be absurd to characterize
the methods illustrated here as sure recipes to obtain correct programs, or to clam that
they make other correctness techniques (such as testing) obsolete. Perfect or universal
they are not; more modestly, they constitute an important tool, among others, in the battle
for software reliability. This suffices to make them one of the most valuable application of
axiomatic semantics.

9.12 BIBLIOGRAPHICAL NOTES

The basis of the axiomatic method is mathematical logic, based on classical rhetoric but
made considerably more rigorous in this century as an attempt to solve the crisis of
mathematics that followed the development of set theory at the turn of the century. There
are many good introductions to mathematical logic, such as [Kleene 1967] or [Mendelson
1964]. [Copi 1973] presents the notions of truth, validity, proof, axiom, inference etc. in a
particularly clear fashion. [Manna 1985] is especially geared towards computer scientists.

Work presenting mathematical foundations for axiomatic theories is usually rooted in
denotational semantics; this is the area of *complementary semantics’, discussed in the
next chapter. See the bibliographical notes to that chapter.

The first article on program proving using techniques based on assertions was [Floyd
1967], with a suggestive title: “Assigning Meanings to Programs’. The paper aso
introduced the notion of loop invariant, called *“inductive assertion”.

Floyd's techniques were refined and improved in [Hoare 1969], which expressed
them as a system of axioms and inference rules associated with programming language
constructs. The approach was then applied to further language constructs such as routines
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[Hoare 1971] and jumps [Clint 1972], and to the specification of a large part of the Pascal
language [Hoare 1973b]. A comprehensive survey of Hoare semantics is given in
[Apt 1981].

The weakest precondition approach was developed by Dijkstra in an article [Dijkstra
1975] and a book [Dijkstra 1976].

These publications by Dijkstra also pioneered the *“constructive approach” to
software correctness (9.11). [Gries 1981] is a very readable presentation of this approach.
[Alagic 1978] and [Dromey 1983] apply similar ideas to teaching program design,
algorithms and data structures. [Jones 1986] also emphasizes the use of program proving
techniques for software development. See also work by the author [Meyer 1978, 1980]
and in collaboration [Bossavit 1981], the latter describing the systematic construction of
vector algorithms for supercomputers. For an account of how the spirit of the axiomatic
method may be applied to the construction and proofs of algorithms in the very difficult
area of concurrent programming, see the article on “on-thefly garbage collection”
[Dijkstra 1978].

The assertion mechanism of Anna is described in [Luckham 1985]. The assertion
mechanism of Eiffel and its application to the construction of reliable software
components are described in [Meyer 1988]. A further discussion of these topics, and the
theory of “Design by Contract”, may be found in [Meyer 1991b].

As mentioned on page 348, Dijkstra’s non-deterministic choice and loop instructions
have direct applications to concurrent programming. Hoare's CSP (Communicating
Sequential Processes) approach to parallelism is based in part on these ideas [Hoare 1978,
1985].

The axiomatic theory of expression typing in lambda calculus (9.3) comes from
[Cardelli 19844a], where it is applied to the more genera problem of inferring proper types
in a language (Milner's ML) where types, instead of being declared explicitly by
programmers, are determined by the system from the context and the types attached to
predefined identifiers. Cardelli’s system also handles genericity: in other words, some of
the types may include “free type identifiers’ standing for arbitrary types. For example,
the type of the identity function Id will bea — a, where a stands for an arbitrary type.

EXERCISES

9.1 Integers in mathematics and on computers

Write an axiomatic theory of integers, starting from the standard Peano axioms (see
[Suppes 1972], page 121, or any other text on axiomatic set theory). Then adapt the
theory to account for the size limits imposed by number representation on computers.
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9.2 Symmetric if instruction

Modify the abstract syntax and the denotational semantics of Graal, as given in chapter 5,
to replace the classical if...then...else... conditional instruction by the guarded conditional
(9.9.4).

9.3 Assignment and sequencing

Prove the following pre-post formula:
F {x=a and y=b}
ti=x;x:=x+y,y:=t

{x=a+ b and y= a}

9.4 Non-deter ministic conditional

Compute A wp Q, for any assertion Q, where A is the instruction
if
x<0: a==x[]
x=20: a:=x
end

9.5 Weakest precondition

Show that the value of guarded if wp Q (page 346) may also be expressed as.
guarded if wp R =

(c,orc,or..orc) and

2
(c, implies (A, wp R)) and
(c, implies (A, wp R)) and

(c, implies (A_ wp R))

9.6 Simple proofs

Prove that the following pre-post formulae, involving integer variables only and assuming
perfect integer arithmetic, are theorems.
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y-1

Y K} zi=z% x {z* x =K}

1 {z=*x

y y

K} yi=y-1;z:=z%x x {z*x x = K}

2 {z=*x

3 {yeven and z* X’ = K} yi=y / 2:x:=x2 {z* X = K}

4 {z=x* x = K}
if
yodd : y:=y—-1;z:=z% x []
yeven : yi=y / 2;x:=x2
end

{z = x = K}

9.7 Proving a loop

Let m and n be integers such that m > 0, n = 0. From the answers to exercise 9.6,
determine the result of the following program; prove your answer.
X, Y, Z INTEGER;
from
X=mjy:=n;z:=1
until y = 0 loop
if
yodd : y:=y—-1;z:=zx x []
yeven : yi=y / 2;x:=x2
end
end

9.8 Permutability of instructions

Applications such as paralel programming and the adaptation of programs to run on
parallel or vector processors (“parallelization” or *vectorization”), often require to
determine whether the order of two instructions may be reversed. This exercise
investigates such permutability criteria

Define two instructions A and B to be equivalent, and write

A=B
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if and only if for any assertion Q
Awp Q=BwpQ

Define that the instructions permute, written A perm B, if and only if
A;B = B; A

1 — Consider assignment instructions A and B:

* Aisx:=e

e Bisy:=f
where e, f are expressions (none of the expressions considered in this exercise may
contain function calls). Let V_ and V, be the sets of variables occurring in e and f
respectively. Give a sufficient condition on V, and V, for

Aperm B

to hold. Prove the result using the rules for assignment and sequence.
2 — Assume A is of the form

X=X® e
and B is of the form
X=X f

where e and f are expressions, none of which contains x, and & is an operation which is
both commutative and associative. Prove that it is true in this case that

A perm B

9.9 Another assignment rule

Can you imagine a “forward rule” for assignment (see page 325) ? (Hint: Introduce
explicitly the value that the variable being assigned to had before the assignment. The rule
uses an existential quantifier.)

9.10 Array assignment

Prove theorems [9.14] (page 328). Hint: Remember to treat the assignment as an
operation on the whole array.
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9.11 Simple loop construction from invariants

Write loops to compute the following values for any n by finding first the appropriate
invariants, using assertion-guided techniques (9.11).

1 f=n! (factoria of n)
2 F,, the n-th Fibonacci number, defined by
Fo =0
F,. =1
Fo=F_, +F_ fori>1

9.12 Binary search: failed attempts

The figure on the adjacent page shows four attempts at writing a program for binary
search. Each program should set Result to true if and only if the value x appears in the
real array t, assumed to be sorted in increasing order.

The programs use div for integer division. Variable found, where used, is of type
BOOLEAN.

Show that al of these programs are erroneous; it suffices for this to show that for each
purported solution there exist values of the array t and the element x that produce an
incorrect solution (Result being set to true athough x does not appear int or conversely)
or will result in abnormal behavior at execution (out-of-bounds memory reference or
infinite loop).

9.13 Indexed loops

Most languages provide a “do” or “for” loop structure in which the iteration is controlled
by an index ranging over a finite range (usually an arithmetic progression over the
integers, although it could be any finite set, such as a finite, sequential data structure like
alinear list). In the smplest case, looping over a contiguous integer interval, the loop will
be written as something like

for i: a..bloop Ai end

where AI is some instruction, usually dependent on the value of i.
Give a proof rule for such an instruction.
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Figure 9.7: Four (wrong) programs for binary search

(P1)

from
i:=1;j:=n

until i =] loop

m:=(i +j) div 2;

if t[m] <x then
i:=m

else

end;
Result := (x = t [i])

(P2)
from

i :=1;j:=n; found := false
until i =j and not found loop

m:= (i +j) div 2;
if t[m] <x then
i=m+1
elseif t [m] = x then
found := true
ese
ji=m-=1
end
end;

Result := found

(P3)

from
i:=0;j:=n
until i =] loop
m:=(G +j +1) div 2;
if t [m] < xthen
i=m+1
else
ji=m
end
end;
ifi=21andi<nthen
Result := (x = t [i])
else

Result := false
end

(P4)

from
i=0;j=n+1
until i =] loop
m:=(@( +]j) div 2;
if t [m] < x then

I=m+1

else
ji=m
end
end;
ifi=1andi <nthen
Result := (x = t [i])
ese

Result := false
end

391
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9.14 Repeat... until

Give a proof rule for the Pascal

repeat ... until ...

instruction. You may use the observation that such a loop is readily expressed in terms of
the while loop.

9.15 Equivalences between loops

Consider two loops of the following forms:
1. whilec loop

while cand ¢, loop A, end;
while c and ¢, loop A, end

end

2. while cloop

end

Prove that any invariant of loop 2 is also an invariant of loop 1.

Can you give an intuitive reason why an invariant of loop 1 might not be invariant for
loop 2?

9.16 Precise requirements on variants

Consider a loop with continuation condition ¢ and variant V (in the sense that the

antecedents of rule IT o Page 336, are satisfied). Show that

F V =0 implies not c

(Hint: Proof by contradiction).
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9.17 Weakest preconditions for loops

Define H,, the necessary and sufficient condition for loop | to yield postcondition Q after
at most i iterations (i = 0). You should first find independently an inductive definition of
H, in the manner of the definition of G, ([9.31], page 342), and then prove its consistency
with the definition of G,.

9.18 Keeping track of the clock

(Due to Paul Eggert.) Consider Graal extended with two notions. clock counter and non-
deterministic choice from integer intervals. This means two new instructions, with
possible concrete syntax

» clock t
e chooset by e
In both instructions t is an integer variable; in the second, e is an integer expression.

The clock instruction assigns to t the current value of the machine clock. The machine
clock is positive, never has the same value twice, and is always increasing.

The choose instruction assigns to t an integer value in the interva 0..|e-1]. The
implementation is free to use any value in that interval.

1 — Write axiomatic semantic definitions for these two instructions.
2 — Use your semantics to prove that the following loop aways terminates:
from
clock i
until i = 0 loop
clock j;
if i <jthen
choosei by i

end
end

9.19 Restrictions on routines

Express the restrictions on routines for rule 11
by defining aV

routine (9-10.4) as static semantic constraints

validity function (see 6.2).

Routine
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9.20 Composition of substitutions

Prove the rule for composing substitutions ([9.10], page 324), using the definition of
function subst. Hint: use structural induction on the structure of Q.

9.21 Simultaneous substitution

Define formally a function
simultaneous (Q: Expression ; €l : Expression* ; il : Identifier*)

which specifies multiple simultaneous substitution (page 354) in a manner similar to
function subst for single substitution ([9.9], page 323). Hint: it is not appropriate to use a
list over ... apply ... expression on € or il ; why?

9.22 In-out arguments

Extend rule 11 age 353) to deal explicitly with in-out arguments.

Routine (p

9.23 L oops as recursive procedures

A loop of the form

while ¢ loop a end

may also be written as

cal s

where s is a procedure with the following body:

if c then a; call send

Using this definition, prove the loop rule (9.7.6) from the recursive routine rule (9.10.6).

9.24 Partitioning a sequence

Various algorithms require partitioning a sequence. This operation is used in particular
for sorting arrays (next exercise) and for producing “order statistics’.

Partitioning is applicable if a total order relation exists on sequence elements. Partitioning
S means rearranging the order of its elements to put it in the form t +<p>++-u, where
any element of t is less than or equal to p, and any element of u is greater than or equal
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to p. Vaue p, the pivot, is a sequence element, chosen arbitrarily; for the purpose of
this exercise the pivot will be the element that initially appeared at the leftmost position.
The only two permitted operations are swap (i, j ), which exchanges the elements at
positions i and j, and thetest s (i) < s (j), which compares the values of the elements
at positionsi and j.

A general method for partitioning is to “burn the candle from both ends’, the candle
being the sequence deprived of its first element (the pivot). Maintain two integer cursors,
“left” and “right”, initialized to the leftmost and rightmost positions. At each step,
increase the left cursor until it is under an element greater than the pivot, and decrease the
right cursor until it is under an element lesser than the pivot. The two elements found are
out of order, so swap them; then start the next step. The process ends when the two
cursors meet; then you can swap the first sequence element (the pivot) with the element at
cursor position.

Starting from this informal description, derive a correct agorithm for sequence
partitioning, using the constructive methods described in 9.11.

Hint: The “candle-burning” process follows from the strategy of uncoupling, as discussed
in 9.11.4 and 9.11.5.

9.25 Quicksort

A well-known algorithm for sorting an array is Quicksort, for which a routine may be
written (in a simplified form applicable to sequences) as:
sorted (s X*): X* is
-- Produce a sorted permutation of s.
-- (There must be a total order relation on X.)

local
t, u; X*
do
if S.LENGTH < 1 then
Result :='s
else
<t, u> := partitioned (s);
t ;= sorted (t);
u := sorted (u);
Result ;= t+u
end
ensure

-- Result is sorted, in other words:
Vi:2..Result .LENGTH . Result (i —1) < Result (i)
end
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Here partitioned is a routine, derived from the previous exercise, which given a sequence
s of length 2 or more returns two non-empty sequences t and u such that t +u is a
permutation of s, and all elements of t are less than or equal to all elements of u.

After putting this routine in a form suitable for application of the recursive routine rule
(12rutine» PAOE 359), prove its correctness.

Hint: You may follow the example of the proof for routine Hanoi (9.10.9).

9.26 Inorder traversal of binary search trees

Prove rigorously the routine for printing the contents of a binary search tree in order
(page 361). You will need to adapt the routine so that it produces a list of values as
output.



