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Summary

The present thesis introduces a generic parameterized framework for static analysis of
Java bytecode programs, based on constraint generation and solving. This framework is
able to deal with the exceptional flows inside the program and the side-effects induced
by calls to non-pure methods. It is generic in the sense that different instantiations of its
parameters give rise to different static analyses which might capture complex memory-
related properties at each program point. Different properties of interest are represented
as abstract domains, and therefore the static analyses defined inside the framework are
abstract interpretation-based. The framework can be used to generate possible or may ap-
proximations of the property of interest, as well as definite or must approximations of that
property. In the former case, the result of the static analysis is an over-approximation of
what might be true at a given program point; in the latter, it is an under-approximation.
This thesis provides a set of conditions that different instantiations of framework’s pa-
rameters must satisfy in order to have a sound static analysis. When these conditions are
satisfied by a parameter’s instantiation, the framework guarantees that the corresponding
static analysis is sound. It means that the designer of a novel static analysis should only
show that the parameters he or she instantiated actually satisfy the conditions provided
by the framework. This way the framework simplifies the proofs of soundness of the
static analysis: instead of showing that the overall analysis is sound, it is enough to show
that the provided instantiation describing the actual static analyses satisfies the conditions
mentioned above. This a very important feature of the present approach.

Then the thesis introduces two novel static analyses dealing with memory-related
properties: the Possible Reachability Analysis Between Program Variables and the Defi-
nite Expression Aliasing Analysis. The former analysis is an example of a possible analy-
sis which determines, for each program point p, which are the ordered pairs of variables
〈v ,w〉 available at p, such that v might reach w at p, i.e., such that starting from v it is
possible to follow a path of memory locations that leads to the object bound to w . The
latter analysis is an example of a definite analysis, and it determines, for each program
point p and each variable v available at that point, a set of expressions which are always
aliased to v at p. Both analyses have been formalized and proved sound by using the the-
oretical results of the framework. These analyses have been also implemented inside the
Julia tool (www.juliasoft.com), which is a static analyzer for Java and Android. Ex-
perimental evaluation of these analyses on real-life benchmarks shows how the precision
of Julia’s principal checkers (nullness and termination checkers) increased compared to

www.juliasoft.com
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the previous version of Julia where these two analyses were not implemented. Moreover,
this experimental evaluation showed that the presence of the reachability analysis actually
decreased the total run-time of Julia. On the other hand, the aliasing analysis takes more
time, but the number of possible warnings produced by the principal checkers drastically
decreased.
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are always there for me, as well as Wayne, Leo, Maja, Silvia, Sara, Valerio and Emad for
their support and friendship.





Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1 Static Analysis, for Real . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 General Idea of This Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Does This Really Work? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Overview of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1 Basic notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Abstract Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Syntax and Semantics of a Java bytecode-like language . . . . . . . . . . . . . . . . . . 19
3.1 Types and Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3.1 Load and Store Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3.2 Arithmetic Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3.3 Object Creation and Manipulation Instructions . . . . . . . . . . . . . . . . . 23
3.3.4 Array Creation and Manipulation Instructions . . . . . . . . . . . . . . . . . 24
3.3.5 Operand Stack Management Instructions . . . . . . . . . . . . . . . . . . . . . 24
3.3.6 Control Transfer Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3.7 Method Invocation and Return Instructions . . . . . . . . . . . . . . . . . . . . 24
3.3.8 Exception Handling Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3.9 Control Flow Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4.1 States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4.2 Semantics of Bytecode Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4.3 Method calls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.4.4 The Transition Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4 General Framework for Constraint-based Static Analyses . . . . . . . . . . . . . . . 37
4.1 Contribution and Organization of the Chapter . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 Construction of the Extended Control Flow Graph . . . . . . . . . . . . . . . . . . . . 39
4.3 Concrete and Abstract Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42



VI Contents

4.4 Propagation Rules and the Abstract Constraint Graph . . . . . . . . . . . . . . . . . 43
4.5 Extraction and Solution of Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.6 Soundness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5 Possible Reachability Analysis of Program Variables . . . . . . . . . . . . . . . . . . . . 55
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2 Property of Reachability Between Variables . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.3 Definition of the Possible Reachability Analysis . . . . . . . . . . . . . . . . . . . . . . 66

5.3.1 Abstract Domain Reach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.3.2 Propagation Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.4 Soundness of the Reachability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.4.1 ACC Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.4.2 Galois Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.4.3 Monotonicity of the Propagation Rules . . . . . . . . . . . . . . . . . . . . . . . 78
5.4.4 Sequential Arcs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.4.5 Final Arcs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.4.6 Exceptional Arcs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.4.7 Parameter Passing Arcs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.4.8 Return and Side-Effects Arcs at Non-Exceptional Ends . . . . . . . . . 90
5.4.9 Side-Effects and Exceptional Arcs at Exceptional Ends . . . . . . . . . 93
5.4.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.5 Experimental Evaluation of the Reachability Analysis . . . . . . . . . . . . . . . . . 95
5.5.1 The Julia Analyzer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.5.2 Sample Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.5.3 Sharing vs. Reachability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.5.4 Reachability vs. Shape Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.5.5 Effects of Reachability Analysis on Other Analyses . . . . . . . . . . . . 102

6 Definite Expression Aliasing Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.2 Alias Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.3 Definition of Definite Expression Aliasing Analysis . . . . . . . . . . . . . . . . . . . 117

6.3.1 Abstract Domain Alias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.3.2 Propagation Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.4 Soundness of the Definite Expression Aliasing Analysis . . . . . . . . . . . . . . . 131
6.4.1 ACC Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
6.4.2 Galois Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
6.4.3 Monotonicity of the Propagation Rules . . . . . . . . . . . . . . . . . . . . . . . 133
6.4.4 Sequential Arcs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
6.4.5 Final Arcs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
6.4.6 Exceptional Arcs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
6.4.7 Parameter Passing Arcs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
6.4.8 Return and Side-Effects Arcs at Non-Exceptional Ends . . . . . . . . . 147
6.4.9 Side-Effects and Exceptional Arcs at Exceptional Ends . . . . . . . . . 151
6.4.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6.5 Implementation and Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 153
6.5.1 Results w.r.t. the expression aliasing analysis . . . . . . . . . . . . . . . . . . 154



Contents 1

6.5.2 Theoretical Computational Complexity . . . . . . . . . . . . . . . . . . . . . . . 156
6.5.3 Implementation Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
6.5.4 Benefits for other analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177





List of Figures

1.1 Extraction of CFG from a program and the libraries it uses . . . . . . . . . . . . . . 6
1.2 An example of an ACG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Process of formalization of a constraint-based static analysis . . . . . . . . . . . . 7

2.1 Examples of ordered sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1 Instruction set summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 A list of objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3 An example of a control flow graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.4 An example of exception handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.5 An example of a JVM state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.6 Semantics of bytecode instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.7 Operational semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1 An Java method and its control flow graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2 An example of extended control flow graph . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.3 Return value and side-effects arcs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.4 Side-effects and exceptional arcs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.5 A system of constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.1 Example of computation of reachable locations . . . . . . . . . . . . . . . . . . . . . . . 59
5.2 Example of computation of reachable locations and types . . . . . . . . . . . . . . . 65
5.3 Propagation rules of simple arcs for reachability . . . . . . . . . . . . . . . . . . . . . . . 68
5.4 Propagation rules of multi-arcs for reachability . . . . . . . . . . . . . . . . . . . . . . . . 69
5.5 An abstract constraints graph for reachability . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.6 An example of reachability analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.7 Solution of a system of constraints from Fig. 5.6 . . . . . . . . . . . . . . . . . . . . . . 95
5.8 Run-times of sharing and reachability analyses . . . . . . . . . . . . . . . . . . . . . . . . 98
5.9 Precision of sharing and reachability analyses . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.10 Effects that our reachability analysis has on other analyses . . . . . . . . . . . . . . 99
5.11 Experimental evaluation of our reachability analysis . . . . . . . . . . . . . . . . . . . 100

6.1 A motivating example for definte expression aliasing analysis . . . . . . . . . . . 104
6.2 An example of a JVM state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109



2 List of Figures

6.3 An example of a JVM state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.4 Definition of a map canBeAffected . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.5 An abstract constraints graph for definite expression aliasing analysis . . . . . 123
6.6 A system of constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
6.7 Return value and side-effects arcs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
6.8 Side-effects and exceptional arcs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
6.9 The solution of the constraint system from Fig. 6.6 . . . . . . . . . . . . . . . . . . . . 153
6.10 Benchmarks for the definite expression aliasing analysis . . . . . . . . . . . . . . . . 155
6.11 Run-times of Julia with and without definte expression aliasing analysis . . . 158
6.12 Effects of the definite expression aliasing analysis on the nullness tool . . . . 159
6.13 Effects of the definite expression aliasing analysis on the termination tool . 160



1

Introduction

1.1 Static Analysis, for Real

Static analysis of computer programs allows one to gather information about the run-time
behavior of such programs, before they are run. Hence, it is possible to prove that pro-
grams do not perform illegal operations, such as a division by zero or a dereference of
null, or do not lead to erroneous executions, such as infinite loops, or do not divulge
information in incorrect ways, such as security authorizations or GPS position in mobile
devices. This must be performed without executing those programs. Companies such as
banks and insurance companies are interested in the application of static analysis to their
software, that must not break or hang unexpectedly. Software houses and freelance devel-
opers are attracted by the idea of verifying their software before it gets into production,
so that a large class of bugs and inefficiencies can be removed before hitting the market.

Static analysis of real software is extremely difficult. There are many reasons for this:

• the precision of the static analysis must be very high, which makes the latter very
complex. Moreover, for the users of static analysis, the ideal situation is when the
technique can be applied without any help from the programmer. That is, the code is
analyzed as it is, without the addition of annotations that might help the analyzer;

• current programming languages have complex semantics. They deal with data struc-
tures or objects dynamically allocated in the heap, rather than just primitive, numerical
values. This makes the analysis complex, since data updates and method calls might
affect other data indirectly, by side-effect;

• current programming languages use exceptions to implement exceptional executions.
This introduces execution paths that do not follow the normal execution order of state-
ments and that must be taken into account for a sound static analysis;

• current programming languages come with a large standard library, that is heavily
used by even the smallest program. As a consequence, the analysis of a very small
program might require the analysis of thousands of lines of code and consequently
become very expensive;

• for all these reasons, the development of new static analyses is complex and error-
prone. Once a formal specification of the analysis is provided, its implementation
might require months and the debugging and optimization of that implementation
might take up to one year before being industrially strong, from our experience. This
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makes the development of sound and precise static analyses impractical and econom-
ically uninteresting.

This thesis describes an approach to the development of new static analyses for
memory-related properties of a complex programming language such as Java bytecode.
The technique is based on the construction of a system of constraints from the program
under analysis, which takes the form of a graph, and on the propagation of information
tokens along the arcs of the graph. There is complete freedom in the kind of propagation
that gets applied here, the only requirement is that it has to be monotonic.

This is a generic technique, in the sense that it can be applied to the development of
many, very different static analyses, both in possible and definite form. The framework
has been formalized, developed, debugged and optimized only once, which took around
two years of programming work. Its implementation has been optimized heavily, by using
bitsets to represent sets of tokens of information and by using a compact representation
for the graphs. New static analyses are implemented by subclassing the code already im-
plemented in its generic form. Hence, new analyses can be developed in a couple of weeks
and inherit the highly debugged and efficient generic implementation. As a consequence,
the development of new analyses becomes practical and makes economical sense.

This thesis provides the theory underlying the definition of constraint-based static
analyses for Java bytecode and shows two concrete instantiations of the framework for
a possible and a definite analysis, respectively. The implementation of the framework
has been performed by Julia Srl (http://www.juliasoft.com), a spin-off company
of the University of Verona, specialized in the development of static analyses for Java
and Android. The implementation of the two concrete instantiations of analysis has been
performed in collaboration with the same company, which currently owns the code.

The importance of this thesis is that it shows how very different static analyses for
a complex programming languages such as Java bytecode can be defined inside a single
framework and inherit, automatically, properties such as correctness and efficiency of
implementation. The considered analyses are related to the heap memory and hence very
complex since they must take into account the side-effects of method calls and of field
updates. Again, the framework in this thesis gives a general solution for this kind of
analyses, by providing a technique for dealing with side-effects. Similarly, the solution
for exception handling can be applied, automatically, to all static analyses, present and
future.

1.2 General Idea of This Thesis

This thesis introduces a general parameterized framework for constraint-based static
analyses of Java bytecode programs. That framework is abstract interpretation-based and
can be used to formalize static analyses that deal with both numerical and memory-related
properties. Moreover, the framework’s structure allows one to define static analyses which
deal with both the side-effects of the methods, and their exceptional executions. Finally,
it simplifies proofs of correctness of the static analyses formalized in the framework.

In the following, the contribution of the thesis is explained in more detail. First of
all, a Java bytecode-like language used by this formalization, as well as its operational
semantics are formally defined. The crucial notion there is the notion of state, representing
a system configuration. Namely, a state assigns a concrete value to each variable available
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at a program point p, and to each field of each object available in memory at p. For each
program point, this is the most concrete information about the execution of that program
concerned with that point. The set of all possible states that might be related to a given
program point is called the concrete domain, and it is denoted by C.

Let P be a program under analysis, composed of a set of .class files, and let L be the
set of libraries that P uses. Suppose that P ’s classes as well as libraries in L are archived
in a .jar file, representing one of the inputs the present framework requires. Moreover,
let P be a generic property of interest. The actions performed by the framework are listed
below.

1. The framework extracts, from the .jar archive, an extended control flow graph
(eCFG), which contains a node for each bytecode instruction available in P and L,
some special nodes which deal with the side-effects of non-pure methods, as well as
with exceptional and non-exceptional method ends, and different types of arcs which
connect those nodes. There are some simple arcs connecting one source node with
one sink node, but there are also some special arcs, composed of two source nodes
and one sink node: their main purpose is handling of the method’s side effects in both
exceptional and non-exceptional executions of those methods and they represent one
of the actual contributions of the present thesis. Fig. 1.1 graphically illustrates this
step. More details about eCFG can be found in Section 4.2. It is worth noting that
this step does not depend on any particular property of interest, and is always done
automatically by the framework.

2. Suppose that A is a generic abstract domain (Section 2.2) representing the property
P. Moreover suppose that, for each arc, there exists a generic propagation rule Π :
A → A representing the behavior of the bytecode instruction corresponding to the
source node of the arc with respect to the abstract domain A, and therefore with
respect to the property P. Both the abstract domain and the propagation rules are
property-dependent and represent the actual parameters of the framework. When this
parameters are instantiated, the framework annotate the arcs of the eCFG, obtaining
the abstract constraints graph (ACG). An example of an ACG is given in Fig. 1.2.
More details about this step are given in Sections 4.3 and 4.4.

3. From the annotated graph the framework extracts a system of constraints which rep-
resents the actual definition of a new constraint-based static analysis and its solu-
tion represents the approximation provided by that static analysis. This step is both
property-independent and property-dependent, i.e., the construction of the system of
constraints does not depend on the property of interest, while its form does depend on
that property and, in particular, on the propagation rules. The extraction of constraints
from the ACG is explained in Section 4.5.

In order to define sound static analyses, the framework introduces a set of require-
ments that framework’s parameters, i.e., the abstract domain and the propagation rules,
must satisfy. For example, the framework requires that the concrete domain C and the
abstract domain A are related in terms of abstract interpretation, i.e., it is necessary to
show the correspondence between each abstract element and its concrete counterparts
and vice versa. Another requirement is, for instance, the monotonicity of the propaga-
tion rules needed for the existence of a solution of the corresponding static analysis. The
other, more complicated requirements and their purpose are explained later in Section 4.4.
The results provided in Section 4.6 guarantee that when an instantiation of framework’s
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Fig. 1.1. Extraction of CFG from a program and the libraries it uses

parameters satisfies the requirements mentioned above, the static analysis determined by
this instantiation is sound. This is a very important result, since it allows one to show that
a static analysis of a huge, real-life program, written in Java bytecode, is sound. In order
to show that, it is not necessary to consider program’s structure or the libraries it uses.
Another important result of this thesis is the fact that the satisfiability of the requirements
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Fig. 1.3. Process of formalization of a constraint-based static analysis

implies that there always exists a solution of the system of constraints obtained from the
ACG.

When the designer of a new static analysis wants to formalize a sound static analysis
using the present framework, he or she has to complete the following tasks:

1. formally define the property of interest P and express it as an abstract domain A in
terms of the abstract interpretation framework [32];

2. define a propagation rule Π : A → A, for each bytecode instruction of the tar-
get language, and each possible behavior of that instruction (exceptional and non-
exceptional);

3. show that A and the propagation rules satisfy all of the requirements specified by
the framework, which is not a simple task, but it is drastically easier to show that,
for example, each propagation rule soundly mimics the behavior of the correspond-
ing bytecode instruction, than to show that the abstract semantics of whole program
soundly approximates the operational semantics of that program.

Fig. 1.3 lists the sequence of actions automatically done by the framework (at the right)
and required by the user (on the left). The actions are performed following the order
specified in the figure, i.e., first of all the framework extracts the eCFG, then the designer
instantiate the abstract domain and the propagation rules, then the framework constructs
the ACG, etc.

There is also another important benefit of using this framework. From an implemen-
tational point of view, Julia contains an abstract class (in terms of Java) implementing
the generic engine for eCFG and ACG creation, constraint generation and solving. This
implementation represents an implementation of the framework and is not a contribution
of the present thesis. Each new specific static analysis is a concrete subclass of the ab-
stract class mentioned above, providing an implementation for a few methods, where the
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specific static analyses deviates from the general framework. This largely simplifies the
implementation of new static analyses. For instance, the developer need not bother about
the implementation of the constraints and the strategy for their solution.

1.3 Does This Really Work?

The present framework has been used to define, formally prove sound and implement
seven static analyses dealing with memory-related properties:

• Possible Creation Point Analysis,
• Possible Field Nulnness Analysis,
• Possible Rawness of Variables and Fields,
• Possible Reachability Analysis of Program Variables,
• Possible Sharing Analysis,
• Definite Expression Aliasing Analysis,
• Definite Non-Null Expressions Analysis.

All these analyses statically determine some memory-related run-time properties and have
been implemented in Julia. They are fast analyses which allow one to analyse real-life
benchmarks composed of hundreds of thousands of lines of code. This thesis pays partic-
ular attention to the Possible Reachability Analysis of Program Variables and the Definite
Expression Aliasing Analysis.

Possible Reachability Analysis of Program Variables is an example of a possible anal-
ysis. Reachability from a program variable v to a program variable w states that starting
from v it is possible to follow a path of memory locations that leads to the object bound
to w . This useful piece of information is important for improving the precision of other
static analyses, such as side-effects, field initialization, cyclicity and path-length analysis,
as well as more complex analyses built upon them, such as nullness and termination analy-
sis. It determines, for each program point p, a set of ordered pairs of variables of reference
type 〈v ,w〉 such that v might reach w at p when the program is executed on an arbitrary
input. Seen the other way round, if a pair 〈v ,w〉 is not present in our over-approximation
at p, it means that v definitely does not reach w at p.

On the other hand, the Definite Expression Aliasing Analysis infers, for each variable v
at each program point p, a set of expressions whose value at p is equal to the value of v at
p, for every possible execution of the program. Namely, it determines which expressions
must be aliased to local variables and stack elements of the Java Virtual Machine. The
approximation produced by this analysis is another useful piece of information for an
inter-procedural static analyzer, since it can refine other static analyses at conditional
statements or assignments.

Both Possible Reachability Analysis of Program Variables and Definite Expression
Aliasing Analysis have been implemented in the Julia static analyzer for Java and An-
droid. A collection of real-life benchmarks has been analyzed by Julia in order to experi-
mentally evaluate these novel static analyses and we show the results of those evaluations:
both analyses improved the precision of Julia’s principal checkers, which are nullness and
termination checkers. In the case of reachability analysis, the run-time of Julia decreased
with respect to the previous version of the tool, and the reason of this fact is explained.
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On the other hand, the aliasing analysis increased the run-times of Julia, but it drasti-
cally decreased the number of warnings produced by the principal tools, which is a good
trade-off.

1.4 Overview of the Thesis

This thesis is structured as follows. Chapter 2 provides notation and the basic algebraic
notions that are used in the remainder of the thesis, together with a brief introduction
to abstract interpretation. Chapter 3 formally introduces the operational semantics of a
target, Java bytecode-like language, used also in [63, 64, 86] and inspired by the standard
informal semantics [52].

Chapter 4 presents a generic parameterized static analysis framework for Java byte-
code, based on constraint generation and solving. This framework is able to deal with the
exceptional flows inside the program and the side-effects induced by calls to non-pure
methods. It is generic in the sense that different instantiations of its parameters give rise
to different static analyses which might capture complex properties of the heap at each
program point. This framework can be used to generate both possible or may static anal-
yses, as well as definite or must static analyses dealing with the property of interest. The
formalization also characterizes the sufficient requirements that the instantiated param-
eters have to satisfy in order to have a sound static analysis. The satisfiability of those
requirements entails the existence of a solution of that static analysis. Chapter 4 is based
on [59].

Chapters 5 and 6 show two novel static analyses obtained as instantiations of the
framework mentioned above. Chapter 5 introduces our Possible Reachability Analysis
of Program Variables, which is an example of a possible analysis. That chapter is based
on [61, 64]. On the other hand, Chapter 6 introduces our Definite Expression Aliasing
Analysis, a definite static analysis which determines, for each program point, and each
variable available at that point, a set of expressions that must be aliased to that variable,
for any possible execution of the program. That chapter is based on [60, 63]. Both Chap-
ters 5 and 6 show how these two novel static analyses can be obtained by instantiating the
parameters of the framework introduced in Chapter 4 and that these instantiations satisfy
the requirements specified by the framework, which entails the soundness of those static
analyses. Moreover, we show the experimental evaluations of the implementations of both
analyses inside the Julia static analyzer [4]. Chapter 7 discusses relater work, and finally,
Chapter 8 concludes.





2

Background

In this chapter, we introduce the basic algebraic notions that we are going to use in the
thesis. In Section 2.1 we describe the mathematical background, recalling the basic no-
tions of sets, functions and relations, followed by an overview of fixpoint theory [33, 88].
We also give a brief presentation of lattice theory [36,40,41], recalling the basic algebraic
ordered structures. Moreover, we formally define Galois connections and show some their
properties which will be used in the rest of this thesis. In Section 2.2 we introduce abstract
interpretation [32, 34], we characterize abstract domains in terms of Galois connections
and we describe the property of soundness.

2.1 Basic notions

Sets

Sets are one of the most fundamental concepts in mathematics and represent collections
of objects (or elements). We write x ∈ C to denote that x is an element of the set C , i.e.,
that x belongs to C . The number of elements of C is called the cardinality of C and we
denote it as |C |. Given two sets C and D , we say that:

• C is a subset of D , denoted as C ⊆ D , if every element of C belongs to D .
• C and D are equal, denoted as C = D , if C is a subset of D and viceversa, i.e.,

C ⊆ D and D ⊆ C .
• C and D are different, denoted as C , D , if there exists at least one element belonging

to one of the sets but not belonging to the the other one.

The empty set is the set without any element, and we denote it as ∅. Therefore, for every
element x we have that x < ∅ and for every set C we have that ∅ ⊆ C . The union of
two sets C and D , denoted as C ∪ D , represents the set of elements belonging to C or
to D , and is defined as C ∪ D = {x | x ∈ C ∨ x ∈ D}. The intersection of tho sets C
and D , denoted as C ∩ D , represents the sets of elements belonging to both C and D ,
and is defined as C ∩ D = {x | x ∈ C ∧ x ∈ D}. The relative complement of D in C
(also called the set-theoretic difference of C and D), denoted as C r D , represents the
set of all elements which are members of C but not members of D , and is defined as
C r D = {x | x ∈ C ∧ x < D}. The powerset ℘(C ) of a set C is defined as the set of all
possible subsets of C : ℘(C ) = {D | D ⊆ C }.
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Relations

A relation is used to describe certain properties of things and it specifies how certain
things may be connected. Let x and y be two elements of a set C , we call a non-ordered
pair the element (x , y) such that (x , y) = (y , x ), and an ordered pair the element 〈x , y〉,
such that 〈x , y〉 , 〈y , x 〉, when x , y . This notion can be extended to the one of or-
dered n-tuple of n elements x1, . . . , xn , with n ≥ 2, by 〈. . . 〈〈x1, x2〉, x3〉 . . .〉, denoted by
〈x1, . . . , xn 〉.
Definition 2.1. Given n sets {Ci }1≤i≤n . We define the cartesian product of the n sets Ci

as the set of ordered n-tuples:

C1 × . . . × Cn = {〈x1, . . . , xn 〉 | ∀1 ≤ i ≤ n .xi ∈ Ci } .

In particular, when C1 = . . . = Cn = C , we use C n to denote the cartesian product
C × . . . × C .

Given two non-empty sets C and D , any subset of the cartesian product C ×D defines
a relation between the elements of C and the elements of D . Given a relation R between
C and D , i.e., R ⊆ C ×D , and two elements x ∈ C and y ∈ D , then 〈x , y〉 ∈ R and xRy
are equivalent notations denoting that x is in relation R with y .

Definition 2.2. A binary relation ≤ on a set C is a partial order on C if it is:

• reflexive, i.e., for each x ∈ C , x ≤ x holds;
• antisymmetric, i.e., for each pair x , y ∈ C if x ≤ y and y ≤ x , then x = y;
• transitive, i.e., given x , y , z ∈ C , if x ≤ y and y ≤ z , then also x ≤ z .

Functions

Given two sets C and D , we define a function f from C to D as a relation between C and
D such that for each x ∈ C there exists exactly one y ∈ D such that 〈x , y〉 ∈ f , and in this
case we write f (x ) = y . We write f :C → D to denote a function f from C to D , where
C is called the domain of f and is denoted by dom(f ), while D is called the co-domain
of f . The set f (X ) = {f (x ) | x ∈ X } is the image of X ⊆ C under f . In particular, the
image of the domain, i.e., f(C), is called the range of f and is denoted by rng(f ). The
composition g ◦ f : C → E of two functions f : C → D and g : D → E , is defined as
g ◦ f (x ) = g(f (x )). When it is clear from the context the symbol ◦may be omitted and the
composition can simply be denoted as gf . Sometimes, function f on variable x is denoted
as λx .f (x ).

Ordered Structures

We consider some basic ordered structures which, unlike sets, embody the relations
among their elements. A set C with ordering relation ≤ is a partially ordered set, also
called poset, and it is denoted as 〈C ,≤〉. A chain is a poset 〈C ,≤〉 which satisfies the
following property: for any pair x , y ∈ C , x ≤ y or y ≤ x . In that case, ≤ is a total order
over C , but not necessarily over all sets.
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Definition 2.3. Let 〈C ,≤〉 be a poset, and let X ⊆ C . An element a is an upper bound
of X if ∀x ∈ X , x ≤ a . When a ∈ X , it is maximal. The smallest element of the set
of upper bounds of X , when it exists, is called the least upper bound (lub) of X , and it
is denoted as

∨
X . When the lub belongs to C it is called maximum (or top) and it is

usually denoted as >.

Consider the ordered sets C1 and C2 in Fig. 2.1. We observe that the set {a , b, c} has
lube and C1 has maximals f and g and no greatest element, while C2 has greatest element
g . The notions of lower bound, minimal element, greatest lower bound (glb) of a set X ,
denoted

∧
X , and minimum (or bottom), denoted by ⊥ are dually defined. If a poset has

a top (or bottom) element from the antisymmetry property of the ordering relation, it is
unique. In the following we use x∧y and x∨y to denote respectively the elements ∧{x , y}
and ∨{x , y}.

Algebraic ordered structures can be further characterized. A poset 〈C ,≤〉 is a direct set
if each non-empty finite subset of C has the least upper bound in C . A typical example
of a direct set is a chain. A complete partial order (or cpo) is a poset 〈C ,≤〉 such that
⊥ ∈ C and for each direct set D in C , there exists

∨
D . It is clear that every finite poset

is a cpo. Moreover, it holds that a poset C is a cpo if and only if each chain in C has the
least upper bound.

Definition 2.4. A poset 〈C ,≤〉, with C , ∅, is a lattice if for each x , y ∈ C , their lub
(x ∨ y) and glb x ∧ y both belong to C . A lattice is complete if for every subset S ⊆ C
we have that

∨
S ∈ C and

∧
S ∈ C .

As usual, a complete lattice C with ordering relation ≤, lub ∨, glb ∧, top element
> = ∨C and bottom element ⊥ = ∧C is denoted as 〈C ,≤,∨,∧,>,⊥〉. Often, ≤C is used
to denote the underlying ordering of poset C , and ∨C , ∧C , >C and ⊥C denote the basic
operations and elements of a complete lattice C . It is worth noting that the ordered sets
in Fig. 2.1 are not lattices since elements a and c do not have glb. The set N of natural
numbers with the standard ordering relation is a lattice where the glb and the lub of a
set are given respectively by its minimum and maximum element. However, 〈N,≤〉 is not
complete because any infinite subset of N, as for example {n ∈ N | n > 100}, has no lub.
On the other hand, an example of complete lattice often used in this thesis, is the powerset
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℘(X ), where X is any set. In this case the ordering is given by set inclusion, the glb by
the intersection of sets and the lub by the union of sets.

Definition 2.5. A sequence {xi }i∈N of elements in a poset 〈C ,≤〉 is an ascending chain
if n ≤ m ⇒ xn ≤ xm . That sequence eventually stabilizes iff ∃n0 ∈ N.∀n ∈ N.n ≥
n0 ⇒ xn = xn0 . The poset 〈C ,≤〉 satisfies the ascending chain contidition (ACC) if every
ascending chain of C eventually stabilizes.

For instance, the ordered set of even numbers {n ∈ N | n mod 2 = 0} does not satisfy
the ACC condition, since the ascending chain of even numbers does not converge.

Functions on Domains

Definition 2.6. Let 〈C ,≤C 〉 and 〈D ,≤D 〉 be two cpos, and let f : C → D be a function.
Then, we say:

• f is monotonic if for each x , y ∈ C such that x ≤C y , we have that f (x ) ≤D f (y);
• f is (Scott)-continuous if it is monotonic and if it preserves the limits of direct sets,

i.e., if for each direct set X of C , we have f (
∨

C X ) =
∨

D f (X );
• f is (completely) additive if for each subset X ⊆ C , we have that f (

∨
C X ) =∨

D f (X );
• f is (completely) co-additive if for each subset X ⊆ C , we have that f (

∧
C X ) =∧

D f (X ).

It is worth noting that an additive function preserves the limits (lub) of all subsets of
C (empty set included), meaning that an additive function is also continuous.

Fixpoints

Definition 2.7. Let f : C → C be a function on a poset C . An element x ∈ C is a fixpoint
of f if f (x ) = x . Let Fix(f ) = {x ∈ C | f (x ) = x } be the set of all fixpoints of function f .

Thanks to the ordering relation ≤C on C , we can define the least fixpoint of f , denoted
lfp≤C (f ) (or simply lfp(f ) when the ordering relation is clear from the context), as the
unique element x ∈ Fix(f ) such that for all y ∈ Fix(f ), x ≤C y . The notion of the
greatest fixpoint, denoted gfp≤C (f ) (or simply gfp(f ) when the ordering relation is clear
from the context), is dually defined. Let us recall the well-known Knaster-Tarski’s fixpoint
theorem [88].

Theorem 2.8 (Knaster-Tarski). Given a complete lattice 〈C ,≤,∨,∧,>,⊥〉 and a mono-
tone function f : C → C , then the set of fixpoints of f is a complete lattice with ordering
≤. In particular, if f is continuous, the least fixpoint can be characterized as:

lfp(f ) =
∨
n≤ω

f n (⊥),

where, given x ∈ C , the i -th power of f in x is inductively defined as follows:

f i (x ) =

x if i = 0
f (f i−1(x )) otherwise.
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Hence, the least fixpoint of a continuous function on a complete lattice can be com-
puted as the limit of the iteration sequence obtained starting from the bottom of the lattice.
Dually, the greatest fixpoint of a co-continuous function f on a complete lattice C , can be
computed staring from the top of the lattice, namely gfp(f ) =

∧
n≤ω f n (>).

Galois Connections

Another notion typically used in abstract interpretation is the Galois connection.

Definition 2.9. Two posets 〈C ,≤C 〉 and 〈D ,≤D 〉 and two monotonic functions α : C →
D and γ : D → C such that:

• for each c ∈ C , c ≤C γα(c) and
• for each d ∈ D , αγ(d ) ≤D d ,

form a Galois connection, denoted by 〈C , α, γ,D〉.
The definition of Galois connection is equivalent to the one of adjunction between C and
D , where 〈C , α, γ,D〉 is an adjunction if:

∀c ∈ C ,∀d ∈ D .α(c) ≤D d ⇔ c ≤C γ(d ).

In this case α (respectively γ) is called the right adjoint (respectively left adjoint) of γ
(respectively α).

It is possible to prove that given a Galois connection 〈C , α, γ,D〉, each function can
be uniquely determined by the other one. In fact given c ∈ C and d ∈ D we have that:

• α(c) = ∧D {y ∈ D | c ≤C γ(y)};
• γ(d ) = ∨C {x ∈ C | α(x ) ≤D d }.

Thus, in order to specify a Galois connection it is enough to provide the right or left
adjoint since the other one is uniquely determined by the above equalities. Moreover, it has
been proved that given a Galois connection 〈C , α, γ,D〉, the function α preserves existing
lub (i.e., if X ⊆ C and ∃∨

C X ∈ C then ∃∨
D α(X ) ∈ D and α(

∨
C X ) =

∨
D α(X ))

and γ preserves existing glb. In particular, when C and D are complete lattices we have
that α is additive and γ is co-additive. Thus, given two complete lattices C and D , each
additive function α : C → D or co-additive function γ : D → C determines a Galois
connection 〈C , α, γ,D〉 where:

• for each y ∈ D , γ(y) =
∨

C {x ∈ C | α(x ) ≤D y};
• for each x ∈ C , α(x ) =

∧
D {y ∈ D | x ≤C γ(y)}.

This means that, α maps each element c ∈ C in the smallest element in D whose image
under γ is greater than c with respect to ≤C . Vice versa, γ maps each element d ∈ D in
the greatest element in C whose image under α is lower than d with respect to ≤D .

2.2 Abstract Interpretation

According to a widely recognized description, "Abstract interpretation is a general theory
for approximating the semantics of discrete dynamic systems" [31]. The key idea of ab-
stract interpretation is that the behaviour of a program at different levels of abstraction is
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an approximation of its (concrete) semantics. Let S : P→ C→ C denote a formal defini-
tion of the semantics of programs in P written in a certain programming language, where
C is the semantic domain on which S is computed. Let us denote with S] : P → A → A
an abstract semantics expressing an approximation of the concrete semantics S. The def-
inition of the abstract semantics S] is given by the definition of the concrete semantics S
where the domain C has been replaced by an approximated semantic domain A in Galois
connection with C, i.e., 〈C, α, γ,A〉. Then, the abstract semantics is obtained by replacing
any function F : C→ C, used to compute S, with an approximated function F ] : A→ A
that correctly mimics the behaviour of F in the domain properties expressed by A.

Concrete and Abstract Domains

Let S~P� : C → C denote the concrete semantics S of a program P ∈ P, which is
computed on the so-called concrete domain, i.e., the poset 〈C,≤C〉 of mathematical objects
used by P . The ordering relation encodes relative precision: c1 ≤C c2 means that c1 ∈ C
is a more precise (concrete) description than c2 ∈ C. For instance, the concrete domain
for a program with integer variables is simply given by the powerset of integer numbers
ordered by subset inclusion 〈℘(Z),⊆〉.

Approximation is encoded by an abstract domain 〈A,≤A〉, which is a poset of ab-
stract values that represent some approximated properties of concrete objects from C.
The ordering relation ≤A models relative precision too: a1 ≤A a2 means that a1 is a bet-
ter approximation (i.e., more precise) than a2. For example, we may be interested in the
sign of an integer variable, so that a simple abstract domain for this property may be
Sign = {>, 0−, 0, 0+,⊥}, where > gives no sign information, 0−, 0 and 0+ state that the
integer variable is negative, zero and positive, while ⊥ represents an uninitialized variable
or an error for a variable (e.g., division by zero): thus, we have that ⊥ ≤ 0 ≤ 0− ≤ > and
⊥ ≤ 0 ≤ 0+ ≤ >, so that, in particular, the abstract values 0− and 0+ are incomparable.

We recall that the concrete domain C and the abstract domain A are related through a
Galois connection 〈C, α, γ,A〉. In this case, α : C → A is called the abstraction map and
γ : A → C is called the concretization map. Moreover, we say that A is an abstraction
(or abstract interpretation) of C, and that C is a concretization of A. The abstraction and
concretization maps express the meaning of the abstraction process: α(c) is the abstract
representation of c, and γ(a) represents the concrete meaning of a . Thus, α(c) ≤A a
and, equivalently, c ≤C γ(a) mean that a is a sound approximation in A of c. Galois
connections ensure that α(c) actually provides the best possible approximation in the
abstract domain A of the concrete value c ∈ C. In the abstract domain Sign , for example,
we have that α({1, 5}) = 0− while α({1,+1}) = >.

Abstract domains can be compared with respect to their relative degree of precision:
if A1 and A2 are both abstract domains of a common concrete domain C, we have that A1
is more precise than A2, when for any a2 ∈ A2 there exists a1 ∈ A1 such that γ1(a1) =

γ2(a2), i.e., when γ2(A2) ⊆ γ1(A1). This ordering relation on the set of all possible abstract
domains defines the lattice of abstract interpretations.

Soundness

In abstract interpretation, a concrete semantic operation is formalized as any (possibly
n-ary) function f : C → C on the concrete domain C. For example, an integer squaring
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operation sq on the concrete domain ℘(Z) is given by sq(X ) = {x 2 ∈ Z | x ∈ X }, while
an integer increment (by one) operation inc is given by inc(X ) = {x + 1 ∈ Z | x ∈ X }. A
concrete semantic operation must be approximated on some abstract domain A by a sound
abstract operation f ] : A→ A. This means that f ] must be a correct approximation of f in
A: for any c ∈ C and a ∈ A, if a approximates c then f ](a) must approximate f (c). This
is therefore encoded by the condition:

∀c ∈ C.α(f (c)) ≤A f ](α(c)).

For example, a sound approximation sq ] of sq on the abstract domain Sign can be defined
as follows:

sq ](a) =


⊥ if a = ⊥
0 if a = 0
0+ if a ∈ {0−, 0+}
> if a = >,

while a correct approximation inc] of inc on Sign is given by:

inc](a) =


⊥ if a = ⊥
0+ if a ∈ {0, 0+}
> if a ∈ {0−,>}.

Soundness can be also equivalently stated in terms of the concretization map:

∀a ∈ A.f (γ(a)) ≤C γ(f ](a)).

Given a concrete operation f : C → C, we can order the correct approximations of f
with respect to 〈C, α, γ,A〉: let f ]1 and f ]2 be two correct approximations of f in A, then f ]1
is a better approximation of f ]2 if for every a ∈ A, f ]1 (a) ≤A f ]2 (a). Hence, if f ]1 is better
than f ]2 , it means that, given the same input, the output of f ]1 is more precise than the one
of f ]2 . It is well known that, given a concrete function f : C→ C and a Galois connection
〈C, α, γ,A〉, there exists the best correct approximation of f on A. Namely, it is possible
to show that α ◦ f ◦ γ : A → A is a correct approximation of f on A, and that for every
correct approximation f ] of f we have that:

∀a ∈ A.α(f (γ(a))) ≤A f ](a).

It is worth noting that the definition of the best correct approximation only depends on the
structure of the underlying abstract domain, namely the best correct approximation of any
concrete function is uniquely determined by the Galois connection 〈C, α, γ,A〉. This is a
theoretical result since, very often, in the real-life settings the best correct approximation
is not computable, so we accept some other, less precise, but still sound approximations.

Abstract Semantics

One of the most important applications of abstract interpretation theory is the systematic
design of approximate semantics of programs. Consider a Galois connection 〈C, α, γ,A〉
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and the concrete semantics S of programs P computed on the concrete domain C. As
usual, the semantics obtained by replacing C with one of its abstractions A, and each
function F defined on C with a corresponding correct approximation F ] on A, is called
the abstract semantics. The abstract semantics S], as well as abstract functions, has to
be correct with respect to the concrete semantics S, that is for every program P ∈ P,
α(S~P�) has to be an approximation of S]~P�. Let us consider the concrete semantics
S~P� of program P given, as usual, in fixpoint form S~P� = lfp≤C

F (P ), where the
semantic transformer F : C → C is monotonic and defined on the concrete domain
of objects C. The abstract semantics S]~P� can be computed as lfp≤A

F ], where F ] =

α ◦ F ◦ γ is given by the best correct approximation of F in A. In this case soundness
is guaranteed, i.e., α(lfp≤C

(F )) ≤A lfp≤A
F ], or equivalently α(S~P�) ≤A S]~P�. Thus,

a correct approximation of the concrete semantics S can be systematically derived by
computing the least fixpoint of the best correct approximation of F on the abstract domain
A. The following well known result (see e.g. [20,34]) states that if the monotonic function
F : C → C is sound with respect to an abstract domain A, then the abstract semantics is
sound as well.

Theorem 2.10 (Fixpoint transfer). Given a Galois connection 〈C, α, γ,A〉 and a con-
crete monotonic function F : C→ C, if α ◦ F ≤A F ] ◦ α, then α(lfp≤C

F ) ≤A lfp≤A
F ].
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Syntax and Semantics of a Java bytecode-like language

This chapter formally introduces the operational semantics of a Java bytecode-like lan-
guage inspired by its standard informal semantics in [52]. This is the same semantics
used in [63, 64, 86]. A similar formalization, but in a denotational form, has been used
in [69, 84, 87]. Another representation of bytecode instructions in an operational setting,
similar to ours, has been used in [17], although, there, Prolog clauses encode the graph,
while we work directly on it.

There exist some other formal semantics for Java bytecode, but this choice has been
dictated by the desire of a semantics suitable for abstract interpretation: there is only one
concrete domain to abstract (the domain of states) while the bytecode instructions are
always state transformers, even in the case of the conditional bytecode instructions and
those dealing with dynamic dispatch and exception handling. This is exactly the purpose
of the semantics in [86] whose form simplifies the definition of the abstract interpretation
and its proof of soundness.

This formalization analyzes programs at bytecode level for several reasons:

• there is a small number of bytecode instructions, compared to varieties of source state-
ments;

• bytecode lacks complexities such as inner classes;
• implementations of our analyses are at bytecode level as well, which brings formal-

ism, implementation, and correctness proofs closer.

In order to formally define the operational semantics of the analyzed programs, Sec-
tion 3.1 introduces types and values supported by this formalization, Section 3.2 intro-
duces the notion of frame and type environment, widely used in the remainder of this
thesis, and Section 3.3 introduces the bytecode instructions of the target language, rep-
resenting an abstraction of Java virtual machine’s bytecode instructions. The notion of
state, semantics of bytecode instructions as well as the operational semantics of the target
language are introduced in Section 3.4.

3.1 Types and Values

Like both the Java programming language and the Java virtual machine, this formalization
deals with two kinds of types: primitive types and reference types. Consequently, there
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are two kinds of values that can be stored inside the program variables, and that can be
used for the computations inside the program: primitive values and reference values. This
section introduces the primitive and the reference types supported by the target language.

The only supported primitive type is int, since this thesis is mainly concerned with
the memory-related static analyses of Java bytecode programs. The other primitive types
have the same behavior as the int type when it is dealt with the memory-related properties
and therefore, for simplicity, they are not considered here1.

For simplicity, the only reference type in this formalization are classes containing
instance fields and instance methods only and array types2. It is worth noting that, on
the other hand, the implementation of different analyses obtained from this framework
handles all of the Java virtual machine’s primitive and reference types.

The following definition formally defines the primitive and reference types the present
formalization deals with, as well as the partial ordering among these types.

Definition 3.1 (Types). Let K be the set the set of classes of a program. Every class has
at most one direct superclass and an arbitrary number of direct subclasses. Let A be the
set of all the array types of the program. A type is an element of T = {int} ∪ K ∪ A. A
class κ ∈ K has instance fields κ.f : t (a field f of type t ∈ T defined in κ), where κ and t
are often omitted. We let F(κ) = {κ′.f : t′ | κ ≤ κ′} denote the fields defined in κ or in any
of its superclasses. A class κ ∈ K has instance methods κ.m(~t): t (a method m , defined in
κ, with parameters of type ~t, returning a value of type t ∈ T ∪ {void}), where κ, ~t, and t
are often omitted. Constructors are methods with the special name init, which return void.
Elements of an array type α = t[ ] are subtypes of t.

The set of types are ordered by a partial order ≤ introduced in the following definition.

Definition 3.2 (Partial ordering). Given two types t, t′ ∈ T, we say that t is a subtype of
t′, or equivalently that t′ is a supertype of t and we denote it by t ≤ t′ if one of the following
conditions is satisfied:

• t = t′ or
• t, t′ ∈ K and t is a subclass of t′ or
• t = t1[ ], t′ = t′1[ ] ∈ A, and t1 ≤ t′1.

In the following we show some interesting properties of the subtype relation ≤. These
properties will be used in the following chapters. First of all, we show that two supertypes
of the same type must be related through ≤.

1 According to [52], the primitive data types supported by the Java virtual machine are the numeric
types, which may be integral and floating-point, the boolean type and the returnAddress type.
The integral types are byte, short, int, long, whose values are respectively 8-bit, 16-bit, 32-bit
and 64-bit signed two’s-complement integers. The floating-point types are float and double,
whose values are taken from the float and the double value set respectively. The values of the
boolean type are true and false, while the values of the returnAddress type are pointers to
the operation codes (opcodes) of Java virtual machine instructions.

2 The reference types supported by the Java virtual machine are class types, array types and in-
terface types. The values of these types are, respectively, references to dynamically created class
instances, arrays and class instances or arrays that implement interfaces. Values of type reference
can be thought of as pointers to objects. There exists another reference value, the special null
reference, pointing to no object. This value has no run-time type and can be cast to any reference
type. It is also the default value of all reference types.
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Lemma 3.3. Consider a type t ∈ T and let t′ and t′′ be two distinct supertypes of t, i.e.,
t ≤ t′, t ≤ t′′ and t′ , t′′. Then at least one of the following relations holds: t′ ≤ t′′ or
t′′ ≤ t′.

Proof. We distinguish the following cases:

• If t = int then t′ = t′′ = int which falsifies the hypothesis t′ , t′′.
• If t, t′ and t′′ are classes, then since every class has at most one direct superclass

(Definition 3.1), by starting at t and going up through the superclass chain, one must
find t′ and then t′′ or t′′ and then t′. In the latter case we have t′ ≤ t′′, and in the former
case t′′ ≤ t′.

• If t = t1 [ ] . . . [ ]︸   ︷︷   ︸
n

, t′ = t′1 [ ] . . . [ ]︸   ︷︷   ︸
n

, t′′ = t′′1 [ ] . . . [ ]︸   ︷︷   ︸
n

∈ A, where t1, t′1, t
′′
1 ∈ K and t′1 , t′′1 .

Since t ≤ t′ and t ≤ t′′ we have, by Definition 3.2, t1 ≤ t′1 and t1 ≤ t′′1 . We have already
shown that in this case t′1 ≤ t′′1 or t′′1 ≤ t′1 holds. Again by Definition 3.2, we obtain
that also t′ ≤ t′′ or t′′ ≤ t′ holds.

�

We say that two types are compatible if they are related through ≤.

Definition 3.4 (Compatible types). We define a function compatible : T → ℘(T) map-
ping every type t ∈ T to the set of its compatible types:

compatible(t) = {t′ | t ≤ t′ ∨ t′ ≤ t}.

The following lemma shows that if a type is compatible with another one, then every
superclass of the former is compatible with the latter as well.

Lemma 3.5. Let t, t′, t′′ ∈ T with t′ ≤ t′′. If t′ ∈ compatible(t) then t′′ ∈ compatible(t).

Proof. Since t′ ∈ compatible(t) we have two cases:

• t ≤ t′. Hence t ≤ t′′ and t′′ ∈ compatible(t);
• t′ ≤ t. Since t′ ≤ t′′, by Lemma 3.3 we have t ≤ t′′ or t′′ ≤ t, i.e., t′′ ∈ compatible(t).

�

We show that the function compatible is monotonic.

Lemma 3.6. Let t′, t′′ ∈ T with t′ ≤ t′′. Then compatible(t′) ⊆ compatible(t′′).

Proof. Let t ∈ compatible(t′). We have two cases:

• t ≤ t′. Hence t ≤ t′′ and t ∈ compatible(t′′);
• t′ ≤ t. Since t′ ≤ t′′, by Lemma 3.3 we have t ≤ t′′ or t′′ ≤ t i.e., t ∈ compatible(t′′).

�
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3.2 Frames

In this section we define a notion of frame. Frames are used to store data and partial
results, to handle methods’ return values and to manage exceptions. Any time a method is
invoked, a new frame is created, and it is destroyed at the end of the method’s execution,
whether it is normal or exceptional end. Only one frame can be active at any point of
the program’s execution. That frame concerns the method which is being executed and it
ceases to be active if it invokes another method or terminates, normally or exceptionally.
In the case the method terminates, it passes back the result to the frame from which it has
been invoked, if any, reactivate that frame, and it is definitely deactivated.

Each frame contains its own array of local variables L and its own operand stack
S , whose sizes are determined at compile-time. Local variables (L = {l0, l1, . . .}) are ad-
dressed by indexing: the index of the first local variable is zero. The Java virtual machine
uses local variables to pass parameters on method invocation. When an instance method is
invoked, local variable 0 (l0) is always used to pass a reference to the object on which the
instance method is being invoked (this in the Java programming language). Any parame-
ters are subsequently passed in consecutive local variables starting from local variable 1
(l1). Operand stack is a LIFO stack, which is empty when its corresponding frame is cre-
ated. Some instructions of our target Java bytecode-like language load constants or values
from the local variables or from the fields onto the operand stack, while some other in-
structions take operands from the operand stack, operate on them and push the result back
onto the operand stack. It is also used to prepare parameters to be passed to methods and
to receive method results.

At any point of execution, we know the exact length of both array of local variables
and operand stack. Moreover, a standard algorithm [52] infers their static types. These
static types are returned by the type environment map.

Definition 3.7 (Type environment). Each program point is enriched with a type environ-
ment τ, i.e., a map from all the variables available at that point (dom(τ)) to their static
types. We distinguish between local variables L = {l0, . . .} and operand stack elements
S = {s0, . . .}. For simplicity, we write V = {v0, . . . , v|L|+|S |−1}, where vr = lr if 0 ≤ r < |L|
and vr = sr−|L| if |L| ≤ r < |L| + |S |. Moreover, we let |τ| denote |dom(τ)| = |L| + |S | and
we let T denote the set of all type environments.

3.3 Syntax

Instructions of our Java bytecode-like target language are called bytecode instructions.
They consist of an opcode of the actual instruction, representable by one byte, followed
by zero or more parameters. These parameters might be the arguments passed to the in-
struction itself, data that the instruction should operate on, or just static types of the pa-
rameters. In Fig. 3.1 we give the list of all the bytecode instructions of our target language
divided in 7 categories.

3.3.1 Load and Store Instructions

The load and store instructions transfer values between the local variables and the operand
stack of a frame:
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load and store instructions: const x , load k t, store k t
arithmetic instructions: inc k x , add, sub,mul, div, rem

object creation and manipulation instructions: new κ, getfield f , putfield f
array creation and manipulation instructions: arraynew α, arraylength α,

arrayload α, arraystore α
operand stack management instructions: dup t

control transfer instructions: ifeq t, ifne t
method invocation and return instructions: call, return void, return t

exception handling instructions: throw κ, catch, exception_is K

Fig. 3.1. Instruction set summary

• bytecode instruction load k t loads the local variable lk whose static type is t onto the
operand stack;

• bytecode instruction store k t stores a value from the operand stack whose static type
is t into the local variable lk ;

• bytecode const x loads an integer constant or null onto the operand stack.

These bytecode instructions abstract whole classes of Java bytecode instructions such
as iload, iload_〈n〉, aload, aload_〈n〉, istore, istore_〈n〉, astore, astore_〈n〉, bipush,
sipush, iconst_〈i〉, aconst_null.

3.3.2 Arithmetic Instructions

The arithmetical bytecode instructions supported by our target language are functions
which pop two topmost integer values from the operand stack, apply the corresponding
arithmetic operation on them, and push back the result on the operand stack. They are:

• add, representing addition;
• sub, representing subtraction;
• mul, representing multiplication;
• div, representing division;
• rem, representing remainder operation;
• inc k x , representing incrementation of the value from the local variable lk by x .

These bytecode instructions correspond to the following Java bytecode instructions:
iadd, isub, imul, idiv, irem and iinc.

3.3.3 Object Creation and Manipulation Instructions

Our target languages supports the following object creation and manipulation bytecode
instructions:

• bytecode instruction new κ creates a new instance of class κ;
• bytecode instructions getfield f reads a value from the field f belonging to the class κ

and whose static type is t;
• bytecode instructions putfield f writes a value into the field f belonging to the class κ

and whose static type is t.

These bytecode instructions correspond to the following Java bytecode instructions:
new, getfield, putfield.
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3.3.4 Array Creation and Manipulation Instructions

Our target languages supports the following array creation and manipulation bytecode
instructions:

• bytecode instruction arraynew α creates a new array of array type α;
• bytecode instructions arraylength α puts the length of the array of array type α onto

the operand stack;
• bytecode instructions arrayload α reads the value from the k -th element of an array

of array type α, where an integer k and a reference to the array are popped from the
operand stack, and puts that value onto the operand stack;

• bytecode instructions arraystore α pops a value from the operand stack and writes it
into the k -th element of an array of array type α, where an integer k and a reference
to the array are popped from the operand stack.

3.3.5 Operand Stack Management Instructions

The only operand stack management bytecode instruction supported by our target lan-
guage is dup t which duplicates the topmost value of the operand stack.

3.3.6 Control Transfer Instructions

The control transfer bytecode instructions conditionally cause the Java virtual machine to
continue execution with an instruction other than the one following the control transfer
instruction. Our formalization supports the following bytecode instructions:

• ifeq t which pops a value from the operand stack whose static type is t and controls
whether it is equal to the default value for that type;

• ifne t which pops a value from the operand stack whose static type is t and controls
whether it is different from the default value for that type.

3.3.7 Method Invocation and Return Instructions

In our formalization, we use the bytecode instruction call to invoke an instance method of
an object, dispatching on the static type of the object. This is the normal method dispatch
in the Java programming language.

There are two types of the method return instructions:

• returnt, which returns a value whose static type is t from the invoked instance method;
• return void, which is used to return from the instance methods declared to be void and

from the class initialization methods (constructors).

3.3.8 Exception Handling Instructions

In our formalization, an exception is thrown programmatically using the throwκ bytecode
instruction. Exceptions can also be thrown by various other bytecode instructions if they
detect an abnormal condition.
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1 public class L i s t {
2 public Object head ;
3 public L i s t t a i l ;
4

5 public L i s t ( ) {
6 head = t a i l = null ;
7 }
8

9 public L i s t ( Object head , L i s t t a i l ) {
10 this . head = head ;
11 this . t a i l = t a i l ;
12 }
13

14 public Object g e tF i r s t ( ) {
15 return head ;
16 }
17

18 public Object removeFirst ( ) {
19 Object r e s u l t = head ;
20 i f ( t a i l != null ) {
21 head = t a i l . head ;
22 t a i l = t a i l . t a i l ;
23 } else {
24 head = null ;
25 }
26 return r e s u l t ;
27 }
28

29 public stat ic void main ( St r ing [ ] a rgs ) {
30 . . .
31 int n = In t eg e r . valueOf ( args [ 0 ] ) ;
32 . . .
33 L i s t l i s t = new L i s t ( ) ;
34 for ( int i = 1 ; i <= n ; i++) {
35 Object o = new Object ( ) ;
36 L i s t tmp = new L i s t ( o , l i s t . t a i l ) ;
37 l i s t . t a i l = tmp ;
38 }
39 }
40 }

Fig. 3.2. A list of objects

Bytecode catch starts an exception handler. It takes an exceptional state and trans-
forms it into a normal one, subsequently used by the handler. After catch, bytecode
exception_is K can be used to select an appropriate handler depending on the run-time
class of the top of the stack: it filters those states whose top of the stack is an instance of
a class in K ⊆ K.
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3.3.9 Control Flow Graph

We analyze bytecode preprocessed into a control flow graph (CFG), i.e., a directed graph
of basic blocks, with no jumps inside them. We graphically write

ins
rest
→
→

b1
· · ·
bm

to denote a block of code starting with a bytecode instruction ins, possibly followed by a
sequence of instructions rest and linked to m subsequent blocks b1, . . . , bm .

Example 3.8. Fig. 3.3 shows the basic blocks of the second constructor in Fig. 3.2 (lines
9-12). There is a branch at the implicit call to the constructor of java.lang.Object, that
might throw an exception (like every call). If this happens, the exception is first caught
and then re-thrown to the caller of the constructor. Otherwise, the execution continues
with 2 blocks storing the formal parameters (locals 1 and 2) into the fields of this (held
in l0) and then returns. Note that each bytecode instruction except return and throw has
always one or more immediate successors, while return and throw are placed at the end
of a method or constructor and have no successors. ut

load 0 List
call java.lang.Object.〈init〉() : void

load 0 List
load 1 Object

putfield List.head : java.lang.Object

load 0 List
load 2 List

putfield List.tail : List

return void

catch
throw java.lang.Throwable

Fig. 3.3. Our representation of the code of the second constructor in Fig. 3.2

Example 3.9. In Fig. 3.4 a) we show a simple Java method get whose parameters are
an array a of type int[ ] and an integer k , and which returns a[k ] if no exception oc-
curs. This method handles two possible exceptions: NullPossibleException (NPE for
short) when a is null and IndexOutOfBoundsException (IOOBE for short) when k is
greater or equal to a’s length. These two exceptions are not subclasses one of another,
i.e., neither NPE ≤ IOOBE nor NPE ≤ IOOBE hold. In Fig. 3.4 b) we show our representa-
tion of the get method. There are two separate blocks handling the two exceptions: one
starting with exception_is NPE handling the case of NPE and the other one starting with
exception_is IOOBE handling the case of IOOBE. ut
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public stat ic int get ( int [ ] a , int k ) {
try {
return a [ k ] ;

} catch ( Nul lPo interExcept ion e1 ) {
return −1;

} catch ( IndexOutOfBoundsException e2 ) {
return −2;

}
}

a)

load 0 int[ ]

load 1 int

arrayload int[ ]

return int

catch

exception is NPE

store 2 NPE

const − 1

return int

exception is IOOBE

store 2 IOOBE

const − 2

return int

b)

Fig. 3.4. a) A simple Java method get handling two exceptions; b) Our representation of get, where
NPE and IOOBE represent classes NullPointerExcepiton and IndexOutOfBoundsException
respectively

3.4 Semantics

Our semantics keeps a state that maps program variables to values. An activation stack of
states models the method call mechanism, exactly as in the actual implementation of the
Java virtual machine [52].

3.4.1 States

Definition 3.10 (Values). The set of all possible values that our formalization supports is
V = Z ∪ L ∪ {null}, where for simplicity we use Z instead of 32-bit two’s-complement
integers as in the actual Java virtual machine (this choice is irrelevant in this thesis) and
where L is an infinite set of memory locations.

Objects are particular instances of classes. The way we represent them in this thesis
is explained by the following definition.

Definition 3.11 (Object representation). Given an object o, its type is determined by
invoking o.type, i.e., we can state that o is an instance of o.type. Each object o contains
its internal environment o.φ that maps every field available from that object κ′.f : t′ ∈
F(o.type) into its value, denoted by (o.φ)(κ′.f : t′). Therefore, the domain of o.φ, dom(o.φ)
is F(o.type), while its range rng(o.φ) is the set composed of the values of all the fields
available in o.

Arrays are particular instances of array types. The way we represent them in this thesis
is explained by the following definition.
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Definition 3.12 (Array representation). Given an array a , its type is determined by in-
voking a .type, i.e., we can state that a is an instance of a .type. The length of a can be
obtained by invoking a .length. Each array a contains an internal environment a .φ that
maps each index 0 ≤ i < a .length into the value of the element corresponding to that
index, (a .φ)(i ). Therefore, the domain of a .φ, dom(a .φ) is {0, . . . , a .length−1}, while its
range rng(a .φ) is the set composed of the values of all the elements of a .

We are interested in capturing the current configuration of the program under analysis
at each point of its execution. These program configurations are specified by the notion of
state.

Definition 3.13 (State). A state σ over a type environment τ ∈ T is a pair 〈〈l ‖ s〉, µ〉
where l is an array of values memorized in the local variables L of dom(τ), s is a stack of
values of the variables from the operand stack S in dom(τ), which grows leftwards, and
µ is a memory, or heap, that binds locations to objects. The empty stack is denoted by ε.
We often use another representation of states: 〈ρ, µ〉, where an environment ρ maps each
lk ∈ L to its value l[k ] and each sk ∈ S to its value s[k ]. The set of states is Ξ. We write
Ξτ when we want to fix the type environment τ.

We assume that variables hold values consistent with their static types, i.e., states are
well-typed.

Definition 3.14 (Consistent state). We say that a value v is consistent with a type t in
〈ρ, µ〉 and we denote it by v v〈ρ,µ〉 t if one of the following conditions holds:

• v ∈ Z and t = int or
• v = null and t ∈ K ∪ A or
• v ∈ L, t ∈ K and µ(v ).type ≤ t or
• v ∈ L, t ∈ A and µ(v ).type ≤ t.

We write v *〈ρ,µ〉 t to denote that v is not consistent with t in 〈ρ, µ〉. In a state 〈ρ, µ〉
over τ, we require that ρ(v ) is consistent with the type τ(v ) for any variable v ∈ dom(τ)
available at that point, that for every object o ∈ rng(µ) available in the memory in that
moment, and every field κ′.f : t′ ∈ F(o.type) available in that object, the value memorized
in that field, (o.φ)(κ′.f : t′), is consistent with its static type t′ and that for every array
a ∈ rng(µ) available in memory in that moment, values in rng(a .φ) are consistent with t′,
where a .type = t′[ ].

The Java virtual machine(JVM), as well as our formalization, supports exceptions.
Therefore, we distinguish normal states Ξ arising during the normal execution of a piece
of code, from exceptional states Ξ arising just after a bytecode that throws an exception.
The operand stack of the states in Ξ always has exactly 1 variable holding a location
bound to the thrown exception object. When we denote a state by σ, we do not specify
whether it is normal or exceptional. If we want to stress that fact, we write 〈〈l ‖ s〉, µ〉 for
a normal state and 〈〈l ‖ s〉, µ〉 for an exceptional state.

Definition 3.15 (Java virtual machine state). The set of Java virtual machine states
(from now on just states) in type environment τ ∈ T is Στ = Ξτ ∪ Ξτ′ , where τ′ is τ
with the operand stack containing only one variable (s0) whose static type is a subclass
of Throwable, i.e., τ′(s0) ≤ Throwable.



3.4 Semantics 29

l1

µ
ρ

l2 l3 l4
`2 2 `3 `4

List

o2

head tail
null

Student
id
1873

o1
`1

List

o4

head tail
Student

o3
`3

1878

`2 `4

id
l5
`5

Student[ ]

a1

0 1

`5

Fig. 3.5. A JVM state σ = 〈ρ, µ〉

Example 3.16. Let Student be a class containing one instance field id of type int. Con-
sider the following type environment:

τ = [l1 7→ List; l2 7→ int; l3 7→ Student; l4 7→ List; l5 7→ Student[ ]],

where List is the class defined in Fig. 3.2. In Fig. 3.5 we show a state σ = 〈ρ, µ〉 ∈ Στ.
Environment ρ maps local variables l1, l2, l3 and l4 to values `2 ∈ L, 2 ∈ Z, `3 ∈ L,
`4 ∈ L and `5 ∈ L respectively. Memory µ maps locations `2 and `4 to objects o2 and
o4 of class List, location `3 to object o3 of class Student and location `5 to array a1 of
array type Student[ ]. Objects are represented as boxes with a class tag and an internal
environment mapping fields to values, while arrays are represented as boxes with an array
type tag and an internal environment mapping indexes to values. For instance, fields head
and tail of object o4 contain locations `3 and `2 respectively, while indexes 0 and 1 of
array a1 contain locations `3 and `1 respectively, and its length is 2. ut

3.4.2 Semantics of Bytecode Instructions

The semantics of a bytecode instruction ins is a partial map ins : Στ → Στ′ from initial
to final states. The number and type of local variables and stack elements at each pro-
gram point are statically known and specified by the type environment available at that
point [52]. In the following we silently assume that bytecode instructions are run in a
program point with type environment τ ∈ T such that dom(τ) = L ∪ S , where L and S
are the array of local variables and the operand stack, and let i = |L| and j = |S | be the
cardinalities of these sets. Moreover, we suppose that the semantics is undefined for input
states of wrong sizes or types, as it is required in [52]. Fig. 3.6 defines the semantics of
the bytecode instructions supported by our formalization and introduced in Section 3.3.
We discuss it below.

const x is the semantics of the bytecode instruction const x . It pushes a value x ∈ Z ∪
{null} onto the operand stack. Since 〈〈l ‖ s〉, µ〉 (where s might be ε) is not underlined,
const x is undefined on exceptional states, i.e, constx is run only when the Java virtual
machine is in a normal state.

load k t is the semantics of the bytecode instruction load k t. It pushes onto the stack the
value memorized into the local variable lk , which must exist and have type t.
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const x = λ〈〈l ‖ s〉, µ〉 . 〈〈l ‖ x ::s〉, µ〉
load k t = λ〈〈l ‖ s〉, µ〉 . 〈〈l ‖ l[k ] ::s〉, µ〉
store k t = λ〈〈l ‖ t ::s〉, µ〉 . 〈〈l[k 7→ t] ‖ s〉, µ〉

add = λ〈〈l ‖ t1 :: t2 ::s〉, µ〉 . 〈〈l ‖ t1 + t2 ::s〉, µ〉
sub = λ〈〈l ‖ t1 :: t2 :: s〉, µ〉 . 〈〈l ‖ t1 − t2 :: s〉, µ〉
mul = λ〈〈l ‖ t1 :: t2 :: s〉, µ〉 . 〈〈l ‖ t1 ∗ t2 :: s〉, µ〉
div = λ〈〈l ‖ t1 :: t2 :: s〉, µ〉 .

{ 〈〈l ‖ t2/t1〉, µ〉 if t1 , 0
〈〈l ‖ `〉, µ[` 7→ ae]〉 otherwise

rem = λ〈〈l ‖ t1 :: t2 :: s〉, µ〉 .
{ 〈〈l ‖ t2%t1〉, µ〉 if t1 , 0
〈〈l ‖ `〉, µ[` 7→ ae]〉 otherwise

inc k x = λ〈〈l ‖ s〉, µ〉 . 〈〈l[k 7→ l[k ] + x ] ‖ s〉, µ〉

new κ = λ〈〈l ‖ s〉, µ〉 .
{ 〈〈l ‖ ` ::s〉, µ[` 7→ o]〉 if enough memory
〈〈l ‖ `〉, µ[` 7→ oome]〉 otherwise

getfield κ.f : t = λ〈〈l ‖ r ::s〉, µ〉 .
{ 〈〈l ‖ (µ(r ).φ)(f ) ::s〉, µ〉 if r , null
〈〈l ‖ `〉, µ[` 7→ npe]〉 otherwise

putfield κ.f : t = λ〈〈l ‖ t ::r ::s〉, µ〉 .
{ 〈〈l ‖ s〉, µ[(µ(r ).φ)(f ) 7→ t]〉 if r , null
〈〈l ‖ `〉, µ[` 7→ npe]〉 otherwise

arraynew α = λ〈〈l ‖ n ::s〉, µ〉 .
{ 〈〈l ‖ ` ::s〉, µ[` 7→ a]〉 if n ≥ 0
〈〈l ‖ `〉, µ[` 7→ nase]〉 otherwise

arraylength α = λ〈〈l ‖ r ::s〉, µ〉 .
{ 〈〈l ‖ µ(r ).length ::s〉, µ〉 if r , null
〈〈l ‖ `〉, µ[` 7→ npe]〉 otherwise

arrayload α = λ〈〈l ‖ k ::r ::s〉, µ〉 .


〈〈l ‖ `〉, µ[` 7→ obe]〉 if k ≥µ(r ).length or k <0
〈〈l ‖ `〉, µ[` 7→ npe]〉 if r = null

〈〈l ‖ (µ(r ).φ)(k ) ::s〉, µ〉 otherwise

arraystore α = λ〈〈l ‖ v :: k :: r :: s〉, µ〉 .



〈〈l ‖ `〉, µ[` 7→ npe]〉 if r = null

〈〈l ‖ `〉, µ[` 7→ obe]〉 if k ≥µ(r ).length or k <0
〈〈l ‖ `〉, µ[` 7→ ase]〉 if v ∈ L and

µ(v ).type[] 6≤ µ(r ).type
〈〈l ‖ s〉, µ[(µ(r ).φ)(k ) 7→ v ]〉 otherwise

dup t = λ〈〈l ‖ t ::s〉, µ〉 . 〈〈l ‖ t :: t ::s〉, µ〉

ifeq t = λ〈〈l ‖ t ::s〉, µ〉 .
{ 〈〈l ‖ s〉, µ〉 if t ∈ {0, null}

undefined otherwise

ifne t = λ〈〈l ‖ t ::s〉, µ〉 .
{ 〈〈l ‖ s〉, µ〉 if t < {0, null}

undefined otherwise

return void = λ〈〈l ‖ s〉, µ〉 . 〈〈l ‖ ε〉, µ〉
return t = λ〈〈l ‖ t ::s〉, µ〉 . 〈〈l ‖ t〉, µ〉, where t , void

throw κ = λ〈〈l ‖ t ::s〉, µ〉 .

 〈〈l ‖ t〉, µ〉 if t , null
〈〈l ‖ `〉, µ[` 7→ npe]〉 otherwise

catch = λ〈〈l ‖ t〉, µ〉 . 〈〈l ‖ t〉, µ〉
exception_is K = λ〈〈l ‖ t〉, µ〉 .

{ 〈〈l ‖ t〉, µ〉 if t ∈ L and µ(t).type ∈ K
undefined otherwise

Fig. 3.6. Semantics of bytecode instructions: instructions are functions mapping states to states.
` ∈ L is a fresh location. o is a new created object whose fields are initialized to their default values.
a is a new created array whose elements are initialized to their default values. ae , oome , npe , nase ,
obe and ase are respectively new instances of the following exceptions: ArithmeticException,
OutOfMemoryError, NullPointerException, NegativeArraySizeException,
ArrayIndexOutOfBoundsException and ArrayStoreException
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store k t is the semantics of the bytecode instruction store k t. It pops the topmost value
from the operand stack and writes it into the local variable lk . The topmost value must
exist and have type t, and k must be a valid index of the array of local variables.

add is the semantics of the bytecode instruction add. It requires that two topmost values
of the operand stack must be of type int. These values are popped from the operand
stack, their sum is calculated and is pushed back onto the operand stack.

sub is the semantics of the bytecode instruction sub. It requires that two topmost values
of the operand stack must be of type int. These values are popped from the operand
stack, their difference is calculated and is pushed back onto the operand stack.

mul is the semantics of the bytecode instruction mul. It requires that two topmost values
of the operand stack must be of type int. These values are popped from the operand
stack, their product is calculated and is pushed back onto the operand stack.

div is the semantics of the bytecode instruction div. It requires that two topmost val-
ues of the operand stack must be of type int. These values are popped from the
operand stack, their quotient is calculated and is pushed back onto the operand stack.
It is worth noting that the first (second) topmost value from the operand stack is
the divisor (dividend) of the operation. If the divisor is equal to 0, div throws an
ArithmeticException.

rem is the semantics of the bytecode instruction rem. It requires that two topmost values
of the operand stack must be of type int. These values are popped from the operand
stack, the reminder of their division is calculated and is pushed back onto the operand
stack. It is worth noting that the first (second) topmost value from the operand stack
is the divisor (dividend) of the operation. If the divisor is equal to 0, rem throws an
ArithmeticException.

inc k x is the semantics of the bytecode instruction inc k x . It requires that k is a valid
index of the array of local variables and that the local variable lk is of type int. Then,
its value is incremented by x ∈ Z and written back in lk .

new κ is the semantics of the bytecode instruction new κ. It pushes onto the operand
stack a reference to a new object o of class κ, whose fields are initialized to a default
value: null for reference fields, and 0 for integer fields [52]. If the automatic storage
manager was unable to reclaim enough memory to satisfy an object creation request,
new κ throws an OutOfMemoryException.

getfield κ.f : t is the semantics of the bytecode instruction getfield f . It requires that the
topmost value from the operand stack is a reference to an object whose class is a sub-
class of κ, and which contains a field f of type t. Under these hypotheses, the topmost
value is popped from the operand stack, the value memorized in the field f of the
corresponding object is read and written back onto the operand stack. If the topmost
value of the operand stack is null, getfield κ.f : t throws a NullPointerException.

putfield κ.f : t is the semantics of the bytecode instruction putfield f . It requires that the
topmost value from the operand stack is consistent with a subtype of t and that the
second topmost value from the operand stack is a reference to an object whose class
is a subclass of κ and which contains a field f of type t. Under these hypotheses, the
two topmost values are popped from the operand stack and the first one is written in
the field f of the object corresponding to the second one. If the second topmost value
of the operand stack is null, putfield κ.f : t throws a NullPointerException.

arraynew α is the semantics of the bytecode instruction arraynew α. It pops the top-
most element from the operand stack, which is an integer value, creates a new ar-
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ray of array type α = t[ ] and pushes back onto the operand stack a reference to
the new array. The length of the new created object is equal to the positive integer
value popped from the stack. If that value is a negative number, arraynew α throws a
NegativeArraySizeException. The elements of the new created array are initial-
ized to the default value for t: null if t is a reference type, and 0 otherwise. Moreover,
if the automatic storage manager was unable to reclaim enough memory to satisfy an
array creation request, arraynew α throws an OutOfMemoryException (not shown
in Fig. 3.6).

arraylength α is the semantics of the bytecode instruction arraylength α. It requires that
the topmost value from the operand stack is a reference to an array whose array type
is a subtyoe of α. Under these hypotheses, the topmost value (reference) from the
operand stack is replaced with the length of and the array corresponding to that ref-
erence. If the topmost value of the operand stack is null, arraylength α throws a
NullPointerException.

arrayload α is the semantics of the bytecode instruction arrayload α. It requires that
the topmost value from the operand stack is an integer k , the second topmost value
is a reference to an array whose array type is a subtype of α, and which length is
greater than k . Under these hypotheses, the two topmost values are popped from the
operand stack and the value of the k -th element of the array is pushed back onto
the operand stack. If the topmost element of the operand stack is greater or equal
to the array length, arrayload α throws a ArrayIndexOutOfBoundsException.
If the second topmost value of the operand stack is null, arrayload α throws a
NullPointerException.

arraystore α is the semantics of the bytecode instruction arraystore α. It requires that the
topmost value from the operand stack is consistent with a subtype of t, that the second
topmost value from the operand stack is an integr k and that the third topmost value
from the operand stack is a reference to an array whose array type is a subtype of
α = t[ ] and whose length is greater than k . Under these hypotheses, the two topmost
values are popped from the operand stack and the first one is written in the k -th ele-
ment of the array corresponding to the second one. If the topmost value of the operand
stack is not consistent with t, arraystore α throws a ArrayStoreException. If the
second tompost value from the operand stack is greater or equal to the array length,
arraystore α throws a ArrayIndexOutOfBoundsException. If the third topmost
value of the operand stack is null, arraystore α throws a NullPointerException.

dup t is the semantics of the bytecode instruction dup t. It duplicates the topmost value
on the operand stack and push the duplicated value onto the operand stack.

ifeq t is the semantics of the bytecode instruction ifeq t. It checks whether the topmost
value from the operand stack whose type is t, is 0 when t = int or is null when
t , int. In our formalization, conditional bytecode instructions are used in comple-
mentary pairs (ifne t and ifeq t), at the beginning of the two conditional branches.
The semantics of a conditional bytecode instruction is undefined when its condition
is false, i.e., in that case the Java virtual machine does not continue the execution of
the code.

ifne t - complement of ifeq t.
return void is the semantics of the bytecode instruction return void. It terminates a void

method and clears the operand stack of the frame corresponding to the method.
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return t is the semantics of the bytecode instruction return t. It terminates a method re-
turning a value of type t, clears the operand stack of the frame corresponding to the
method and pushes onto the operand stack the returned value when t , void.

throw κ is the semantics of the bytecoe instruction throw κ. It requires that the topmost
value from the operand stack is a reference to an object whose class is a subclass
of κ ≤ Throwable. Then it throws the object pointed by the topmost value from
the stack and pops that value from the stack. If the former is null, throw κ throws a
NullPointerException.

catch is the semantics of the bytecode instruction catch. It starts an exception handler. It
takes an exceptional state and transforms it into a normal one, subsequently used by
the handler.

exception_is K is the semantics of the bytecode instruction exception_is K . The latter
is used after a catch, and it selects an appropriate handler depending on the run-time
class of the topmost value from the operand stack: it filters those states whose topmost
value of the operand stack is an instance of a class in K ⊆ K.

3.4.3 Method calls

When a caller transfers control to a callee κ.m(~t) : t, the Java virtual machine runs an
operation makescope κ.m(~t): t that copies the topmost stack elements, holding the actual
arguments of the call, to the local variables of the frame corresponding to the callee, which
correspond to the formal parameters of the callee, and clears the stack. We only consider
instance methods, where this is a special argument held in local variable l0 of the callee.

Definition 3.17 (makescope). Let κ.m(~t): t be a method and π the number of stack ele-
ments holding its actual parameters, including the implicit parameter this. We define a
function (makescope κ.m(~t): t) : Σ → Σ as

λ〈〈l ‖ vπ−1 :: · · · :: v1 :: rec :: s〉, µ〉.〈〈[rec, v1, . . . , vπ−1] ‖ ε〉, µ〉
provided rec , null and the look-up of m(~t) : t from the class µ(rec).type leads to
κ.m(~t): t. We let it be undefined otherwise.

More precisely, the i -th local variable of the callee’s frame is a copy of the (π−1)−i -th
topmost element from the operand stack of the caller’s frame.

3.4.4 The Transition Rules

We now define the operational semantics of our language. It uses a stack of activation
records to model method and constructor calls.

Definition 3.18 (Configuration). A configuration is a pair 〈b ‖ σ〉 of a block b and a
state σ representing the fact that the Java virtual machine is about to execute b in state σ.
An activation stack is a stack c1 :: c2 :: · · · :: cn of configurations, where c1 is the active
configuration.

The operational semantics of a Java bytecode program is a relation between activation
stacks. It models the transformation of the activation stack induced by the execution of
each single bytecode instruction.
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ins is not a call, ins(σ) is defined

� ins
rest
→→

b1· · ·
bm
�σ� :: a ⇒ � rest→→

b1· · ·
bm
� ins(σ)� :: a

(1)

π is the number of parameters of the target method, including this
σ = ��l � vπ−1 :: · · · ::v1 ::rec :: s�, µ�, rec � null

1 ≤ i ≤ n , σ� = (makescope mi )(σ) is defined
f = first(mi ), the block where the implementation starts

� callm1 . . .mn

rest
→→

b1· · ·
bm
�σ� :: a ⇒ �f �σ�� :: � rest→→

b1· · ·
bm
���l � s�, µ�� :: a

(2)

π is the number of parameters of the target method, including this
σ = ��l � vπ−1 :: · · · ::v1 ::null :: s�, µ�

� ∈ L is fresh and npe is a new instance of NullPointerException

� callm1 . . .mn

rest
→→

b1· · ·
bm
�σ� :: a ⇒ � rest→→

b1· · ·
bm
� ��l � ��, µ[� �→ npe]�� :: a

(3)

|s| ≤ 1

� ���l � s�, µ�� :: �b ���l� � s��, µ��� :: a ⇒ � b ���l� � s :: s��, µ�� :: a
(4)

� � ��l � e�, µ�� :: �b ���l� � s��, µ��� :: a ⇒ � b � ��l� � e�, µ�� :: a
(5)

1 ≤ i ≤ m

� →→
b1· · ·
bm
�σ� :: a ⇒ �bi �σ� :: a

(6)

Fig. 3.7. The transition rules of our semantics

Definition 3.19 (Operational Semantics). The (small step) operational semantics of a
Java bytecode program P is a relation a ′ ⇒P a ′′ (P is usually omitted) providing the
immediate successor activation stack a ′′ of an activation stack a ′. It is defined by the rules
in Fig. 3.7.

Rule (1) runs the first instruction ins of a block, different from call, by using its se-
mantics ins. Then it moves forward to run the remaining instructions.

Rules (2) and (3) are for method calls. If a call occurs on a null receiver, no actual
call happens in this case and rule (3) creates a new state whose operand stack contains
only a reference to a NullPointerException. On the other hand, rule (2) calls a method
on a non-null receiver: the call instructions are decorated with an over-approximation of
the set of their possible run-time target methods. This approximation can be computed
by class analysis [67]. The dynamic semantics of call looks up for the exact target imple-
mentation κi .m(~t) : t that is executed, by using the look-up rules of the language, builds
its initial state σ′ by using makescope, and creates a new current configuration containing
the first block of the target implementation and σ′. It pops the actual arguments from the
previous configuration and the call from the instructions to be executed at return time.
A method call might lead to many implementations, depending on the run-time class of
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the receiver. Although this rule seems non-deterministic, only one thread of execution
continues, since we assume that the look-up rules are deterministic, as in Java bytecode.

Control returns to the caller by rules (4) and (5). If the callee ends in a normal state,
rule (4) rehabilitates the caller configuration but keeps the memory at the end of the exe-
cution of the callee and, if s , ε, it also pushes the return value on the operand stack of
the caller. If the callee ends in an exceptional state, rule (5) propagates the exception back
to the caller.

Rule (6) applies when all instructions inside a block have been executed; it runs one
of its immediate successors, if any. In our formalization this rule is always deterministic:
if a block has two or more immediate successors then they start with mutually exclusive
conditional instructions and only one thread of control is actually followed.

In the notation⇒, we often specify the rule in Fig. 3.7 used; for instance, we write (1)⇒
for a derivation step through rule (1).
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General Parameterized Framework for Constraint-based
Static Analyses of Java Bytecode Programs

This chapter introduces a generic parameterized static analysis framework for Java byte-
code, based on constraint generation and solving. This framework is able to deal with the
exceptional flows inside the program and the side-effects induced by calls to non-pure
methods. It is generic in the sense that different instantiations of its parameters give rise
to different static analyses which might capture complex properties of the heap at each
program point. This framework can be used to generate possible or may approximations
of the property of interest, as well as definite or must approximation of that property.
In order to exemplify these two types of analyses, the following chapters provide two
instantiations of this framework: Possible Reachability Analysis Between Program Vari-
ables (Chapter 5) and Definite Expression Aliasing Analysis (Chapter 6). This chapter is
based on [59].

4.1 Contribution and Organization of the Chapter

This chapter introduces a general parameterized framework for constraint-based static
analyses of Java bytecode programs, which is abstract interpretation-based and can be
used to formalize static analyses dealing with both numerical and memory-related prop-
erties. Moreover, framework’s structure allows one to define static analyses which deal
with both side-effects of the methods, and with their exceptional executions. Finally, it
simplifies proofs of correctness of the static analyses formalized in the framework.

The crucial notion for the operational semantics of the target language introduced in
Chapter 3 is the notion of state, representing a system configuration. The set of all possible
states that might be related to a given program point is called the concrete domain, and it
is denoted by C. Let P be a program under analysis, composed of a set of .class files,
and let L be the set of libraries that P uses. Suppose that P ’s classes as well as libraries
in L are archived in a .jar file, representing one of the inputs the present framework
requires. Moreover, let P be a generic property of interest. The actions performed by the
framework are listed below.

1. The framework extracts, from the .jar archive, an extended control flow graph
(eCFG), which contains a node for each bytecode instruction available in P and L,
some special nodes which deal with the side-effects of non-pure methods, as well as
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with exceptional and non-exceptional method ends, and different types of arcs which
connect those nodes. There are some simple arcs connecting one source node with
one sink node, but there are also some special arcs, composed of two source nodes
and one sink node: their main purpose is handling of the method’s side effects in both
exceptional and non-exceptional executions of those methods and they represent one
of the actual contributions of the present thesis. Section 4.2 explains different parts
of these graphs. It is worth noting that this step does not depend on any particular
property of interest, and is always done automatically by the framework.

2. This framework is abstract interpretation-based, i.e., the property of interest P is
mathematically encoded in terms of an abstract domain. This chapter considers a
generic abstract domain A and introduces some requirements dealing with C and A in
Section 4.3. This step is property-dependent and the designer of a new static analysis
is supposed to give a concrete instantiation of the generic abstract domain A.

3. For each arc present in the eCFG, the framework requires a propagation rule Π rep-
resenting the behavior of the bytecode instruction corresponding to the source node
of the arc with respect to the abstract domain A, and therefore with respect to the
property P. This chapter considers generic propagation rules, while their concrete
instantiation is property-dependent and is provided by the designer of a new static
analysis. The framework annotates each eCFG’s arc with the corresponding propaga-
tion rule, obtaining the abstract constraints graph (ACG). Requirements concerning
the propagation rules are introduced in Section 4.4.

4. From the annotated graph the framework extracts a system of constraints that repre-
sents the actual definition of a new constraint-based static analysis; its solution is the
approximation provided by that static analysis. This step is both property-independent
and property-dependent, namely, the construction of the system of constraints does
not depend on the property of interest, while the propagation rules are specific to
the property of interest. The extraction of constraints from the ACG is explained in
Section 4.5.

In order to define sound static analyses, the framework introduces, in Section 4.4,
a set of requirements that the framework’s parameters, i.e., the abstract domain and the
propagation rules, must satisfy. The results provided in Section 4.6 guarantee that when an
instantiation of the framework’s parameters satisfies the requirements mentioned above,
the static analysis determined by this instantiation is sound. This is a very important result,
since it allows one to show that a static analysis of a huge, real-life program, written in
Java bytecode, is sound. In order to show that, it is not necessary to consider the program’s
structure or the libraries it uses. Another important result of this chapter is the fact that the
satisfiability of the requirements implies that there always exists a solution of the system
of constraints obtained from the ACG.

When the designer of a new static analysis wants to formalize a sound static analysis
using the present framework, he or she has to complete the following tasks:

1. formally define the property of interest P and express it as an abstract domain A in
terms of the abstract interpretation framework [32]. Examples of this instantiation are
given in Sections 5.3.1 and 6.3.1.

2. define a propagation rule Π : A → A, for each bytecode instruction of the tar-
get language, and each possible behavior of that instruction (exceptional and non-
exceptional). Examples of these instantiations are given in Sections 5.3.2 and 6.3.2.
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3. show that A and the propagation rules satisfy all of the requirements specified by
the framework, which is not a simple task, but it is drastically easier to show that,
for example, each propagation rule soundly mimics the behavior of the correspond-
ing bytecode instruction, than to show that the abstract semantics of whole program
soundly approximates the operational semantics of that program. Sections 5.4 and 6.4
show that the static analyses introduced respectively in Chapters 5 and 6 actually sat-
isfy the requirements introduced in this chapter.

Fig. 1.3 lists the sequence of actions automatically done by the framework (on the right)
and required by the user (on the left). The actions are performed by following the order
specified in the figure, i.e., first of all the framework extracts the eCFG, then the designer
instantiate the abstract domain and the propagation rules, then the framework constructs
the ACG, etc.

There is also another important benefit of using this framework. From an implemen-
tational point of view, Julia contains an abstract class (in terms of Java) implementing
the generic engine for eCFG and ACG creation, constraint generation and solving. This
implementation represents an implementation of the framework and is not a contribution
of the present thesis. Each new specific static analysis is a concrete subclass of the ab-
stract class mentioned above, providing an implementation for a few methods, where the
specific static analyses deviates from the general framework. This largely simplifies the
implementation of new static analyses. For instance, the developer needs not bother about
the implementation of the constraints and the strategy for their solution.

4.2 Construction of the Extended Control Flow Graph

This section introduces the notion of extended control flow graph (eCFG), i.e., a control
flow graph extracted from a .jar archive composed of all the classes belonging to the
program under analysis, as well as of all the classes from the auxiliary libraries that pro-
gram uses. Similarly to the traditional control flow graph (Chapter 3), eCFG is composed
of a set of nodes corresponding to different bytecode instructions belonging to the pro-
gram, and a set of arcs which connect those nodes. Differently from the traditional control
flow graph, eCFG contains some special nodes and special arcs which are not present in
the former. This section formally introduces both traditional and special nodes and arcs.

Definition 4.1 (eCFG). Let P be the program under analysis enriched with all of the
methods from the libraries it uses, already in the form of a CFG of basic blocks for each
method or constructor (Chapter 3). The extended control flow graph (eCFG) for P is a
directed graph 〈V ,E 〉 (nodes, arcs) where:

1. V contains a node ins for each bytecode instruction ins in P ;
2. for each method or constructor m in P , V contains nodes exit@m and exception@m ,

representing the normal and the exceptional ends of m;
3. each node contains an abstract element representing an approximation of the infor-

mation related to the property of interest at that point;
4. E contains directed arcs with one (1−1) or two (2−1) sources and always one sink.

Each arc has a propagation rule i.e., a function over the abstract domain, from the
approximation(s) contained in its source(s) to the one contained in its sink. We dis-
tinguish the following types of arcs:
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• Sequential arcs: if ins is a bytecode instruction in P , distinct from call, imme-
diately followed by a bytecode instruction ins′, distinct from catch, then a 1−1
sequential arc is built from ins to ins′ ;

• Final arcs: for each return t and throw κ instructions occurring in a method or
a constructor m of P , there are 1−1 final arcs from return t to exit@m and from
throw κ to exception@m , respectively;

• Exceptional arcs: for each bytecode instruction ins throwing an exception, im-
mediately followed by a catch, an 1−1 exceptional arc is built from ins to catch ;

• Parameter passing arcs: for each call m1 . . .mq occurring in P with π parame-
ters (including the implicit parameter this) we build, for each 1≤w ≤ q , a 1−1
parameter passing arc from call m1 . . .mq to the node corresponding to the first
bytecode instruction of the method mw ;

• Return value arcs: for each call insC = call m1 . . .mq to a method with π param-
eters (including the implicit parameter this) returning a value of type t , void,
and each subsequent bytecode instruction insN distinct from catch, we build, for
each 1≤w ≤q , a 2−1 return value arc from insC and exit@mw (2 sources, in that
order) to insN ;

• Side-effects arcs: for each call insC = call m1 . . .mq to a method with π pa-
rameters (including the implicit parameter this), and each subsequent bytecode
instruction insN , we build, for each 1≤w ≤ q , a 2−1 side-effects arc from insC

and exit@mw (2 sources, in that order) to insN , if insN is not a catch and a 2 − 1
side-effect arc from insC and exception@mw (2 sources, in that order) to catch .

The sequential arcs correspond to the non-exceptional executions of all the bytecode
instructions except call, return and throw. The final arcs connect the nodes corresponding
to the last bytecode instruction of each method or constructor m (i.e., return or throw) to
the special nodes exit@m , in the case of return, and exception@m , in the case of throw.
The exceptional arcs represent the exceptional executions of the bytecode instructions
that might launch an exception, i.e., div, rem, new κ, getfield f , putfield f , arraynew α,
arraylength α, arrayload α, arraystore α, throw and call, and they connect the nodes

public class Event {
public int hr , min ;
. . .
public int delayMinBy ( int o f f s e t ) {

return (min + o f f s e t )%60;
}

public int setDelay ( int o f f s e t ) {
min = (min + o f f s e t )%60;
return min ;

}
. . .

}

load 0 Event
getfield Event.min : int

load 1 int
add int

const 60
rem

return int

catch
throw java.lang.Throwable

Fig. 4.1. Part of a Java class Event implementing a method delayMinBy on the left, and the tradi-
tional CFG of that method on the right
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node anode c

catch

node 11
exception@delayMinBy

node b
store 3 int

node 8
exit@delayMinBy

call Event.delayMinBy(int) : int

node 1
load 0 Event

node 2
getfield Event.min: int

node 3
load 1 int

node 4
add int

node 5
const 60

node 6
rem

node 7
return int

node 9
catch

node 10
throw java.lang.Throwable

E

PP

SE SE
RV

S

S S

SE

S

S

SE

F

F

Fig. 4.2. The eCFG for the method delayMinBy in Fig. 4.1

corresponding to these instructions with the node related to the catch instruction at the
beginning of their exceptional handlers. The parameter passing arcs link every node cor-
responding to a method call to the node corresponding to the first bytecode instruction of
the method(s) that might be called there. There exists a return value arc for each dynamic
target m of a call insC returning a value. These arcs have two sources, insC and exit@mw ,
and they propagate the approximations present at these nodes to the node corresponding
to the bytecode instruction following insC . Moreover, these arcs might enrich the result-
ing approximation with some additional abstract elements due to the m’s returned value.
The execution of method m might modify the memory where m is executed and this
might affect the approximation at node insC corresponding to the method call insC . The
side-effects arcs deal with these phenomena, i.e., they are 2−1 arcs connecting insC and
exit@m (respectively exception@m ) with the node corresponding to the bytecode instruc-

tion (respectively catch) which follows insC , for each dynamic target m of the call, and
propagate the approximation at insC modified by the side-effects of m’s execution.

Example 4.2. We introduce a class Event containing two instance fields hr and min of
type int and two instance methods delayMinBy and setDelay taking one int argument
and returning an int value. Its Java code, as well as the rapresentation of the method
delayMinBy in our formalization are given in Fig. 4.1. In Fig. 4.2 we give the eCFG
of the method delayMinBy. Nodes a, b and c belong to the caller of this method and
exemplify the arcs related to the call and return bytecodes. Arcs are decorated with an
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abbreviation denoting their types: S, F, E, PP, RV and SE state for sequential, final,
exceptional, parameter passing, return value and side-effects arcs, respectively. ut

4.3 Concrete and Abstract Domains

This framework is based on a general theory of approximation, called abstract interpre-
tation [32, 34], whose idea is the following: suppose there exists a set of elements, called
concrete domain, and a function f operating on them. Abstract interpretation defines an
abstract domain, i.e., a set of elements containing less information than the concrete ones,
two maps relating the domains and a function operating on the abstract domain that sim-
ulates f .

All the analyses formalized in the present framework use the same concrete domain
which is composed of all possible states that can be verified at a program point. On the
other hand, the abstract domain depends on the property of interest, and its elements are
obtained by abstracting away from the concrete states all those pieces of information that
are irrelevant for the analysis of interest. For every analysis, it is necessary to formally
define the form of abstract elements and an ordering among them. The former corresponds
to the property that the analysis deals with, while the latter is relevant for the existence
of the least solution of that analysis. Moreover, concrete and abstract elements have to be
connected by a pair of functions that specify which concrete elements correspond to which
abstract elements and vice versa, i.e., they must form a Galois connection. This section
provides some conditions that the abstract domain has to satisfy in order to guarantee the
correctness of the static analysis and the existence of its solutions.

Definition 4.3 (Concrete and Abstract Domain). The concrete and abstract domains
over τ∈T are Cτ = 〈℘(Στ),⊆,∪,∩, Στ,∅〉 and Aτ = 〈Aτ,v,t,u,>τ,⊥τ〉, whereAτ is the
set of elements that represent the property of interest over τ, t and u are the join and
meet operators, and >τ and ⊥τ are the top and the bottom elements ofAτ.

Sections 5.3.1 and 6.3.1 show different instantiations ofAτ and Aτ.
Recall some well-known notions from lattice theory. A sequence { ~Ai }i∈N of elements

in Aτ is an ascending chain if n ≤m ⇒ An v Am . That sequence eventually stabilizes
iff ∃n0 ∈ N.∀n ∈ N.n ≥n0 ⇒ An = An0 . The first requirement related to abstract domain
is one of the conditions which guarantee the existence and the uniqueness of the least
solution of the analyses, like Theorem 4.11 shows.

Requirement 4.1 (ACC) Every ascending chain of elements inAτ eventually stabilizes.

Abstract and concrete states are connected by a pair of maps ατ : Cτ → Aτ and
γτ : Aτ → Cτ called abstraction and concretization maps. The former abstracts away
some irrelevant pieces of information contained in the concrete elements, while the latter
explains the actual meaning of the abstract states. Namely, it associates every abstract
state A with the concrete states preserving the approximation represented by A. In order
to have an abstract interpretation-based static analysis, it is necessary to provide these
two maps and to show that they are related by a Galois connection (Chapter 2). This is
specified by Requirement 4.2.

Requirement 4.2 (GC) It is necessary that 〈Cτ, ατ, γτ,Aτ〉 is a Galois connection, i.e.,

∀A ∈ Aτ.∀C ∈ Cτ.ατ(C ) v A⇔ C ⊆ γτ(A).
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4.4 Propagation Rules and the Abstract Constraint Graph

The goal of the constraint-based static analyses defined in this thesis is to associate each
node of the eCFG constructed in Section 4.2 with an element of the abstract domain
defined in Section 4.3. The latter represents an approximation of the property of interest
at that point. In order to do that, the framework annotate each node of the eCFG with a
variable, and each arc of the eCFG with a function specifying how the approximations
at its source(s) is(are) transformed in the approximation of its sink. These functions are
called propagation rules, their formal definition depends on a concrete property of interest
and it represents the core of the actual static analysis. The eCFG whose arcs are annotated
with these propagation rules is called abstract constraint graph (ACG).

The goal of this chapter is to define a general framework for constraint-based static
analyses of Java bytecode programs. Since the former deals with generic properties, this
section does not introduce one particular instantiation of the propagation rules. It rather
specifies a set of requirements that the propagation rules must satisfy in order to have a
sound and computable analysis. On the other hand, Sections 5.3.2 and 6.3.2 introduce the
instantiations of the propagation rules used for the formalization of two novel constraint-
based static analyses introduced respectively in Chapters 5 and 6.

The first condition concerning the propagation rules that the present framework re-
quires is that all the propagation rules, representing an abstract semantics of bytecode
instructions, are monotonic, like it is the case with the concrete semantics of those in-
structions (Requirement 4.3). This condition allows to show that there exists the least
solution of our constraint-based analysis (see Theorem 4.11).

Requirement 4.3 (Monotonicity) Propagation rules of the ACG related to the program
under analysis are monotonic w.r.t. v.

It is also required that the propagation rules correctly approximate the bytecode in-
structions they simulate, i.e., in abstract interpretation terms, an abstract element correctly
approximates the property of interest at a program point, if the concretization of the for-
mer contains all the concrete states that the program might be in at that point during any
execution. In particular, for each sequential arcs, it is required that its propagation rule
propagates only non-exceptional concrete states from the concretization of a correct ap-
proximation of the property of interest related to the source node of that sequential arc
(Requirement 4.4). This is required because sequential arcs link a bytecode instruction
with their successors when no exception is thrown, hence their abstract semantics must
be consistent with that situation. On the other hand, in the case of the propagation rules
of the exceptional arcs, the framework requires the correct propagation of the exceptional
concrete states only, since these propagation rules simulate the exceptional behaviors of
different bytecode instructions (Requirement 4.6). In the case of the final and the parame-
ter passing arcs, both exceptional and non-exceptional concrete states have to be correctly
propagated (Requirements 4.5 and 4.8). Finally, Requirement 4.7 deals with one partic-
ular case of the exceptional arcs: when a method is invoked on a null receiver. In that
case it is required that the exceptional states launched by the method are included in the
approximation of the property of interest after the call to that method.

Requirement 4.4 (Sequential arcs) Consider a sequential arc from the node corre-
sponding to a bytecode instruction ins and its propagation rule Π . Assume that ins has
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static type information τ at its beginning and τ′ immediately after its non-exceptional
execution. Then, for every A ∈ Aτ, we require

ins(γτ(A)) ∩ Ξτ′ ⊆ γτ′ (Π(A)). (4.1)

Requirement 4.5 (Final arcs) Consider a final arc from the node corresponding to a
bytecode instructions ins and its propagation rule Π . Assume that ins has static type
information τ at its beginning and τ′ immediately after its execution (its non-exceptional
execution if ins is a return, its exceptional execution if ins is a throw κ). Then, for every
A ∈ Aτ, we require

ins(γτ(A)) ⊆ γτ′ (Π(A)). (4.2)

Requirement 4.6 (Exceptional arcs) Consider an exceptional arc from the node cor-
responding to a bytecode instruction ins distinct from call and its propagation rule Π .
Assume that ins has static type information τ at its beginning and τ′ after its exceptional
execution. Then, for every A ∈ Aτ, we require

ins(γτ(A)) ∩ Ξτ′ ⊆ γτ′ (Π(A)). (4.3)

Requirement 4.7 Consider an exceptional arc from the node corresponding to insC =

call m1 . . .mq and its propagation rule Π . Assume that it has π actual arguments
(this included), and that τ and τ′ are respectively the static type information before
and immediately after insC . Then, for each 1 ≤ w ≤ q , every A ∈ Aτ and every
σ = 〈〈l ‖ vπ−1 :: . . . :: v1 :: null : s〉, µ〉 ∈ γτ(A), i.e., the ones assigning null to the re-
ceiver of insC right before its execution, we require

〈〈l ‖ `〉, µ[` 7→ npe]〉 ⊆ γτ′ (Π(A)), (4.4)

where ` is a fresh location, and npe is a new instance of NullPointerException.

Requirement 4.8 (Parameter passing arcs) Let us consider a parameter passing arc
from the node corresponding to call m1 . . .mq to the first bytecode of mw , for some
1 ≤ w ≤ q , and its propagation rule Π . Assume that call m1 . . .mq has static type in-
formation τ at its beginning and that τ′ is the static type information at the beginning of
mw . Then, for each 1≤w ≤q and every A ∈ Aτ, we require

(makescope mw )(γτ(A)) ⊆ γτ′ (Π(A)). (4.5)

The following requirement deals with the return values and side-effects of the non-
exceptional executions of methods. Namely, it is required that, in the case a method re-
turns a value, the propagation rule of the return value arc enriches the resulting approx-
imation of the property of interest immediately after the call to that method by adding
all those abstract elements that the return value might correspond to. On the other hand,
that method might modify the initial memory from which the method has been executed.
These modifications must be captured by the propagation rules of the side-effects arcs.
The approximation of the property of interest after the call to a method is, therefore, de-
termined as the join (t) of the approximations obtained from the propagation rules of the
return value and the side-effects arcs, and we require it to be correct. Requirement 4.10
handles the case of a void method, and therefore only the corresponding side-effects arc
is considered there.
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call m1 . . .mq

exit@mw : t
insn

ΠRV

ΠSE

C

E
N

AC

AE

Fig. 4.3. Arcs going into the node correspond-
ing to insN .

call m1 . . .mq

exit@mw : t
catch

ΠSE

ΠEC

E
N

AC

AE

Fig. 4.4. Arcs going into the node correspond-
ing to catch.

Requirement 4.9 Let C = insC be the node corresponding to the call to a non-void
method insC = call m1 . . .mq , E = exit@mw , be the exit node from a method mw , where
1 ≤ w ≤ q , and N = insN be the node corresponding to the only bytecode instruction
different from catch which follows insC . Consider a return value and a side-effect arc
from nodes C and E to N , and let ΠRV and ΠSE be the propagation rules of these arcs.
We depict this situation in Fig. 4.3. Let τC , τE and τN be the static type information at
C , E and N respectively, and let d be the denotation of mw , i.e., a partial function from a
state at its beginning to the corresponding state at its end. Then, for each 1≤w ≤q , every
AC ∈AτC and every AE ∈AτE , we require

d ((makescope mw )(γτC (AC ))) ∩ ΞτN ⊆ γτN (ΠRV (AC ,AE ) t ΠSE (AC ,AE )). (4.6)

Requirement 4.10 Let C = insC be the node corresponding to the call to a void method
insC = call m1 . . .mq , E = exit@mw , be the exit node from a method mw , where 1≤w ≤q ,
and N = insN be the node corresponding to the only bytecode instruction different from
catch which follows insC . Consider a side-effect arc from nodes C and E to N , and let
ΠSE be the propagation rule of this arc. This situation is depicted in Fig. 4.3 where the
arc annotated with ΠRV should not be considered. Let τC , τE and τN be the static type
information at C , E and N respectively, and let d be the denotation of mw , i.e., a partial
function from a state at its beginning to the corresponding state at its end. Then, for each
1≤w ≤q , every AC ∈AτC and every AE ∈AτE , we require

d ((makescope mw )(γτC (AC ))) ∩ ΞτN ⊆ γτN (ΠSE (AC ,AE )). (4.7)

The last requirement deals with the exceptional executions of the methods. Namely,
the approximation of the property of interest at the catch which captures the exceptional
states of the method we are interested in, has to be enriched by all possible modifications
of the initial memory due to the side-effects of the method. This is the task of the prop-
agation rules of the side-effects arcs. On the other hand, the final approximation of the
property of interest at the point of interest (catch) has to be enriched with the exceptions
launched by the method when it is invoked on a null object, like Requirement 4.7 al-
ready specified. Like in the previous case, the approximation of the property of interest is
determined as the join (t) of the two approximations mentioned above, and we require it
to be correct.

Requirement 4.11 Given nodes N = catch , C = insC for insC = call m1 . . .mq and
E = exception@mw for some 1 ≤ w ≤ q , consider an exceptional arc from C to N and a
side-effect arc from C and E to N , with their propagation rulesΠE andΠSE respectively.
We depict this situation in Fig. 4.4. Let τC , τN and τE be the static type information at
C , N and E respectively and let d be the denotation of mw i.e., a partial function from a
state at its beginning to the corresponding state at its end. Then, for each 1≤w ≤q , every
AC ∈AτC and every AE ∈AτE , we have
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d ((makescope mw )(γτC (AC ))) ∩ ΞτN ⊆ γτN (ΠE (AC ) t ΠSE (AC ,AE )). (4.8)

4.5 Extraction and Solution of Constraints

The ACG of the program under analysis introduces, for each of its nodes a set of con-
straints: one constraint for each arc reaching the node. Every correct solution of these
constraints is a possible, not necessarily minimal, result of the static analysis determined
by that ACG. The following definition shows how the constraints are extracted from an
ACG.

Definition 4.4 (Constraints). Let N be a node of an ACG and AN the approximation of
the property of interest information contained in that node. Suppose that there are k arcs
whose sink is N and for each 1 ≤ i ≤ k , let Π i and approx(i ) respectively denote the
propagation rule and the approximation of the property of interest at the source(s) of the
i−th arc. These arcs give rise to the following constraints:

Π1(approx(1)) v AN , . . . , Π
k (approx(k )) v AN .

In order to reduce the number of constraints, there exists the equivalent form:

k⊔
i=1

Π i (approx(i )) v AN . (4.9)

Example 4.5. Fig. 4.5 shows the constraints extracted from the ACG obtained by an-
notating the eCFG introduced in Example 4.2. These constraints concern the method
delayMinBy only, and not the whole program under analysis. ut

ΠPP (Aa) v A1 ΠS (A9) v A10
ΠS (A1) v A2 ΠF (A7) v A8
ΠS (A2) v A3 ΠF (A10) v A11
ΠS (A3) v A4 ΠE (A2) v A9
ΠS (A4) v A5 ΠE (A6) v A9
ΠS (A5) v A6 Π

RV (Aa,A8) t ΠSE (Aa,A8) v Ab
ΠS (A6) v A7 ΠE (Aa) t ΠRV (Aa,A11) v Ac

Fig. 4.5. The constraints extracted from the ACG given in Fig. 4.2

Once the abstract constraint graph for the program under analysis has been built, the
framework extracts the constraints contained in the graph’s arcs and finds the least solu-
tion w.r.t. v satisfying these constraints. This section, which is inspired by [58, Chapter
1.3], briefly discusses the existence and uniqueness of this solution.

Definition 4.6. Suppose that there are x nodes in the ACG under analysis, and for each
1 ≤ n ≤ x , let τn and An be the static type information and the approximation concerned
with the n−th node. Let EA = (Aτ1 × . . .×Aτx ) denote a set of tuples whose n−th element
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represents the approximation contained in the n−th node. Let ~EA = 〈A1, . . . ,Ax 〉 and
~EA′ = 〈A′1, . . . ,A′x 〉 be two arbitrary elements of EA. Consider the following ordering:

~EA ~v ~EA′ iff ∀1 ≤ n ≤ x .An v A′n .

This ordering gives rise to the following bottom (~⊥) and top (~>) elements:

~⊥ =〈⊥τ1 , . . . ,⊥τx 〉
~> =〈>τ1 , . . . ,>τx 〉

Moreover, the join ~t and the meet ~u operators over EA are defined as:

~EA ~t ~EA′ =〈A1 tA′1, . . . ,Ax tA′x 〉
~EA ~u ~EA′ =〈A′1 uA′1, . . . ,Ax uA′x 〉.

In the following some simple algebraic properties of EA are shown.

Lemma 4.7. 〈EA, ~v, ~t, ~u, ~>, ~⊥〉 is a complete lattice.

Proof. Follows directly from the fact that, for each n , Aτn is a complete lattice. �

Another important property of EA is the fact that it satisfies the Ascending Chain
Condition.

Lemma 4.8. If Requirement 4.1 is satisfied, every ascending chain of elements in EA
eventually stabilizes.

Proof. If Requirement 4.1 is satisfied, every ascending chain of elements in EA represents
a Cartesian product of x ascending chains of elements in Aτ1 , . . . ,Aτx which eventually
stabilize, and x is a finite number. �

Definition 4.9. Consider a function F operating over EA:

F : EA→ EA
F ( ~EA) = 〈F1( ~EA), . . . ,Fx ( ~EA)〉,

where Fn : EA → Aτn represents the constraint associated to the n−th node (Equa-
tion 4.9).

Lemma 4.10. F is a monotonic function w.r.t. ~v.

Proof. By Requirement 4.3, the propagation rules are monotonic w.r.t. v, and this en-
tails the monotonicity of the constraints defined by Equation 4.9. Consequently, F is a
monotonic function w.r.t. ~v. �

Theorem 4.11. The least solution of the equation system F ( ~EA) = ~EA exists and can be
characterized as

lfp(F ) =
~⊔

n
Fn (~⊥),

where given ~EA ∈ EA, the i−th power of F in ~EA is inductively defined as follows:F 0( ~EA) = ~EA

F i+1( ~EA) = F (F i ( ~EA)).
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Proof. It is well-known that any monotonic function f over a partially ordered set sat-
isfying the Ascending Chain Condition is also continuous [36]. By Lemma 4.10, F is
monotone, and by Lemma 4.8, EA satisfies the Ascending Chain Condition, hence F is
continuous.

On the other hand, by Knaster-Tarski’s fixpoint theorem [88], in a complete lattice
〈L,4,g,f, >̃, ⊥̃〉, for any continuous function f : L→ L, the least fixpoint of f , lfp(f ), is
equal to

b
n f n (⊥̃). Since 〈EA, ~v, ~t, ~u, ~>, ~⊥〉 is a complete lattice (Lemma 4.7) and F is

continuous, its least fixpont can be computer as lfp(F ) = ~⊔
nF

n (~⊥). �

Corollary 4.12. The equation system F ( ~EA)~v ~EA and the constraint system ~EA= F ( ~EA)
have the same least solution.

Proof. By Theorem 4.11, the least solution of F ( ~EA) = ~EA is constructed as Fn (~⊥) for a
value n ∈ N such that Fn (~⊥) = Fn+1(~⊥). Suppose that ~EA is a solution of the constraint
system, i.e., F ( ~EA) = ~EA. Then, starting from ~⊥~v ~EA, by the monotonicity of F and
mathematical induction, it can be shown that Fn (~⊥)~v ~EA. Since Fn (~⊥) is a solution of the
constraint system, this shows that it is also the least solution of the constraint system. �

Finally, the solutions of the abstract constraint graph, i.e., of its corresponding static
analysis can be characterized.

Definition 4.13 (Constraint-based Static Analysis). The solution of an ACG is the
least assignment of an abstract element An ∈ Aτn to each node n of the ACG, ~EA =

〈A1, . . . ,Ax 〉 ∈ EA, which satisfy the constraints extracted from the ACG, i.e., such that
F ( ~EA) ~v ~EA holds.

4.6 Soundness

This section shows that when the requirements provided in Section 4.4 are satisfied, the
approximations computed by our static analyses are sound.

Theorem 4.14 (Soundness). Let 〈bfirst(main) ‖ ξ〉 ⇒∗ 〈 ins1
rest
→
→

b1
· · ·
bm
‖ σ〉 :: a be the ex-

ecution of our operational semantics, from the block bfirst(main) starting with the first
bytecode instruction of method main, ins0, and an initial state ξ ∈ Στ0 , to a bytecode
instruction ins1 and assume that this execution leads to a state σ ∈ Στ1 , where τ0 and τ1
are the static type information at ins0 and ins1 respectively. Moreover, let A0 ∈ Aτ0 be a
correct approximation of the property of interest at ins0, i.e., such that ξ ∈ γτ0 (A0), and
A1 ∈ Aτ1 be the approximation of the property of interest at ins1 computed by our static
analysis starting from A0. Then, if Requirements 4.4-4.11 are satisfied, σ ∈ γτ1 (A) holds.

Proof. The blocks in the configurations of an activation stack, but the topmost, cannot be
empty and with no successor. This is because the configurations are only stacked by rule
(2) of Fig. 3.7 and if rest is empty there, then m ≥ 1 or otherwise, the code ends with a
call bytecode with no return, which is illegal in Java bytecode [52].

We proceed by induction on the length n of the execution

〈bfirst(main) ‖ ξ〉 ⇒∗ 〈 ins
rest
→
→

b1
· · ·
bm
‖ σ〉 :: a .
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Base case: If n = 0, the execution is just 〈bfirst(main) ‖ ξ〉. In this case, τ0 = τ1 and
A0 = A1, hence σ = ξ ∈ γτ0 (A0) = γτ1 (A1).
Inductive step: Assume now that the thesis holds for any such execution of length k ≤ n .

Consider an execution 〈bfirst(main) ‖ ξ〉 ⇒n+1 〈 insq
restq︸︷︷︸
bq

→
→

b1
· · ·
bm
‖ σq 〉 :: aq , with insq(σq )

defined. This execution must have the form

〈bfirst(main) ‖ ξ〉 ⇒np 〈

bp︷︸︸︷
insp
restp
→
→

b′1· · ·
b′
m′
‖ σp〉 :: ap ⇒n+1−np 〈bq ‖ σq 〉 :: aq (4.10)

with 0 ≤ np ≤ n , that is, it must have a strict prefix of length np whose final activation
stack has the topmost configuration with a non-empty block bp . Let such np be maximal.
Given a bytecode insa , let τa and Aa be the static type information and the approximation
of the property of interest at the ACG node insa respectively. By inductive hypothesis we
know that σp ∈ γτp (Ap) and we show that also σq ∈ γτq (Aq ) holds. We distinguish on
the basis of the rule of the operational semantics that is applied at the beginning of the
derivation⇒n+1−np in Equation 4.10.
Rule (1). Then insp(σp) is defined and insp is not a call.

case a: insp is not a return nor a throw

If restp is non-empty then, by the maximality of np , (4.10) must be

〈bfirst(main) ‖ ξ〉 ⇒np 〈 insp
insq
restq︸︷︷︸
bp

→
→

b1
· · ·
bm
‖ σp〉 :: ap (1)⇒〈 insq

restq︸︷︷︸
bq

→
→

b1
· · ·
bm
‖ insp(σp)︸   ︷︷   ︸

σq

〉 :: ap︸︷︷︸
aq

.

Otherwise m ′ ≥ 1 must hold (legal Java bytecode can only end with a return or a throw κ)
and, by the maximality of np , it must be the case that bq = b′h for a suitable 1 ≤ h ≤ m ′,
so that (4.10) must have the form

〈bfirst(main) ‖ ξ〉 ⇒np 〈 insp︸︷︷︸
bp

→
→

b′1· · ·
b′
m′
‖ σp〉 ::ap

(1)⇒ 〈 →→
b′1· · ·
b′
m′
‖

σq︷   ︸︸   ︷
insp(σp)〉 ::

aq︷︸︸︷
ap

(6)⇒ 〈bq ‖ σq 〉 :: aq .

In both cases, the ACG contains either a sequential or an exceptional arc from insp to
insq and Aq = Π(Ap), where Π is the propagation rule of the arc. We have:

Ξτq 3 σq = insp(σp)
∈ insp(γτp (Ap)) ∩ Ξτp [By hypothesis and by monotonicity of insp]

⊆ γτq (Π(Ap)) = γτq (Aq ) [By Requirements 4.4 and 4.4].

case b: insp is a return t
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We show the case when t , void, since the other case is simpler (there is no return value to
consider). Then restp is empty and m ′ = 0 (no code is executed after a return in legal Java
bytecode, but the method terminates) and since insp(σp)∈Ξ (definition of returnt), (4.10)
must be in one of these two forms, depending on the emptiness of block b in Rule (4):

〈bfirst(main) ‖ ξ〉 ⇒np 〈 return t︸  ︷︷  ︸
bp

‖ 〈〈lp ‖ t :: sp〉, µp〉︸               ︷︷               ︸
σp

〉 ::

call-time︷                  ︸︸                  ︷
〈bq ‖ 〈〈lc ‖ sc〉, µc〉〉 :: aq︸                          ︷︷                          ︸

ap

(1)⇒ 〈 ‖ 〈〈lp ‖ t〉, µp〉〉 :: 〈bq ‖ 〈〈lc ‖ sc〉, µc〉〉 :: aq

(4)⇒ 〈bq ‖
σq︷              ︸︸              ︷

〈〈lc ‖ t :: sc〉, µp〉〉 :: aq

(4.11)

or

〈bfirst(main) ‖ ξ〉 ⇒np 〈 return t︸  ︷︷  ︸
bp

‖ 〈〈lp ‖ t :: sp〉, µp〉︸               ︷︷               ︸
σp

〉 ::

call-time︷                          ︸︸                          ︷
〈 →→

b′1· · ·
b′
m′
‖ 〈〈lc ‖ sc〉, µc〉〉 :: aq︸                                 ︷︷                                 ︸

ap

(1)⇒ 〈 ‖ 〈〈lp ‖ t〉, µp〉〉 :: 〈 →→
b′1· · ·
b′
m′
‖ 〈〈lc ‖ sc〉, µc〉〉 :: aq

(4)⇒ 〈 →→
b′1· · ·
b′
m′
‖ 〈〈lc ‖ t :: sc〉, µp〉〉 :: aq

(6)⇒ 〈bq ‖ 〈〈lc ‖ t :: sc〉, µp〉〉 :: aq

where, in the latter case, by maximality of np , we have bq = b′h for a suitable 1 ≤ h ≤ m ′.
We only prove the case for (4.11), the other being similar. Consider the configuration
call-time. Since only Rule (2) can stack configurations, call-time was the topmost
one when a call was executed and, for a suitable 1 ≤ w ≤ n , (4.11) must have the form

〈bfirst(main) ‖ ξ〉
⇒nc 〈 call m1 . . .mn

insq
restq

→
→

b′1· · ·
b′
m′
‖ 〈〈lc ‖ vj−1 :: . . . :: vj−π :: . . . :: v0〉, µc〉︸                                        ︷︷                                        ︸

σc

〉 :: aq

(2)⇒ 〈bfirst(mw ) ‖ 〈〈[vj−π :: . . . :: vj−1] ‖ ε〉, µc〉〉 :: ap
⇒np−nc−1 〈bp ‖ σp〉 :: ap
(1)⇒ 〈 ‖ 〈〈lp ‖ t〉, µp〉〉 :: ap
(4)⇒ 〈bq ‖ σq 〉 :: aq ,

where j is the number of stack elements before insc = call m1 . . .mq is executed, π is the
number of parameters of method m , bfirst(mw ) is the block where the implementation of
mw starts and the rules in the portion ⇒np−nc−1 never make the stack lower than at the
beginning of that portion. Moreover, only in this proof we slightly abuse notation and use
v0, . . . , vj−1 to denote the values of variables v0, . . . , vj−1 in σc .

Consider σc = 〈〈lc ‖ vj−1 :: . . . :: vj−π :: . . . :: v0〉, µc〉 and σp = 〈〈lp ‖ t :: sp〉, µp〉. By in-
ductive hypothesis for nc and np we know that σc ∈ γτc (Ac) and σp ∈ γτp (Ap). Let
σe = return t(σp) = 〈〈lp ‖ t〉, µp〉. Then, the ACG contains a final arc from return t to
exit@mw : t , for a suitable 1 ≤ w ≤ n , and Ae = Π(Ap), where Π is the propagation rule

of the arc. The following relations hold
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σe = return t(σp)
∈ return t(γτp (Ap)) [By hypothesis and monotonicity of return]
⊆ γτe (Π(Ap)) = γτe (Ae ) [By Requirement 4.5].

In this case there are two 2−1 arcs (a return value and a side-effect arc) going into
insq (see Fig. 4.3), and Ac and Ae represent the correct approximations of the property of

interest at the sources of these arcs. Let Aq = ΠRV (Ac ,Ae )tΠSE (Ac ,Ae ), where ΠRV

and ΠSE are the propagation rules of the return value and side-effect arcs respectively.
We have

Ξτq 3 σq = d ((makescope mw )(σc))
∈ d ((makescope mw )(γτc (Ac))) ∩ Ξτq [By hypothesis and

monotonicity of d ]
⊆ γτq (ΠRV (Ac ,Ae ) t ΠSE (Ac ,Ae )) [By Requirement 4.9]
= γτq (Aq ).

case c: insp is a throw

If restp is empty and m ′ > 0, the execution (4.10) must have the form

〈bfirst(main) ‖ ξ〉 ⇒np 〈 throw κ︸  ︷︷  ︸
bp

→
→

b′1· · ·
b′
m′
‖ 〈〈lp ‖ e :: sp〉, µp〉︸               ︷︷               ︸

σp

〉 :: ap

(1)⇒ 〈 →→
b′1· · ·
b′
m′
‖

σq︷        ︸︸        ︷
〈〈lp ‖ e〉, µp〉〉 :: ap

(6)⇒ 〈bq ‖ σq 〉 ::
aq︷︸︸︷
ap ,

where, by maximality of np , we have bq = b′h for a suitable 1 ≤ h ≤ m ′. If restp is
non-empty, the execution (4.10) must have the form

〈bfirst(main) ‖ ξ〉 ⇒np 〈 throw κ
catch
restq︸  ︷︷  ︸
bp

→
→

b1
· · ·
bm
‖ 〈〈lp ‖ e :: sp〉, µp〉︸               ︷︷               ︸

σp

〉 :: ap

(1)⇒ 〈

bq︷ ︸︸ ︷
catch
restq

→
→

b′1· · ·
b′
m′
‖

σq︷        ︸︸        ︷
〈〈lp ‖ e〉, µp〉〉 ::

aq︷︸︸︷
ap

since catch is the only bytecode whose semantics can be defined on the exceptional state
σq ∈ Ξτq . In both these cases, by inductive hypothesis we have σp ∈ γτp (Ap), the ACG
contains an exceptional arc from throw κ to catch , and Aq = Π(Ap), where Π is the
propagation rule of the arc. We have

Ξτq 3 σq = throw κ(σp)
∈ throw κ(γτp (Ap)) ∩ Ξτq [By hypothesis and monotonicity of throw]

⊆ γτq (Π(Ap)) = γτq (Aq ) [By Requirement 4.6].

If restp is empty and m ′ = 0, the execution (4.10) must have one of these two forms,
depending on the emptiness of block b in Rule (5):
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〈bfirst(main) ‖ ξ〉 ⇒np 〈 throw κ︸  ︷︷  ︸
bp

‖ 〈〈lp ‖ e :: sp〉, µp〉︸               ︷︷               ︸
σp

〉 ::

call-time︷                          ︸︸                          ︷
〈bq ‖ 〈〈lc ‖ sc〉, µc〉〉 :: aq︸                          ︷︷                          ︸

ap

(1)⇒ 〈 ‖ 〈〈lp ‖ e〉, µp〉〉 :: 〈bq ‖ 〈〈lc ‖ sc〉, µc〉〉 :: aq

(5)⇒ 〈bq ‖
σq︷        ︸︸        ︷

〈〈lc ‖ e〉, µp〉〉 :: aq ,

(4.12)

or

〈bfirst(main) ‖ ξ〉 ⇒np 〈 throw κ︸  ︷︷  ︸
bp

‖ 〈〈lp ‖ e :: sp〉, µp〉︸               ︷︷               ︸
σp

〉 ::

call-time︷                                 ︸︸                                 ︷
〈 →→

b′1· · ·
b′
m′
‖ 〈〈lc ‖ sc〉, µc〉〉 :: aq︸                                 ︷︷                                 ︸

ap

(1)⇒〈 ‖ 〈〈lp ‖ e〉, µp〉〉 :: 〈 →→
b′1· · ·
b′
m′
‖ 〈〈lc ‖ sc〉, µc〉〉 :: aq

(5)⇒〈 →→
b′1· · ·
b′
m′
‖

σq︷        ︸︸        ︷
〈〈lc ‖ e〉, µp〉〉 :: aq

(6)⇒〈bq ‖ σq 〉 :: aq

where, by maximality of np , we have bq = b′h for a suitable 1 ≤ h ≤ m ′. We only prove
(4.12), the other being similar. Consider configuration call-time. Since only Rule (2)
can stack configurations, it was the tompost one when the call was executed and (4.12)
must have the form

〈bfirst(main) ‖ ξ〉 ⇒nc 〈 call m1 . . .mn

insq
restq

→
→

b′1· · ·
b′
m′
‖

σc︷                                        ︸︸                                        ︷
〈〈lc ‖ vj−1 :: . . . :: vj−π :: . . . :: v0〉, µc〉〉 :: aq

(2)⇒〈bfirst(mw ) ‖ 〈〈[vj−π :: . . . :: vj−1] ‖ ε〉, µq 〉〉 :: 〈bq ‖ 〈〈lq ‖ sq 〉, µq 〉〉 :: aq
⇒np−nc−1 〈bp ‖ σp〉 :: ap
(1)⇒〈 ‖ 〈〈lp ‖ e〉, µp〉〉 :: ap
(5)⇒〈bq ‖ σq 〉 :: aq ,

where j is the number of stack elements before insc = call m1 . . .mq is executed, π is the
number of parameters of method m , bfirst(mw ) is the block where the implementation of
mw starts and the rules in the portion ⇒np−nc−1 never make the stack lower than at the
beginning of that portion. We recall that, only in this proof, we slightly abuse notation and
use v0, . . . , vj−1 to denote the values of variables v0, . . . , vj−1 in σc . By the semantics of
Java bytecode, since σq ∈ Ξ, the only possibility for insq is to be a catch.

Consider σc = 〈〈lc ‖ vj−1 :: . . . :: vj−π :: . . . :: v0〉, µc〉 and σp = 〈〈lp ‖ e :: sp〉, µp〉. By in-
ductive hypothesis for nc and np we know that σc ∈ γτc (Ac) and σp ∈ γτp (Ap). Let
σe = throw κ(σp) = 〈〈lp ‖ e〉, µp〉. Then, the ACG contains a final arc from throw κ to
exit@mw : t , for a suitable 1 ≤ w ≤ n , Ae = Π(Ap), where Π is the propagation rule #13

(Definition 4.1), and the following relations hold

σe = throw t(σp)
∈ throw t(γτp (Ap)) [By hypothesis and monotonicity of throw]
⊆ γτe (Π(Ap)) = γτe (Ae ) [By Requirement 4.5].
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In this case there are two arcs (a side-effect and an exceptional arc) going into catch

(see Fig. 4.4), and Ac and Ae represent the correct approximations of the property of
interest at the sources of these arcs. Let Aq = ΠE (Ac) t ΠSE (Ac ,Ae ), where ΠE and
ΠSE are the propagation rules of the exceptional and the side-effects arcs respectively.
We have

Ξτq 3 σq = d ((makescope mw )(σc))
∈ d ((makescope mw )(γτc (Ac))) ∩ Ξτq [By hypothesis and

monotonicity of d ]
⊆ γτq (ΠE (Ac) t ΠSE (Ac ,Ae )) = γτq (Aq ) [By Requirement 4.11].

Rule (2). By definition of makescope, (4.10) must have the form

〈bfirst(main) ‖ ξ〉 ⇒np 〈 call m1 . . .mn︸          ︷︷          ︸
bp

→
→

b′1· · ·
b′
m′
‖ 〈〈lp ‖ vj−1 :: . . . :: vj−π :: . . . :: v0〉, µp〉︸                                        ︷︷                                        ︸

σp

〉 ::ap

(2)⇒ 〈
bq︷   ︸︸   ︷

bfirst(mw ) ‖
σq︷                            ︸︸                            ︷

〈〈[vj−π :: . . . :: vj−1] ‖ ε〉, µp〉〉 :: aq ,

where j is the number of stack elements before call m1 . . .mq is executed, π is the num-
ber of parameters of method m and bfirst(mw ) is the block where the implementation of
mw starts. In this case, the ACG contains a parameter passing arc from call m1 . . .mq to
first(mw ) , where first(mw ) is the first instruction of mw for a suitable w ∈ [1..n] and
Aq = Π(Ap), where Π is the propagation rule of the arc. We have

σq = makescope(σp)
∈ makescope(γτp (Ap)) [By hypothesis and monotonicity of makescope]
⊆ γτq (Π(Ap)) = γτq (Aq ) [By Requirement 4.8].

Rule (3). Let i and j be the number of local variables and stack elements before insp =

call m1 . . .mq is executed and π be the number of parameters of methods mw . In this case,
(4.10) must have the form

〈bfirst(main) ‖ ξ〉
⇒np 〈 call m1 . . .mn

restp︸          ︷︷          ︸
bp

→
→

b′1· · ·
b′
m′
‖ 〈〈lp ‖ vj−1 :: . . . :: vj−π+1 :: null :: . . . :: v0〉, µp〉︸                                                     ︷︷                                                     ︸

σp

〉 ::ap

(3)⇒〈
bq︷︸︸︷

restp
→
→

b′1· · ·
b′
m′
‖

σq︷                      ︸︸                      ︷
〈〈lp ‖ `〉, µp[` 7→ npe]〉〉 :: aq

when restp is non-empty, while otherwise it has the form

〈bfirst(main) ‖ ξ〉
⇒np 〈 call m1 . . .mn︸          ︷︷          ︸

bp

→
→

b′1· · ·
b′
m′
‖ 〈〈lp ‖ vj−1 :: . . . :: vj−π+1 :: null :: . . . :: v0〉, µp〉︸                                                     ︷︷                                                     ︸

σp

〉 ::ap

(3)⇒〈 →→
b′1· · ·
b′
m′
‖

σq︷                      ︸︸                      ︷
〈〈lp ‖ `〉, µp[` 7→ npe]〉〉 :: aq

(6)⇒〈bq ‖ σq 〉 :: aq
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where, by maximality of np , we have bq = b′h for a suitable 1 ≤ h ≤ m ′. In both cases,
the ACG contains an exceptional arc from insp to insq , and Aq = Π(Ap), where Π is the
propagation rule of the arc. We have

Ξτq 3 σq = d ((makescope mw )(σp)) ∩ Ξτq
⊆ γτq (Π(Ap)) = γτq (Aq ) [By Requirement 4.7].

�



5

Possible Reachability Analysis of Program Variables

In this chapter we present the first instantiation of the general parameterized framework
for constraint-based static analyses defined in Chapter 4. Namely, we define a new ab-
stract domain Reach for the static analysis of the reachability between program variables,
through dynamically allocated memory locations. Reachability from a program variable
v to a program variable w states that starting from v it is possible to follow a path of
memory locations that leads to the object bound to w . This useful piece of information is
important for improving the precision of other static analyses, such as side-effects, field
initialization, cyclicity and path-length analysis, as well as more complex analyses built
upon them, such as nullness and termination analysis. We define the notion of reachability,
instantiate the parameters of the framework and prove that the requirements imposed by
the framework are satisfied. This result implies the soundness of our reachability analysis.

Our reachability analysis is an example of a possible analysis. Namely, for each pro-
gram point p, we determine a set of ordered pairs of variables of reference type 〈v ,w〉
such that v might reach w at p when the program is executed on an arbitrary input. On the
other hand, if a pair 〈v ,w〉 is not present in our over-approximation at p, it means that v
definitely does not reach w at p. We have implemented the analysis inside the Julia static
analyzer. Our experiments of analysis of non-trivial Java and Android programs show
the improvement of precision due to the presence of reachability information. As a side-
effect, reachability analysis actually reduces the overall costs of nullness and termination
analysis.

This chapter is based on the work published in [64] and its extended version [61].

5.1 Introduction

In this chapter we present the first instantiation of the general parameterized framework
for constraint-based static analyses defined in Chapter 4. Namely, we define a new ab-
stract domain Reach for the static analysis of the reachability between program variables,
through dynamically allocated memory locations. We say that a variable v reaches a vari-
able w if w is bound to an object reachable from v , by following the fields of the object
bound to v , recursively. This notion is distinct from sharing: if v reaches w then v and w
share, but the converse is in general false. In this sense reachability is more precise, that
is, it induces a finer, more concrete abstraction of the computational states than sharing
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analysis. Reachability can of course be abstracted from very precise abstractions of the
memory, such as the result of a shape analysis. However, we want an analysis that uses
the most abstract domain for reachability analysis, which coincides with the reachability
property itself. Hence, in this chapter, our abstract domain Reach will just be made of or-
dered pairs of variables 〈v ,w〉, stating that v reaches w . Those pairs are propagated along
all possible execution paths by using a constraint-based technique, proved correct by ab-
stract interpretation. The implementation has been performed inside the Julia analyzer [4],
which allows us to discuss the actual benefits of our reachability analysis. It is worth not-
ing that our reachability analysis provides, for each program point, an over-approximation
of the actual reachability information available at that point. The over-approximation cor-
responding to a given program point contains the complete actual reachability information
concerning that point, but it might also contain some spurious pairs of variables (i.e., false
negatives) due to the simple abstract domain that we use. On the other hand, we are sure
that the pairs of variables which are not included in the over-approximation are definitely
not reachable one from another at that program point.

Both reachability (i.e., calculated over-approximation) and non-reachability (i.e., pairs
not belonging to the calculated over-approximation) are useful in many situations. By just
considering our work related to the Julia static analyzer, we find the following uses:

for side-effects analysis Side-effects analysis tracks (among other things) which param-
eters p of a method might be affected by its execution in the sense that the method
might update a field of an object reachable from p. Namely, if the method performs
an assignment a.f=b, this affects p only if p reaches a. Therefore, if we know that
p definitely does not reach a right before the assignment is performed, the latter does
not affect p. If we used non-sharing rather than non-reachability information, that
choice would lead to a loss of precision, since it might be the case that p and a share
but the assignment modifies an object unreachable from p.

for field initialization analysis It is often the case that a field is initialized by all of
the constructors of its defining class before that field is read by any of these con-
structors. Spotting this frequent situation is important for many analyses, includ-
ing nullness [68, 86]. Hence, we want to know whether a field read operation
a=expression.f inside a constructor can actually read the field f of the this object,
which is being initialized by its constructor. This might happen only if this reaches
expression. Hence, if we know that this definitely does not reach expression
right before the assignment is executed, that assigment will not read the field f of
this. Again, sharing would be less precise here.

for cyclicity analysis Having an acyclic pointer b, i.e., a pointer to a cyclical data struc-
ture, an assignment a.f=b might make a cyclical (i.e., point to a cyclical data struc-
ture), only if b reaches a. Originally, this analysis was built upon sharing informa-
tion [74], but analysis of reachable variables gives better precision.

for path-length analysis Path-length is a data structure measure used in termination
analysis [87]. It is the maximum number of pointer dereferences that can be followed
from a program variable. An assignment a.f=b can only modify the path-length of
the program variables that share with a, according to the original definition of path-
length [87]. Reachability analysis improves this approximation, since the path-length
of a program variable v is actually modified only if v reaches a.
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Julia already includes the four static analyses mentioned above (among tens of others).
These analyses are used as building blocks of larger tools, such as nullness checker and
termination checker tools. The former spots the points in which a program might throw
a null-pointer exception at run-time, while the latter spots which method calls might di-
verge at run-time. A tool performs its supporting static analyses (building blocks) in dis-
tinct threads and hence runs in parallel on multicore hardware. When a supporting static
analysis needs the results of another analysis, it suspends itself until those results become
available. The analyzer does not deadlock since a partial ordering is imposed on the anal-
yses: if an analysis x needs the results of an analysis y , then y never asks for the results
of x , not even indirectly.

At the end of this chapter, we provide an experimental evaluation of our reachability
analysis. Namely, we show that reachability analysis is more precise than a sharing anal-
ysis, when reachability information must be computed. We also report the effects of the
reachability analysis on the precision of side-effects, field initialization and cyclicity anal-
yses. The effects on path-length analysis can only be measured indirectly, by checking if
the termination analysis, built over the path-length analysis, increases its precision. We
show that reachability increases the overall precision of the nullness tool of Julia, for the
analysis of non-trivial Java and Android programs. On the other hand, the performance
of the termination tool is not improved for the programs mentioned above. Instead, it is
well improved for the analysis of a set of programs from the international termination
competition [2], where 6 more examples are shown to terminate thanks to the addition of
reachability analysis. We explain this with the observation that, in most real cases such
as the large programs that we have analyzed, termination is related to loops over inte-
ger counters rather than to recursion over recursive data structures. The samples from the
termination competition are small (a few hundreds lines of source code), which means
that the shape of the memory can be more easily inferred; they ban complications such as
static fields and calls to the Java library; they are often devised with the goal of showing
specific features of the competing analyzers and are consequently often unrealistic. An
unexpected and surprising effect of reachability is, however, an increase in speed for both
tools: adding an extra static analysis (reachability) reduces the total run-time the tools
(reachability run-time included). This can be actually explained: reachability increases
the precision of other analyses (side-effects, field initialization, cyclicity. . . ) and hence
helps their convergence and makes them use smaller abstractions (i.e., they track less spu-
rious information). Moreover, reachability is run in parallel to other analyses, so that it
does not actually add to the total cost of the tools (as long as enough processing cores are
available).

The rest of the chapter is organized as follows. Section 5.2 introduces different no-
tions of reachability needed by our formalization. In Section 5.3 we show how differ-
ent parameters of the constraint-based framework can be instantiated in order to obtain
an over-approximation of the actual reachability information available at every program
point statically. Section 5.4 shows that this instantiation actually satisfies the requirements
imposed by the framework, which implies that our reachability analysis has the least so-
lution and that it is sound. In Section 5.5 we show the experimental evaluation of the
implementation of our reachability analysis inside the Julia static analyzer: we show how
the precision of Julia improved after the reachability analysis was implemented.
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5.2 Property of Reachability Between Variables

In this section we formalize the notion of reachability between two program variables. In
order to do that we first determine the locations reachable from an arbitrary location `.
Intuitively, we collect all the locations held in the fields of the object bound to `, or in the
elements of the array bound to `. We then consider the contents of the fields of the objects
or elements of the arrays held at these locations and so on until a fixpoint is reached. Let
us formalize this intuition.

Definition 5.1 (Locations reachable from a location). Given τ∈T , we define the set of
locations reachable from a location `∈ L in a memory µ as Lµ(`) =

⋃
i≥0

Li
µ(`), where Li

µ(`)

are the locations reachable from ` in at most i steps, defined as:

Li
µ(`) =


` if i = 0
Li−1
µ (`) ∪ ⋃

`1∈Li−1
µ (`)

(rng(µ(`1).φ) ∩ L) if i > 0

Hence, if an object (an array) µ(`1) is bound to a location reachable from `, then also
rng(µ(`1).φ) ∩ L, the locations held in µ(`1)’s fields (elements) are reachable from `.

Lemma 5.2 is a technical result stating that if we write a location `′′ into a field
(element) of an object (array), then the set of locations reachable from a given location `
might be enlarged with at most the locations reachable from `′′.

Lemma 5.2. Let µ be a memory, `′, `′′ ∈ dom(µ) and d ∈ dom(µ(`′).φ) (d is a field of
µ(`′).φ if µ(`).type ∈ K or an index of µ(`).type ∈ A). Let µ′ = µ[(µ(`′).φ)(d ) 7→ `′′].
Then Lµ′ (`) ⊆ Lµ(`) ∪ Lµ(`′′) for all ` ∈ dom(µ).

Proof. Let ` ∈ dom(µ). We prove, by induction on i , that Li
µ′ (`) ⊆ Li

µ(`) ∪ Li
µ(`′′), which

entails the thesis. If i = 0, we have L0
µ′ (`) = {`} ⊆ {`} ∪ L0

µ(`′′) = L0
µ(`) ∪ L0

µ(`′′). Assume
now that Li−1

µ′ (`) ⊆ Li−1
µ (`) ∪ Li−1

µ (`′′). We have

Li
µ′ (`) = Li−1

µ′ (`) ∪ ⋃
`1∈Li−1

µ′ (`)
(rng(µ′(`1).φ) ∩ L)

⊆ Li−1
µ (`) ∪ Li−1

µ (`′′) ∪ ⋃
`1∈Li−1

µ (`)∪Li−1
µ (`′′)

(rng(µ′(`1).φ) ∩ L)

= Li−1
µ (`) ∪ Li−1

µ (`′′) ∪ ⋃
`1∈Li−1

µ (`)
(rng(µ′(`1).φ) ∩ L) ∪ ⋃

`1∈Li−1
µ (`′′)

(rng(µ′(`1).φ) ∩ L)

= Li−1
µ (`) ∪ Li−1

µ (`′′) ∪ ⋃
`1∈Li−1

µ (`)r{`′}
(rng(µ′(`1).φ) ∩ L) ∪ (rng(µ′(`′).φ) ∩ L)

∪ ⋃
`1∈Li−1

µ (`′′)r{`′}
(rng(µ′(`1).φ) ∩ L) ∪ (rng(µ′(`′).φ) ∩ L)

⊆ Li−1
µ (`) ∪ Li−1

µ (`′′) ∪ ⋃
`1∈Li−1

µ (`)r{`′}
(rng(µ(`1).φ) ∩ L) ∪ (rng(µ(`′).φ) ∩ L) ∪ {`′′}

∪ ⋃
`1∈Li−1

µ (`′′)r{`′}
(rng(µ(`1).φ) ∩ L) ∪ (rng(µ(`′).φ) ∩ L) ∪ {`′′}

= Li−1
µ (`) ∪ Li−1

µ (`′′) ∪ ⋃
`1∈Li−1

µ (`)
(rng(µ(`1).φ) ∩ L) ∪ ⋃

`1∈Li−1
µ (`′′)

(rng(µ(`1).φ) ∩ L) ∪ {`′′}
= Li

µ(`) ∪ Li
µ(`′′) ∪ {`′′}

= Li
µ(`) ∪ Li

µ(`′′)

since `′′ ∈ Li
µ(`′′). �
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L0
σ(l1) = {`2}

L1
σ(l1) = Lσ(l1) = {`1, `2}

L0
σ(l2) = Lσ(l2) = ∅

L0
σ(l3) = Lσ(l3) = {`3}

L0
σ(l4) = {`4}

L1
σ(l4) = {`2, `3, `4}

L2
σ(l4) = Lσ(l4) = {`1, `2, `3, `4}

L0
σ(l5) = {`5}

L1
σ(l5) = Lσ(l5) = {`1, `3, `5}

Fig. 5.1. Example of computation of reachable locations

We say that a variable a reaches a location ` if the former is bound to a location that
reaches `.

Definition 5.3 (Locations reachable from a variable). Given τ∈T , we define the set of
locations reachable from a variable a ∈dom(τ) in a state σ= 〈ρ, µ〉∈Στ as Lσ(a)=Lµ(ρ(a))
if ρ(a) ∈ L and Lσ(a)=∅ otherwise.

We say that a variable is reachable from another one if the former is bound to a location
reachable from the latter.

Definition 5.4 (Reachability between variables). Let τ∈T ,σ= 〈ρ, µ〉∈Στ and variables
a , b ∈dom(τ). We say that b is reachable from a in σ or, equivalently, that a reaches b in
σ, denoted as a σb, iff ρ(b) ∈ Lσ(a).

Remark 5.5. It is worth noting that two variables a and b share in a state σ if and only if
Lσ(a) ∩ Lσ(b) , ∅.

Example 5.6. Consider the state σ ∈ Στ from Example 3.16. In Fig. 5.1 we give, for each
variable li ∈ dom(τ), and for every j ≥ 0, the set of reachable locations from li in σ in at
most j steps until the fixpoint is reached. Therefore, we conclude that: l1 σl1, l1 σl2,
l3 

σl3, l4 σl1, l4 σl2, l4 σl3, l4 σl4, l5 σl1, l5 σl3, l5 σl5. ut
Let us show a very important and useful result: given two variables a and b and two

states which assign the same values to both a and b, and each location reachable from the
former to the same object, then we can state that a reaches b in the first state if and only
if a reaches b in the second one.

Lemma 5.7. Let τ, τ′ ∈ T , σ = 〈ρ, µ〉 ∈ Στ and σ′ = 〈ρ′, µ′〉 ∈ Στ′ . Let a , b ∈ dom(τ) and
a ′, b′ ∈ dom(τ′) be such that

1. ρ(a) = ρ′(a ′)
2. ρ(b) = ρ′(b′)
3. dom(µ) ⊆ dom(µ′)
4. for all ` ∈ Lσ(ρ(a)) we have µ(`) = µ′(`).

Then a σb if and only if a ′ σ′b′.
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Proof. Since ρ(b) = ρ′(b′), it is enough to prove that Lσ(a) = Lσ′ (a ′). In fact, if
Lσ(a) = Lσ′ (a ′) then ρ(b) ∈ Lσ(a) if and only if ρ′(b′) ∈ Lσ′ (a ′), i.e., a σb if and
only if a ′ σ′b′. If ρ(a) = ρ′(a ′) < L then Lσ(a) = Lσ′ (a ′) = ∅ (Definition 5.3) and the
thesis trivially holds. Assume that ρ(a) = ρ′(a ′) ∈ L. We prove that Li

µ(ρ(a)) = Li
µ′ (ρ

′(a ′))
for every i ≥ 0, by induction on i .
Base case: i = 0. We have L0

µ(ρ(a)) = {ρ(a)} = {ρ′(a ′)} = L0
µ′ (ρ

′(a ′)).
Induction step: assume that i > 0 and Li−1

µ (ρ(a)) = Li−1
µ′ (ρ′(a ′)). We have

Li
µ(ρ(a)) = Li−1

µ (ρ(a)) ∪ ⋃
`∈Li−1

µ (ρ(a))
(rng(µ(`).φ) ∩ L) [By Definition 5.1]

= Li−1
µ′ (ρ′(a ′)) ∪ ⋃

`∈Li−1
µ′ (ρ′(a ′))

(rng(µ(`).φ) ∩ L) [By hypothesis]

= Li−1
µ′ (ρ′(a)) ∪ ⋃

`∈Li−1
µ (ρ′(a))

(rng(µ′(`).φ) ∩ L) [By points (3) and (4)]

= Li
µ′ (ρ

′(a ′)). [By Definition 5.1]

�

Note that points 3 and 4 of Lemma 6.15 hold, in particular, when µ = µ′, but the more
general form of the lemma will be useful later.

We observe that, in a programming language such as Java bytecode, an activation
of a method can only access locations reachable from its actual parameters or allocated
during its execution1. Hence we can safely state that the activation does not read nor
write into the locations L, already allocated at the time of call, but not reachable from
the actual parameters of the method. Those locations keep their value unchanged during
the execution of the activation of the method. For the same reason, no location in L is
reachable from the return value of the activation of the method, if any. Moreover, the
locations in L are not written inside the fields (respectively, array elements) of the objects
(respectively, arrays) reachable by the activation of the method. The following proposition
formalizes these intuitions. Although technical, it is important since it bounds the side-
effects of a method to the locations not in L. As a consequence, we can be sure that
the execution of a method will never affect the locations reachable from variables that
do not share with the actual parameters of the call. We will exploit this observation for
the definition of the abstract semantics, later, to provide a sound approximation of the
side-effects of the execution of a method and of the reachability for its return value.

Proposition 5.8. Let σ = 〈〈l ‖ s〉, µ〉 = 〈ρ, µ〉 and σ′ = 〈〈l′ ‖ s′〉, µ′〉 = 〈ρ′, µ′〉 be the states
right before two adjacent bytecode instructions ins = call κ1.m . . . κn .m and ins′,catch
are executed. Namely, σ′ is a non-exceptional state obtained at the end of execution of a
callee κw .m(~t): t in σ, for a w ∈ [1..n], the topmost π stack elements of σ (s|s|−1, . . . , s|s|−π)
and the topmost operand stack element of σ′ (s|s′ |−1) contain the parameters of the callee
and its return value, respectively. We define Lσ, the set of locations not reachable from
the actual parameters of the callee in σ:

Lσ = dom(µ) r
⋃

i∈[|s|−π..|s|)
Lσ(si ).

Then, the following conditions hold:
1 If we considered full Java bytecode, we would also include the locations reachable from the

static fields.
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1. ∀` ∈ Lσ.µ(`) = µ′(`),
2. s′[|s′| − 1] < Lσ and
3. ∀` ∈ dom(µ′) rLσ.rng(µ′(`).φ) ∩ Lσ = ∅.

Proof. It is enough to prove that, during the execution of the callee(s) m1, . . . ,mn and of
the methods that they might call, the locations held in the stack elements or local variables
are not in Lσ and do not reach any location in Lσ. This entails the thesis since

1. only putfieldf and arraystore αmodify objects or arrays in memory. They do it inside
an object or array pointed by a location `′ on the stack. Since, by hypothesis, `′ < Lσ,
we have µ(`) = µ′(`) for all ` ∈ Lσ;

2. the returned value is left on top of the stack of the callee(s). By hypothesis, it does
not belong to Lσ;

3. at the beginning of the execution of the callee(s), this condition holds since ` would
be a location reachable from the parameters of the call. Hence µ′(`).φ can only con-
tain, then, locations not in Lσ, since those in Lσ are, by definition, unreachable
from the parameters. Later, during the execution of the callee(s), only putfield f and
arraystore α modify objects or arrays in memory. They do it by writing, inside a field
or an array, a value held on the stack. By hypothesis, that value is not in Lσ. Hence
also this condition holds.

It remains to prove, then, the invariant that, during the execution of the callee(s) and
of the methods that they might call, the locations held in the stack elements or local
variables are not in Lσ and do not reach any location in Lσ. This holds at the beginning
of the execution of the callee(s) since, at the beginning of the execution of a method or
constructor, the stack is empty and the local variables hold the actual parameters of the
call that, by definition of Lσ, are not in Lσ and do not reach any location in Lσ. During
the subsequent execution of the callee(s) and of the methods or constructors that it might
call, most bytecode instructions simply move or duplicate values on the stack or to and
from the stack and the local variables, hence keeping the invariant true. Only putfield f
and arraystore α modify objects or arrays in memory. They do it by writing, inside a
field or an array, a value held on the stack. By hypothesis, that value is not in Lσ and
does not reach any location in Lσ. Also in this case, the invariant is hence maintained.
Finally, instructions getfield f and arrayload α push on the stack a value v reachable
from a location ` on the operand stack. The invariant entails that ` is not in Lσ and
does not reach any location in Lσ. Hence v , which is reachable from `, is not in Lσ and
cannot reach a any location in Lσ, or otherwise ` would reach the same location, which
is impossible. Also in this last case the invariant is hence maintained. �

Let us explain the meaning of these three points.

1. For each location `, not reachable from the actual arguments of the method at ins
(i.e., ` ∈ Lσ), the object or array bound to ` at ins (µ(`)) is the same one bound to `
at ins′ (µ′(`)), i.e., the execution of the method does not modify the values bound to
locations in Lσ.

2. The method’s return value s′[|s′| − 1], at ins′ is not a location in Lσ. Anyway, that
value might be a location ` that did not exist at call time (i.e., at ins), when ` <
dom(µ). In this case, the location ` might have been allocated during the execution
of the activation of the method and would consequently be bound to a new object or
array.
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3. Every location ` available at ins′ (i.e., at the end of the execution of the activation of
the method), that moreover does not belong to Lσ (i.e., ` is reachable from the actual
arguments of the method at ins) can reach only the location which are reachable
from the actual arguments at ins or the locations that have been allocated during the
execution pf the method.

Lemmas 5.9, 5.10 and 5.11 highlight some important properties of the set of the loca-
tions which are not reachable from the actual arguments of a method at the point where
that method is invoked (Lσ). This set has been introduced in Proposition 5.8. We have
used these results in the proofs of Lemmas 4.6-4.8.

Suppose that after a method is executed, there exists a variable bound to a location
that was reachable from an actual parameter of the method before its execution (state σ).
Lemma 5.9 shows that this variable does not share with any location belonging to Lσ.

Lemma 5.9. Under the hypotheses of Proposition 5.8, consider a variable x such that
ρ′(x ) ∈ L rLσ. Then Lσ′ (x ) ∩ Lσ=∅.

Proof. We prove that ∀i ∈ N.Li
σ′ (x ) ∩ Lσ = ∅, and we do it by induction on i .

Base case: Since L0
σ′ (x ) = ρ′(x ) < Lσ, we have L0

σ′ (x ) ∩ Lσ = ∅.
Inductive step: Suppose that Ln

σ′ (x ) ∩ Lσ = ∅, and let us prove that Ln+1
σ′ (x ) ∩ Lσ = ∅.

It is worth noting that Ln
σ′ (x ) ⊆ dom(µ′). By the third condition of Proposition 5.8, we

have ∀` ∈ dom(µ′)rLσ.rng(µ′(`).φ)∩Lσ = ∅. Therefore, Ln
σ′ (x ) ⊆ dom(µ′)rLσ, since

Ln
σ′ (x )∩Lσ = ∅ and Ln

σ′ (x ) ⊆ dom(µ′). This entails that ∀` ∈ Ln
σ′ (x ).rng(µ′(`).φ)∩Lσ =

∅, which implies ⋃
`∈Ln

σ′ (x )

(rng(µ′(`).φ) ∩ L) ∩ Lσ = ∅. (5.1)

We have:

Ln+1
σ′ (x ) ∩ Lσ = (Ln

σ′ (x ) ∪ ⋃
`∈Ln

σ′ (x )
(rng(µ′(`).φ) ∩ L)) ∩ Lσ [By Definition 5.3]

= (Ln
σ′ (x ) ∩ Lσ) ∪ (

⋃
`∈Ln

σ′ (x )(rng(µ′(`).φ) ∩ L) ∩ Lσ) [By Distributivity]
= ∅ ∪ ∅ = ∅ [By hyp. and (5.1)]

�

The following lemma states that the set of locations reachable from the variables not
sharing with any actual parameter of a method before its execution, cannot be affected by
that execution.

Lemma 5.10. Under the hypotheses of Proposition 5.8, let x ∈ dom(τ) ∩ dom(τ′) be a
variable such that ρ(x ) = ρ′(x ) ∈ Lσ and Lσ(x ) ⊆ Lσ. Then Lσ(x ) = Lσ′ (x ).

Proof. We prove that, ∀i ∈ N.Li
σ(x ) = Li

σ′ (x ), and we do it by induction on i .
Base case: L0

σ(x ) = ρ(x ) = ρ′(x ) = L0
σ′ (x ).

Inductive step: Suppose that Ln
σ(x ) = Ln

σ′ (x ) and let us prove that Ln+1
σ (x ) = Ln+1

σ′ (x ). By
the first condition of Proposition 5.8, we have that ∀` ∈ Lσ.µ(`) = µ′(`), and therefore
∀` ∈ Ln

σ′ (x ) = Ln
σ(x ) ⊆ Lσ(x ) ⊆ Lσ.µ(`) = µ′(`), which entails⋃

`∈Ln
σ (x )

(rng(µ(`).φ) ∩ L) =
⋃

`∈Ln
σ′ (x )

(rng(µ′(`).φ) ∩ L). (5.2)
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We have:

Ln+1
σ′ (x ) = Ln

σ′ (x ) ∪⋃
`∈Ln

σ′ (x )(rng(µ′(`).φ) ∩ L) [By Definition 5.3]
= Ln

σ(x ) ∪⋃
`∈Ln

σ (x )(rng(µ(`).φ) ∩ L) [By hypothesis and (5.2)]
= Ln+1

σ (x ) [By Definition 5.3]

�

The following lemma shows that if a variable is bound to the same location before and
after a method is executed, then that location reaches a location in Lσ before the method
is executed if and only if it reaches a location in Lσ after the mehod is executed.

Lemma 5.11. Under the hypotheses of Proposition 5.8, for any variable x ∈ dom(τ) ∩
dom(τ′) such that ρ(x ) = ρ′(x ), it holds that Lσ(x ) ∩ Lσ = Lσ′ (x ) ∩ Lσ.

Proof. We prove that for any i ∈ N, Li
σ(x )∩Lσ = Li

σ′ (x )∩Lσ and we do it by induction
on i .
Base case: L0

σ(x ) ∩ Lσ = {ρ(x )} ∩ Lσ = {ρ′(x )} ∩ Lσ = L0
σ′ (x ) ∩ Lσ.

Inductive step: Suppose that Ln
σ(x ) ∩ Lσ = Ln

σ′ (x ) ∩ Lσ and let us prove that Ln+1
σ (x ) ∩

Lσ = Ln+1
σ′ (x ) ∩ Lσ. Consider a location ` ∈ Ln

σ1
(x ), where σ1 ∈ {σ,σ′}. If ` < Lσ, then

there exists an actual parameter p of method m (Proposition 5.8) such that ` is reachable
from p in σ1. In that case, all the locations reachable from ` are reachable from p in σ1
as well, i.e.

∀` ∈ Ln
σ1

(x ) rLσ.rng(µ1(`).φ) ∩ Lσ = ∅. (5.3)

Consider now a location ` ∈ Ln
σ(x )∩Lσ = Ln

σ′ (x )∩Lσ. In this case, since ` ∈ Lσ, by the
first condition of Proposition 5.8, µ(`) = µ′(`), which entails⋃

`∈Ln
σ (x )∩Lσ

((rng(µ(`)) ∩ L) ∩ Lσ) =
⋃

`∈Ln
σ′ (x )∩Lσ

((rng(µ′(`)) ∩ L) ∩ Lσ). (5.4)

We have

Ln+1
σ′ (x ) ∩ Lσ = (Ln

σ′ (x ) ∪⋃
`∈Ln

σ′ (x )(rng(µ′(`).φ) ∩ L)) ∩ Lσ [By Definition 5.3]
= (Ln

σ′ (x ) ∩ Lσ) ∪⋃
`∈Ln

σ′ (x )((rng(µ′(`).φ) ∩ L) ∩ Lσ) [By Distributivity]
= (Ln

σ′ (x ) ∩ Lσ) ∪⋃
`∈Ln

σ′ (x )∩Lσ ((rng(µ′(`).φ) ∩ L) ∩ Lσ) [By (5.3)]
= (Ln

σ(x ) ∩ Lσ) ∪⋃
`∈Ln

σ (x )∩Lσ ((rng(µ′(`).φ) ∩ L) ∩ Lσ) [By hyp. and (5.4)]
= (Ln

σ(x ) ∩ Lσ) ∪⋃
`∈Ln

σ (x )((rng(µ′(`).φ) ∩ L) ∩ Lσ) [By (5.3)]
= (Ln

σ(x ) ∪⋃
`∈Ln

σ (x )(rng(µ′(`).φ) ∩ L)) ∩ Lσ [By Distributivity]
=Ln+1

σ (x ) ∩ Lσ [By Definition 5.3]

�

We also introduce a static notion of reachability between types. The intuition is that a
type t reaches a type t′ whenever a variable of static (declared) type t might reach, in some
state, another variable of static type t′. In this sense, as we will prove later (Lemma 5.17),
this is a weaker, conservative approximation of the dynamic notion of reachability of
Definition 5.4: if there exists a state σ where variable a reaches variable b, then the static
type of a must reach the static type of b, but the converse does not hold in general.
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Definition 5.12 (Reachability between types). Let t∈T. The set of types reachable from
t is T(t) =

⋃
i≥0

Ti (t), where Ti (t) are the types reachable from t in at most i steps:

Ti (t) =


compatible(t) if i = 0
Ti−1(t) ∪ ⋃

κ∈Ti−1(t)∩K
κ′.f :t′∈F(κ)

compatible(t′) ∪ ⋃
t′[ ]∈Ti−1(t)∩A

compatible(t′) if i > 0

We say that t′ ∈ T is reachable from t if t′ ∈ T(t) and we write it as t t′.

Let us now show some important results regarding type reachability. Namely, we show
that if a type reaches another type, then the former also reaches all possible supertypes of
the latter (Lemma 5.13) and that the set of reachable types of a type t is included in the set
of reachable types of all t’s supertypes (Lemmas 5.14 and 5.15). These lemmas are used
for the proofs of Lemmas 5.35 and 5.40.

Lemma 5.13. If t t′ then for every t′′ such that t′ ≤ t′′ (i.e., for every supertype of t′),
t t′′ holds as well.

Proof. We prove that, for every i ≥ 0, if t′ ∈ Ti (t) then t′′ ∈ Ti (t) for every t′′ such that
t′ ≤ t′′. This entails the result for T(t) and hence the thesis. Assume hence i = 0. By
Definition 5.12 we have t′ ∈ compatible(t) and by Lemma 3.5 we have t′′ ∈ compatible(t)
i.e., t′′ ∈ T0(t). Let now i > 0 and assume, by inductive hypothesis, that t′′ ∈ Ti−1(t).
Since t′ ∈ Ti (t), by Definition 5.12 we have two cases:

• if t′ ∈ Ti−1(t) then, by inductive hypothesis, also t′′ ∈ Ti−1(t) which entails t′′ ∈ Ti (t);
• if t′ < Ti−1(t) then, by Definition 5.12, t′ ∈ compatible(t1), where

– there exists κ ∈ Ti−1(t) ∩ K and κ′.f : t1 ∈ F(κ) or
– there exists t1[ ] ∈ Ti−1(t) ∩ A.
In both cases, by Definition 5.12, compatible(t1) ⊆ Ti (t). Since t′ ≤ t′′, by Lemma 3.5
we have t′′ ∈ compatible(t1) and hence t′′ ∈ Ti (t).

�

Lemma 5.14. Let t∈T and i ≥ 0. The set Ti (t) is closed w.r.t. ≤.

Proof. The set compatible(t′) is closed w.r.t. ≤ for every t′ ∈ T. The thesis follows by
induction on i and Definition 5.12. �

Lemma 5.15. Let t, t′ ∈T be such that t ≤ t′. Then, T(t)⊆T(t′).

Proof. We prove that, for every i ≥ 0, Ti (t) ⊆ Ti (t′), by induction over i . If i = 0 the
thesis follows by Lemma 3.6. Assume hence that Ti−1(t) ⊆ Ti−1(t′), for i > 0. Then,

Ti (t) = Ti−1(t) ∪ ⋃
κ∈Ti−1(t)∩K
κ′.f :t′′∈F(κ)

compatible(t′′) ∪ ⋃
t′′[ ]∈Ti−1(t)∩A

compatible(t′′) [By Def. 5.12]

⊆ Ti−1(t′) ∪ ⋃
κ∈Ti−1(t′)∩K
κ′.f :t′′∈F(κ)

compatible(t′′) ∪ ⋃
t′′[ ]∈Ti−1(t′)∩A

compatible(t′′) [By hypothesis]

= Ti (t′) [By Def. 5.12]

�
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T0(Object) = T(Object)
= {Object, Student, List}

T0(Student) = {Object, Student}
T1(Student) = T(Student)

= {int, Object, Student}
T0(List) = {List, Object}
T1(List) = {List, Object, Student}
T2(List) = T(List)

= {int, List, Object, Student}
T0(Student[ ]) = {Object[ ], Student[ ]}
T1(Student[ ]) = {Object[ ], Student[ ], Object, Student}
T2(Student[ ]) = T(Student[ ])

= {int, Object[ ], Student[ ], Object, Student}

Fig. 5.2. Example of computation of reachable locations and types

Example 5.16. Consider class List from Fig. 3.2 and suppose that the class Student con-
tains only one field, of type int, like stated in Example 3.16. Both List and Student
are subclasses of Object. In Fig. 5.2 we show the types reachable from each of these
three classes, as well as the types reachable from the array type Student[ ]. For in-
stance, List Student, Object Student, Student Object, Object Student,
etc. ut

The following lemma shows a very important result. Namely, it illustrates the rela-
tionship between variable and type reachability: if one variable is reachable from another
variable, then the static type of the former is reachable from the static type of the latter.

Lemma 5.17. Let τ∈T , σ∈Στ and a , b ∈dom(τ). If a σb, then τ(a) τ(b).

Proof. By letting σ = 〈ρ, µ〉, from a σb and Definition 5.4 we have ρ(a), ρ(b) ∈ L. We
prove that for every i ≥ 0, the following property P (i ) holds: for every ` ∈ Li

µ(ρ(a)), there
exists 0 ≤ j ≤ i such that µ(`).type ∈ Tj (τ(a)). This entails our thesis. Namely, since
a σb, there exists i ≥ 0 such that ρ(b) ∈ Li

µ(ρ(a)) ⊆ Lσ(a), and P (i ) ensures that there
also exists 0 ≤ j ≤ i such that µρ(b).type ∈ Tj (τ(a)) ⊆ T(τ(a)), i.e., τ(a) µρ(b).type.
Since (Definition 3.13) µρ(b).type ≤ τ(b), by Lemma 5.13 we conclude that τ(a) τ(b).

Let us now prove that, for every i ≥ 0, P (i ) holds.
Base case: i = 0. Since a σb, we have ρ(a) ∈ L and therefore L0

σ(a) = {ρ(a)}. By
Definition 3.13, µρ(a).type ≤ τ(a) i.e., µρ(a).type ∈ compatible(τ(a)) = T0(τ(a)).
Since j = 0 ≤ 0 = i , P (0) holds.
Inductive step: Suppose that for every k < i , P (k ) holds and consider a location ` ∈
Li
µ(ρ(a)). Then, by Definition 5.3 we have two cases:

• if ` ∈ Li−1
µ (ρ(a)) then, by inductive hypothesis, (P (i − 1) holds) we know that there

exists 0≤ j ≤ i − 1< i such that µ(`).type ∈ Tj (τ(a)). Therefore, P (i ) holds.
• if ` < Li−1

µ (ρ(a)) then ` ∈ rng(µ(`′).φ) ∩ L for some `′ ∈ Li−1
µ (ρ(a)). We distinguish

the following cases:
– if µ(`′).type ∈ K, then there exists κ′.f : t′ ∈ F(µ(`′).type) such that ` =

(µ(`′).φ)(κ′.f : t′) and µ(`).type ≤ t′. Hence, µ(`).type ∈ compatible(()t′) ⊆
Tj+1(τ(a));
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– if µ(`′).type ∈ A, then there exists κ′.f : t′ ∈ F(µ(`′).type) such that ` =

(µ(`′).φ)(κ′.f : t′) and µ(`).type ≤ t′. Hence, µ(`).type ∈ compatible(()t′) ⊆
Tj+1(τ(a));

Hence, in both cases, µ(`).type ∈ compatible(()t′) ⊆ Tj+1(τ(a)), and since 0 ≤ j+1 ≤
i , P (i ) holds as well.

�

Example 5.18. Since l4 
σl3 (Ex. 5.6), by Lemma 5.17, also τ(l4) τ(l3) holds. In fact,

Ex. 5.16 shows that τ(l4)=List Student=τ(l3). ut

5.3 Definition of the Possible Reachability Analysis

The goal of this section is to define a static analysis that computes, for each program
point, an over-approximation of the reachability information available at that point, i.e.,
which variables might reach the other ones. We show how it is possible to instantiate
the parameters of the general parameterized framework introduced in previous chapter in
order to obtain the desired static analysis. There are two essential things a designer should
do in order to define such a static analysis:

1. Mathematically encode the property of interest, define the abstract domain and show
how it can be related to the concrete one (Section 4.3);

2. Define a propagation rule for every possible arc available in the ACG, i.e., define an
abstract semantics of our target language which simulates the behavior of concrete
bytecode instructions with respect to the abstract domain defined above.

Subsections 5.3.1 and 5.3.2 deal with the points 1. and 2. respectively.

5.3.1 Abstract Domain Reach

The first goal of this section is to mathematically encode the property of interest. In Sec-
tion 5.2 we introduced the concrete property of interest which strictly depends on the
current state of the program. We want to determine that property statically, and the most
natural way for representing the fact that for an execution of a program a variable v might
reach a variable w is by using the ordered pair 〈v ,w〉. We followed this idea and formally
defined the abstract domain Reach.

Definition 5.19 (Concrete and Abstract Domain). The concrete and abstract domains
over τ∈T are Cτ = 〈℘(Στ),⊆,∪,∩, Στ,∅〉 and Reachτ = 〈Aτ,⊆,∪,∩,Aτ, ∅〉, where Aτ =

℘(dom(τ) × dom(τ)) is the powerset of the set of ordered pairs of variables. For every
v ,w ∈ dom(τ), we write v w to denote the ordered pair 〈v ,w〉.

An abstract domain element R ∈ Reachτ represents those concrete states in Στ whose
reachability information is conservatively over-approximated by the pairs of variables
in R. Namely, for each ordered pairs of variables a b ∈ R, the concretization of R
must contain at least those concrete states in which a reaches b. The following definition
formalizes this intuition.
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Definition 5.20 (Concretization map). For every type environment τ ∈ T , we define the
concretization map γτ : Reachτ → Cτ as:

γτ = λR.{σ ∈ Στ | ∀a , b ∈ dom(τ).a σb ⇒ a b ∈ R}.

Example 5.21. Consider the state σ introduced in Example 3.16, and the concrete reacha-
bility information that σ gives rise to: l1 σl1, l1 σl2, l3 σl3, l4 σl1, l4 σl2, l4 σl3,
l4 

σl4, l5 σl1, l5 σl3, l5 σl5 (determined in Example 5.6). Thenσ can be soundly ap-
proximated only by the sets of pairs of variables that include at least the following ordered
pairs of variables: R1 = {l1 l1, l1 l2, l3 l3, l4 l1, l4 l2, l4 l3, l4 l4, l5 l1, l5 l3,
l5 l5}, i.e., for every R ⊇ R1, σ ∈ γτ(R). ut

Requirements 4.1 and 4.2 deal with the abstract domain representing the property of
interest. We will show in Section 5.4 that Reach actually satisfies these requirements.

5.3.2 Propagation Rules

In Chapter 4 we defined the notion of abstract constraint graph, ACG, and we showed
how these graphs can be constructed from the text of the program under analysis. We
recall that an ACG is composed of the set of nodes, corresponding to different program
bytecode instructions, and of the set of arcs which connect those nodes. Each node of an
ACG created for the reachability analysis of program variables is enriched with an element
of the abstract domain Reach. That abstract element represents an over-approximation of
the actual reachability information available at that point. On the other hand, each arc of
that ACG is enriched with a propagation rule showing how the abstract elements (i.e.,
approximations) available at arc’s sources are propagated to its sink. In Section 4.4 we
specified the requirements that these propagation rules have to satisfy in order to guarantee
the soundness of the overall analysis, but we did not give any concrete definition of any
propagation rule, since they strictly depend on the property which is being analyzed, while
we were dealing with a generic property in that chapter. On the contrary, in this chapter,
we are interested in one particular property, i.e., reachability, we have shown how it can
be mathematically represented in our framework, and in this subsection we show how we
propagate the abstract elements approximating that property.

In the following we assume the presence of possible sharing and definite aliasing
approximations. Namely, we suppose that at each program point, there exist a set of (non-
ordered) pairs of variables representing an over-approximation of the actual sharing in-
formation at that program point, and a set of (non-ordered) pairs of variables representing
an under-approximation of the actual aliasing information at that point. Pairs of variables
not belonging to the former, definitely do not share at that point, i.e., there is no execu-
tion of the program under analysis in which these variables reach a common location.
On the contrary, pairs of variables that belong to the latter, are definitely aliased at that
point, i.e., for any execution of the program under analysis, these variables point to the
same location, but there might also be other pairs of aliased variables. These pieces of
information can be computed statically, and our tool Julia is able to provide them [63,82].
Our analysis works correctly even when these two approximations are not available: we
can always assume that at each program point every variable a can share with any other
variable available at that point, and that there is no variable definitely aliased to a . In that
case the reachability information we determine would be less precise, but still sound.
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ins propagation rule

#1 load k t λR.R ∪R[lk/sj ] ∪ {lk sj , sj lk | lk lk ∈R}
#2 store k t λR.{(a b)[sj−1/lk ] | a b ∈R ∧ a , b , lk }
#3 new κ λR.R ∪ {sj sj }
#4 getfield f

λR.{a b ∈R | a , b , sj−1} ∪ {sj−1 b ∈R | t τ(b)} ∪
{a sj−1 | τ(a) t , int ∧ [a and sj−1 might share at ins]}

#5 putfield f
λR.{a b ∈R | a , b < {sj−1, sj−2}} ∪

{a b | a , b < {sj−1, sj−2} ∧ a sj−2 ∈R ∧ sj−1 b ∈R}
#6 arraynew α λR.{a b ∈ R | a , b , sj−1} ∪ {sj−1 sj−1}
#7 arraylength α λR.{a b ∈ R | a , b , sj−1}
#8 arrayload t[ ]

λR.{a b ∈R | a , b < {sj−1, sj−2}} ∪ {sj−2 b ∈R | t τ(b)}∪
{a sj−2 | τ(a) t , int ∧ [a and sj−2 might share at ins]}

#9 arraystore t[ ]
λR.{a b ∈R | a , b < {sj−1, sj−2, sj−3}}∪

{a b | a , b < {sj−1, sj−2, sj−3} ∧ a sj−3 ∈R ∧ sj−1 b ∈R}
#10 dup t λR.R ∪R[sj−1/sj ] ∪ {sj−1 sj , sj sj−1 | sj−1 sj−1 ∈R}

#11
const x , ifne t, ifeq t,

λR.{a b ∈R | a , b ∈ dom(τ′)}add, sub,mul, div, rem,
inc k x , catch, exception_is K

#12 return void λR.{a b ∈R | a , b < {s0, . . . , sj−1}}
#13 return t λR.{(a b)[sj−1/s0] | a b ∈R ∧ a , b < {s0, . . . , sj−2}}
#14 throw κ

λR.{(a b)[sj−1/s0] | a b ∈R ∧ a , b < {s0, . . . , sj−2}}
∪{s0 s0}

#15 throw κ
λR.{(a b)[sj−1/s0] | a b ∈R ∧ a , b < {s0, . . . , sj−2}}

∪{s0 s0}

#16 call m1 . . .mk

λR.{a b ∈R | a , b < {s0, . . . , sj−1}} ∪ {s0 s0}
∪{a s0 | a ∈ {l0, . . . , li−1} ∧ τ(a) Throwable}
∪{s0 a | a ∈ {l0, . . . , li−1} ∧ Throwable τ(a)}

#17

div, rem, new κ,

λR.{a b ∈ R | a , b < {s0, . . . , sj−1}} ∪ {s0 s0}getfield f , putfield f ,
arraynew α, arraylength α,
arrayload α, arraystore α

#18 call m1 . . .mk λR.
{

(a b)
[

sj−π/l0
...

sj−1/lπ−1

]∣∣∣∣∣ a b ∈R ∧ a , b ∈ {sj−π, . . . , sj−1}
}

Fig. 5.3. Propagation rules of simple arcs

Definition 5.22 (Propagation rules). We distinguish between simple (1−1) arcs, having
one source and one sink node, and multi (2−1) arcs, which have two source and one sink
node. In Fig. 5.3 we report the propagation rules for the reachability analysis of simple
ACG arcs: propagation rules #1-#11 deal with the sequential arcs, propagation rules
#12-#14 deal with the final arcs, propagation rules #15-#17 deal with the exceptional
arcs, while propagation rule #18 deals with the parameter passing arcs of the ACG.

The propagation rules for multi arcs are shown in Fig. 5.4: propagation rules #19 and
#20 specify how the return value arcs and the side-effects arcs propagate the reachability
approximations available at their sources to the approximation of their sink node.
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λR1.λR2.{sj−π sj−π | s0 s0 ∈R2}

#19
∪


a sj−π ∈

(dom(τ′)r{sj−π}) × {sj−π}

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1. τ′(a) t ∧
2. ∃j − π ≤ p < j such that a might share with sp

at call m1 . . .mk ∧
3. if a is definitely aliased to sp at call m1 . . .mk and

no store lp−j+π occurs in mw , then lp−j+π s0 ∈R2


∪


sj−π b ∈

{sj−π} × (dom(τ′)r{sj−π})

∣∣∣∣∣∣∣∣∣∣∣∣
1. t τ′(b) ∧
2. ∃j − π ≤ p < j s.t. sp b ∈R1 ∧
3. if b is definitely aliased to sp at call m1 . . .mk and

no store lp−j+π occurs in mw , then s0 lp−j+π ∈R2


λR1.λR2.{a b ∈ R1 | a , b ∈ {l0, . . . , li−1, s0, . . . , smax−1}}

#20 ∪


a b

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1. a , b ∈ {l0, . . . , li−1, s0, . . . , smax−1} ∧
2. τ′(a) τ′(b) ∧
3. ∃j −π≤pa < j such that a might share with spa at call m1 . . .mk ∧
4. ∃j −π≤pb < j such that spb b ∈R1 ∧
5. if ∃j −π≤qa < j such that a is definitely aliased to sqa at call m1 . . .mk and
5. if ∃j −π≤qb < j such that b is definitely aliased to sqb at call m1 . . .mk and

no store lqa−j+π nor store lqb−j+π occurs in mi , then lqa−j+π lqb−j+π ∈R2


Fig. 5.4. Propagation rules of multi-arcs

Definitions of our propagation rules deserve some explanations. They specify how the
ACG of the program under analysis propagates approximations available at each its node.
We start with an example illustrating the construction of an ACG (Example 5.23), and
then we explain in more detail the propagation rules defined above.

Example 5.23. Fig. 5.5 shows the ACG of the constructor from Fig. 3.3. It also shows,
in grey, three nodes of a caller of this constructor (nodes A, B and C ) and two nodes
of the callee of call java.lang.Object.〈init〉(): void, to exemplify the arcs related to
the method’s invocation and its normal (end) and exceptional (exception) end. Arcs are
decorated with the number of their associated propagation rule. Note that the graph for
the whole program includes other nodes and arcs. Fig. 5.5 only shows the portion that is
relevant for our example.

In the following examples, for each node n , we let in and jn be the number of lo-
cal and operand stack variables at n respectively and τn be the static type informa-
tion available at that node. We suppose that iA = 4 and jA = 4, and that variables l1,
l2 and l3 correspond to variables list , i and st from Fig. 3.2, respectively. We assume
that previous static analyses provided a correct possible sharing information at node A:
shareA = {〈s0, s1〉, 〈l3, s2〉, 〈l1, s3〉} (only these non-ordered pairs of variables might possi-
bly share) and a correct definite aliasing information at node A: aliasA = {〈s0, s1〉, 〈l3, s2〉}
(these non-ordered pairs of variables must be aliased, but also other pairs of variables
might be aliased). Moreover, we suppose that our reachability analysis performed until
node A provided the following approximation of the actual reachability information at
that point:

RA =

{
l0 l0, l1 l1, l3 l3, l1 s3, l3 s2, s2 l3,

s0 s0, s0 s1, s1 s0, s1 s1, s2 s2, s3 s3

}
. (5.5)
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ex
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pt
io
n

exit

node Anode C
catch

node 13
exception@�init�

node B
store 4 List

node 10
exit@�init�

call List.�init�(Object, List) : void

node 1
load 0 List

node 2
call java.lang.Object.�init�() : void

node 3
load 0 List

node 4
load 1 Object

node 5
putfield List.head : Object

node 6
load 0 List

node 7
load 2 List

node 8
putfield List.tail : List

node 9
return void

node 11
catch

node 12
throw java.lang.Throwable
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Fig. 5.5. The ACG for the method 〈init〉 in Fig. 3.3

Constructor con = List.〈init〉(Object, List): void is invoked at the program point cor-
responding to node A. The receiver of con, s1, is definitely aliased to s0, while its first
actual argument, s2, is definitely aliased to l3 (since 〈s0, s1〉, 〈l3, s2〉 ∈ aliasA). Since con
creates a new object of class List and instantiate its fields head and tail with the val-
ues contained in its arguments, it is clear that after that object is created, s0 (aliased to
the new created object) reaches l3 (aliased to the variable whose value is written inside
the field head), and we expect our reachability analysis to include the pair s0 l3 in the
approximation at node B . ut

Let us now explain, in more detail, the propagation rules introduced in Figures 5.3
and 5.4. They simulate the behavior of the concrete semantics of bytecode instructions
given in Fig. 3.6.

The sequential arcs link an instruction to its immediate successors. We suppose that
the approximation available before a bytecode instruction is executed is R and we discuss
how it is propagated by the sequential arcs’ propagation rules:

load k t - In this case a new variable (sj ) is pushed onto the operand stack and its value
is equal to that of lk . Therefore, we propagate R by keeping all the reachability pairs
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already present in R and by using the fact that everything that might reach (or might
be reachable from) lk in R, might also reach (or might be reachable from) sj in the
final approximation (i.e., R[lk/sj ]). Moreover, lk and sj contain the same value, and
if lk might reach itself in R (i.e., if τ(lk ) , int), then also sj might reach itself in R’s
propagation.

store k t - In this case the topmost variable is popped from the operand stack (sj−1) and
its value is assigned to lk . Therefore, all the reachability pairs involving lk in the initial
approximation R should be removed from the final one. On the other hand, everything
except lk that might reach (or might be reachable from) sj−1 in R, might also reach (or
might be reachable from) lk in the final approximation (i.e., (a b)[sj−1/lk ], where
a b ∈ R and a , b , lk ).

new κ - In this case a new object is created and the location it is bound to is pushed
onto the operand stack, in sj . Therefore, the initial approximation R is kept, and
since objects are not of primitive type, i.e., τ(sj ) , int, we should also add the pair
sj sj to denote that the new created object can reaches itself. It does not reach nor
is reachable from anything else, since its fields are initialized to their default values
and the location it is bound to is fresh.

getfield f - In this case the location memorized in the topmost operand stack element
sj−1 is replaced with the value of the field f of the object corresponding to the former.
Hence each reachability pair that does not involve sj−1 in R should be present in the
final approximation too. Additionally, we must consider all those variables b which
might be reachable from the field f (i.e., such that sj−1 b) and all those variables a
which might reach the field f (i.e., such that a sj−1) in the final approximation. In
the former case, we observe that if the field reaches b, then also its containing object
(i.e., the old top of the operand stack) had to reach b in the initial approximation:
sj−1 b ∈ R. In order to improve the precision we consider only those pairs of
variables that satisfy the type reachability requirement: t τ(b). In the latter case, we
rely on a pessimistic (but conservative) assumption: every variable a might reach the
field in the final approximation, as long as the field has a reference type reaching the
static type of a: τ(a) t , int. We can, though, improve the precision of this rule by
considering only those variables a which, beside the previous condition, might also
share with the receiver sj−1 in R.

putfield f - In this case the value memorized in the topmost operand stack element sj−1
is written in the field f of the object corresponding to the location memorized in the
second topmost operand stack element sj−2, and both sj−1 and sj−2 are popped from
the operand stack. Hence, the corresponding propagation rule keeps a reachability
pair available in R if it involves neither sj−1 nor sj−2. Some additional pairs are added
to the final approximation though: a variable a might reach a variable b there if a
reaches the receiver sj−2 (a sj−2) in R and the value sj−1 reaches b (sj−1 b) in R.

arraynew α - In this case the topmost operand stack element containing an integer value
is replaced with the fresh location bound to the new created array. The propagation is
similar to the case of new κ.

arraylength α - In this case the topmost operand stack element containing a reference
to an array is replaced with the length of that array, which is of integer type, and
therefore cannot be reachable from anything and cannot reach anything.

arrayload α - In this case the k -th element of the array corresponding to the location
memorized in the second topmost operand stack element sj−2, where k is the topmost
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operand stack element, is written onto the top of the stack. Previously, both sj−1 and
sj−2 are popped from the stack. The propagation rule and its explanation are analo-
gous to the case of getfield f .

arraystore α - In this case the value memorized in the topmost operand stack element
sj−1 is written in the k -th element of the array corresponding to the location mem-
orized in the third topmost operand stack element sj−3, where k is the integer value
memorized in the second topmost operand stack element. All sj−1, sj−2 and sj−3 are
popped from the operand stack. The propagation rule and its explanation are analo-
gous to the case of putfield f .

dup t - In this case a new variable sj is pushed onto the operand stack, and it is associated
the location memorized in sj−1. Since sj is aliased to sj−1, it is clear that every variable
that might reach (or might be reachable from) sj−1 in R, might also reach (or might
be reachable from) sj in the final approximation: (i.e., R[sj−1/sj ]). Moreover, if sj−1
reaches itself in R then, in the final approximation, it should also reach sj and vice
versa.

otherwise - Bytecode instructions const x , add, sub, mul, div, rem, inc k x deal with
the values of primitive type (or null), and therefore do not introduce or remove any
reachability. On the other hand, catch and exception_is K do not modify the initial
state, and therefore do not change the reachability information available at that point,
while ifne t and ifeq t just pop the topmost operand stack element, and therefore do
not modify the reachability information concerning all other variables different from
the topmost stack element. In all these cases, we keep the reachability pairs available
in R if they are composed of the variables actually available at that point.

Example 5.24. Consider, for instance, nodes 4, 5 and 6 in Fig. 5.5, and suppose that the
reachability approximation at node 4 is:

R4 = {l0 l0, l1 l1, l2 l2, l0 s0, s0 l0, s0 s0}.

From hypotheses assumed in Example 5.23, it can be easily determined that i4 = i5 = 3,
j4 = 1 and j5 = 2. Nodes 4 and 5 are linked by a sequential arc with propagation rule #1,
while nodes 5 and 6 are linked by a sequential arc with propagation rule #5. Definition of
propagation rule #1 (Fig. 5.3) gives:

Π#1(R4) = R4 ∪ R4[l1/s1] ∪ {l1 s1, s1 l1} =

{
l0 l0, l1 l1, l2 l2, l0 s0, l1 s1,

s0 l0, s1 l1, s0 s0, s1 s1

}
.

Suppose now that R5 = Π#1(R4). Then, by definition of propagation rule #5 (Fig. 5.3) we
have:

Π#5(R5)= {a b ∈R5 | a , b < {s0, s1}} ∪ {a b | a , b < {s0, s1} ∧ a s0 ∈R5 ∧ s1 b ∈R5}
= {l0 l0, l0 l1, l1 l1, l2 l2}.

ut
The final arcs feed nodes exit@m and exception@m for each method or constructor

m . The former (respectively latter) contains the reachability information present in all
states at a non-exceptional (respectively exceptional) end of m . Hence, exit@m is the
sink of the arcs starting from the bytecode instructions return t present inside m . The
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propagation rules state that the operand stack is emptied at the end of execution of a
void method m (rule #12) or only one element survives, the returned value (rule #13).
Similarly, exception@m is the sink of the bytecode instructions throw κ with no exception
handler in m (i.e., not followed by a catch inside m). Rule #14 states that all elements of
the operand stack, except the topmost one, sj−1, disappear. The latter is renamed into the
exception object s0, and is always non-null (thus, s0 s0). We observe that only instruc-
tions throwκ are allowed to throw an exception to the caller since, in our representation of
the code as basic blocks, all other instructions that might throw an exception are always
linked to an exception handler, possibly minimal (as the two putfield in Fig. 3.3).

Example 5.25. Consider, for instance, nodes 9 and 10 in Fig. 5.5, and suppose that the
reachability approximation at node 9 is:

R9 = {l0 l0, l0 l1, l0 l2, l1 l1, l2 l2}.

Nodes 9 and 10 are linked by a final arc with propagation rule #12. Definition of the latter
imposes that Π#12(R9) contains all the pairs of R9 containing no operand stack variable,
and since j9 = 0 (it can be easily shown using the hypotheses of Example 5.23), we
conclude:

Π#12(R9) = {a b ∈R9 | a , b < ∅} = {l0 l0, l0 l1, l0 l2, l1 l1, l2 l2}.

ut
The exceptional arcs link every instruction that might throw an exception to the catch

at the beginning of their exception handler(s). Rules #14 and #15 are identical, but the
latter is applied in the case of a throw κ with a successor. Rule #16 states a pessimistic
assumption about the exceptional states after a method call: the reachability pairs before
the call can survive as long as they do not deal with the operand stack elements. The
thrown object s0 is non-null (thus, s0 s0) and conservatively assumed to reach and to
be reached from every local variable a , as long as the static types allow it. We recall
that, in Java, Throwable is the superclass of all exceptions. Rule #17 deals with all other
bytecode instructions that might throw an exception div, rem, new, getfield, putfield,
arraynew, arraylength, arrayload, arraystore): it states that, in that case, the operand
stack disappears but the reachability among local variables remains unaffected.

Example 5.26. Consider, for instance, nodes 5 and 11 in Fig. 5.5. In Example 5.24 we
assumed that:

R5 = {l0 l0, l1 l1, l2 l2, l0 s0, l1 s1, s0 l0, s1 l1, s0 s0, s1 s1}.

Nodes 5 and 11 are linked by an exceptional arc with propagation rule #17. Definition
of the latter imposes that Π#17(R5) contains all the pairs from R5 containing no operand
stack element enriched with s0 s0, where s0 holds the thrown exception, and it is the
only operand stack variable available at node 11, i.e.,

Π#17(R5) = {l0 l0, l1 l1, l2 l2, s0 s0}.

ut
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We come now to the arcs that deal with the method call and return mechanism. The
parameter passing arcs link every node corresponding to a method call to the node cor-
responding to the first bytecode instruction of the method(s) mw that might be a dynamic
target of that invocation. Propagation rule #18 simply states that the actual parameters of
the call, held in the operand stack variables sj−π, . . . , sj−1, are renamed into mw ’s formal
parameters, i.e., the local variables l0, . . . , lπ−1. No other variable exists at the beginning
of mw .

Example 5.27. Consider, for instance, nodes A and 1 in Fig. 5.5. Nodes A and 1 are linked
by a parameter passing arc with propagation rule #18. We have jA = 4 and π = 3 (stack
elements s1, s2 and s3 hold the actual parameters of a call to this constructor). Definition
of propagation rule #18 gives:

Π#18(RA) =

{
(a b)

[
s1/l0
s2/l1
s3/l2

]∣∣∣∣∣ a b ∈RA and a , b ∈{s1, s2, s3}
}

= {l0 l0, l1 l1, l2 l2},

where RA is given in Equation 5.5. ut
There is a return value multi-arc for each target mw of a call. Rule #19 concerns

R1 and R2, approximations at the node corresponding to the call and at node exit@mw ,
respectively. It creates the reachability pairs related to the returned value that, after the
call, becomes the topmost operand stack element sj−π. Namely, sj−π reaches itself after
the call if s0, its corresponding variable at the end of the callee mw , reaches itself. But
the complex part of this rule deals with the other variables of the caller, since it must
be determined whether they reach the return value or can be reached from it. Here, we
exploited the observation that a variable of the caller might reach or be reached from the
return value only if it shares with an actual parameter of the call. We do need sharing here,
since it is well possible that this variable does not reach and is not reachable from any of
the actual parameters of the call but yet shares with one of them and is consequently made
to reach (or be reachable from) the return value of the call. Moreover, in the frequent case
when it is actually aliased to an actual parameter of the call, we exploited the possibility
of checking the reachability of the corresponding formal parameter of the callee (to and
from the returned value), provided that it is not reassigned inside the callee. Namely, an
arbitrary variable a available after the call and different from sj−π (a ∈ dom(τ′) r {sj−π})
might reach sj−π at that point (a sj−1) if the following conditions hold:

1. the static types allow it (τ′(a) t);
2. a might share with at least one actual parameter sp of the call at call-time;
3. moreover, if a is definitely aliased to an actual parameter sp whose corresponding

formal parameter lp−j+π is never re-assigned inside the callee mw (i.e., there is no
store lp−j+π in mw ), then it must also be the case that lp−j+π reaches s0 (holding the
returned value) at the end of mw (lp−j+π s0 ∈ R2).

Similarly, an arbitrary variable b available after the call and different from the returned
value sj−π (b ∈ dom(τ′) r {sj−π}) might be reachable from sj−π at that point (sj−1 b) if
the following conditions hold:

1. the static types allow it (t τ′(b));
2. b might be reachable from at least one actual parameter sp at call-time (sp b ∈ R1);
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3. moreover, if b is definitely aliased to an actual parameter sp whose corresponding
formal parameter lp−j+π is never re-assigned inside the callee mw (i.e., there is no
store lp−j+π in mw ), then it must also be the case that s0 (holding the returned value)
reaches lp−j+π at the end of mw (s0 lp−j+π ∈ R2).

The side-effects multi-arcs enlarge the reachability information at call-time with ad-
ditional pairs of variables whose reachability is introduced by the callee by side-effect.
These arcs do not consider the returned value of the method. We suppose that the topmost
relevant operand stack element is smax. The complexity of these rules follows from the
fact that we wanted a relatively precise, yet sound, approximation and, for that reason,
we exploited the property that only variables that share with an actual parameter might be
affected by the callee. Again, we do need sharing here, since it is well possible that those
variables do not reach and are not reachable from any of the actual parameters of the call
but yet share with one of them and are consequently affected by side-effects during the
execution of the call. Moreover, we exploited the fact that the variables of the caller are
often aliased to some actual parameter, in which case we can exploit the reachability in-
formation for the corresponding formal parameter inside the callee, for better precision.
However, we must be sure that that formal parameter is not reassigned inside the callee.
Namely, rule #20 adds a new pair a b of arbitrary variables if the following conditions
hold:

1. if a and b exist after the call (a , b ∈ {l0, . . . , li−1, s0, . . . , smax−1});
2. the static types allow it (τ′(a) τ′(b));
3. a might share with at least one actual parameter spa

at call-time;
4. b might be reachable from at least one actual parameter spb

of at call-time (spb
 b ∈

R1);
5. if a and b are definitely aliased to two actual parameters sqa and sqb , whose corre-

sponding formal parameters lqa−j+π and lqb−j+π are not re-assigned inside mw (i.e.,
there is no store lqa−j+π and no store lqb−j+π in mw ), then lqa−j+π might reach lqb−j+π

at the end of mw (lqa−j+π lqb−j+π ∈ R2).

Example 5.28. Consider, for instance, nodes A and 10 in Fig. 5.5. In Example 5.23 we
assumed that a reachability approximation at node A is known (Equation 5.5). Suppose
that R10 = Π#12(R9), where Π#12(R9) = {l0 l0, l0 l1, l0 l2, l1 l1, l2 l2}, like it is
determined in Example 5.25. Consider the side-effect arc linking nodes A and 10 with
node B . Let us illustrate the application of the propagation rule #20 on approximations
RA and R10 in the presence of the sharing and aliasing approximations shareA and aliasA
provided in Example 5.23. First of all we note that con has π = 3 actual parameters: the
implicit parameter this, and 2 parameters of type Object and List respectively. Since
con is a void methods, by Definition 3.19, we obtain iB =!4 and jB = 1 and, for each
variable v ∈ dom(τB ) = {l0, l1, l2, l3, s0}, τB (v ) = τA(v ). Approximations RA and R10 are
propagated by rule #20 (Fig. 5.4) as follows:

{a b ∈RA | a , b ∈dom(τB )}∪


a b

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1. a , b ∈ dom(τB ) ∧
2. τB (a) τB (b) ∧
3. ∃1 ≤ pa ≤ 3.〈a , spa

〉 ∈ shareA ∧
4. ∃1 ≤ pb ≤ 3.spb

 b ∈ RA ∧
5. if ∃1 ≤ qa , qb ≤ 3.〈a , sqa 〉, 〈b, sqb 〉 ∈ aliasA
and con cotains no store lqa−1 nor store lqb−1,
then lqa−1 lqb−1 ∈ R10


.
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The left-hand set ({a b ∈RA | a , b ∈dom(τB )}) extracts from RA all the pairs composed
of only those variables available in dom(τB ), i.e., the following pairs are added to RB :
l0 l0, l1 l1, l3 l3, and s0 s0. The right-hand set enlarges RB by adding some new
reachability information characterized by the 5 conditions of the rule #20. Conditions 1
and 2 add all possible ordered pairs of variables available in dom(τB ) such that the static
type of the first variable reaches the static type of the second one, i.e., they give rise to
the following pairs: {l0, l1, s0} × {l0, l1, l3, s0} ∪ {l3 l3}. Conditions 3 and 4 improves the
precision of this approximation. Namely, condition 3 considers as the first element of a
pair only those variables that might share with an actual parameter of con at A, and only
l1, l3 and s0 satisfy this condition (shareA). On the other hand, condition 4 considers as
the second element of a pair only those variables that might be reachable from an actual
parameter of con at A, and only l3 and s0 satisfy this requirement (s2 l3, s1 s0 ∈ RA).
Therefore, these two conditions restrict the former approximation to {l1, s0} × {l3, s0} ∪
{l3 l3}. Condition 5 makes no further improvement of the approximation. Therefore,
rule #20 adds to RB , the over-approximation of the actual reachability information at
node B , the following pairs of variables:

RB = Π#20(RA,R10) = {l0 l0, l1 l1, l1 l3, l1 s0, l3 l3, s0 l3, s0 s0}. (5.6)

It is worth noting that, like we required at the end of Example 5.23, our reachability
analysis actually provides the pair s0 l3 in the approximation at node B .

Note that propagation rules #4, #19 and #20 use possible sharing and definite alias-
ing information between program variables. As we mentioned above, if these approxi-
mations are missing, one can always soundly assume that every pair of variables might
share (share′A = {〈a , b〉 | a , b ∈ dom(τB )}) and is definitely not aliased (alias′A = ∅),
although this reduces the precision of the propagation. In fact, if we apply rule #20 in
a context with share′A and alias′A, (i.e., in the absence of possible sharing and def-
inite aliasing approximations), conditions 1-4 would give rise to the following pairs:
{l0, l1, s0} × {l3, s0} ∪ {l3 l3}, and condition 5 would not eliminate any pair. This way,
the propagated reachability information becomes:

{l0 l0, l0 l3, l1 l1, l1 l3, l1 s0, l3 l3, s0 l3, s0 s0},
which is a bit less precise than (5.6). ut

In our experiments (Section 5.5) the reachability analysis is performed inside the null-
ness and termination tools of Julia, that already perform definite aliasing [63] and possible
sharing [82] analyses.

At this point we can formally define our reachability analysis in the general framework
of constraint-based analyses.

Definition 5.29 (Possible Reachability Analysis). Possible Reachability Analysis is a
system of constraints extracted from the ACG whose nodes are enriched with elements
of the abstract domain Reach, and whose arcs are enriched with the propagation rules
from Figures 5.3 and 5.4. The extraction of constraints and the generation of the system
of constraints concerning an ACG is explained in Section 4.5.

Example 5.30. In Fig. 5.6 we provide the constraints extracted from the ACG introduced
in Fig. 5.5. ut
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Π#18(RA) ⊆ R1 Π#5(R5) ⊆ R6

Π#1(R1) ⊆ R2 Π#1(R6) ⊆ R7 Π#11(R11) ⊆ R12

Π#20(R2,Rexit) ⊆ R3 Π#1(R7) ⊆ R8 Π#14(R12) ⊆ R13

Π#1(R3) ⊆ R4 Π#5(R8) ⊆ R9 Π#20(RA,R10) ⊆ RB

Π#1(R4) ⊆ R5 Π
#12(R9) ⊆ R10 Π#20(RA,R13) ⊆ RC

Π#20(R2,Rexception) ∪ Π#16(R2) ∪ Π#17(R5) ∪ Π#17(R8) ⊆ R11

Fig. 5.6. Constraints generated from the ACG from Fig. 5.5

5.4 Soundness of the Reachability Analysis

The goal of this section is to prove that there exists a solution to the system of constraints
extracted from the ACG which deals with the reachability analysis we defined in the previ-
ous section, and that this solution is sound. Since we follow the constraint-based approach
defined in Chapter 4, if we prove that the requirements provided in the latter (Require-
ments 4.1- 4.11) hold, results obtained in Sections 4.5 and 4.6 guarantee the existence
of the least solution of the system of constraints mentioned above, as well as its sound-
ness. The following subsections show that the instantiation of the general parameterized
framework for constraint-based statyc analyses of Java bytecode program that we present
in this section, i.e., the abstract domain Reach and the propagation rules introduced in
Figures 5.3 and 5.4, satisfy those requirements.

5.4.1 ACC Condition

This requirement is one of the conditions which guarantee the existence and the unique-
ness of the least solution of our analyses, like Theorem 4.11 has shown. The following
lemma shows that the abstract domain Reach, and therefore our reachability analysis sat-
isfy it.

Lemma 5.31. The abstract domain Reach satisfies Requirement 4.1. More precisely,
given a type environment τ ∈ T , every ascending chain of elements in Reachτ eventu-
ally stabilizes.

Proof. We recall that

Reachτ = 〈℘(dom(τ) × dom(τ)),⊆,∪,∩, ℘(dom(τ) × dom(τ)), ∅〉.
There is a finite number of variables belonging to dom(τ), and therefore the number of
all possible ordered pairs of those variables is finite too. Every abstract element is a set of
pairs of variables, and the partial ordering is the set inclusion ⊆. Therefore, the greatest
element an ascending chain might have is the top element, ℘(dom(τ)× dom(τ)), which is
finite, which implies that this ascending chain eventually stabilizes, i.e., Reachτ satisfies
the ACC condition. Hence, Requirement 4.1 is satisfied. �

5.4.2 Galois Connection

The next step is to show that the concretization map γ that we introduced in Defini-
tion 5.20 gives rise to a Galois connection (Chapter 2). This result would imply the satis-
fiability of Requirement 4.2. We start this proof by showing that our γ map is co-additive.
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Lemma 5.32. For any type environment τ ∈ T , the function γτ is co-additive, i.e.,

γτ(
⋂
i≥0

Ri ) =
⋂
i≥0

γτ(Ri ).

Proof. Let Ri ∈ Reachτ for an i ≥ 0. We have:

γτ(
⋂

i≥0 Ri )
= {σ ∈ Στ | ∀a , b ∈ dom(τ).a σb ⇒ a b ∈ ∩i≥0Ri } [Definition 5.20]
= {σ ∈ Στ | ∀a , b ∈ dom(τ).a σb ⇒ ∧

i≥0 a b ∈ Ri } [x ∈ ∩iXi ⇔ ∧ix ∈ Xi ]
= {σ ∈ Στ | ∀a , b ∈ dom(τ).

∧
i≥0(a σb ⇒ a b ∈ Ri )} [y ⇒ ∧ixi ⇔ ∧iy ⇒ xi ]

= {σ ∈ Στ | ∧i≥0(∀a , b ∈ dom(τ).(a σb ⇒ a b ∈ Ri ))}
∀x ∈ X . ∧i f (x , yi )

⇔
∧i∀x ∈ X .f (x , yi )


=

⋂
i≥0{σ ∈ Στ | ∀a , b ∈ dom(τ).a σb ⇒ a b ∈ Ri }

=
⋂

i≥0 γτ(Ri )

�

We can now show that the map γ actually gives rise to a Galois connection.

Lemma 5.33. The abstract domain Reach satisfies Requirement 4.2. More precisely,
given a type environment τ ∈ T , and the function γτ : Reachτ → Cτ, there exists a
function ατ : Cτ → Reachτ such that 〈Cτ, ατ, γτ,Reachτ〉 is a Galois connection.

Proof. Both Cτ and Reachτ are complete lattices. Moreover, Lemma 5.32 shows that γτ
is co-additive and therefore, by the results mentioned in Chapter 2 (subsection Galois
Connection), there exists the unique map ατ, determined as:

∀C ∈ Cτ.α(C ) =
⋂
{R ∈ Reachτ|C ⊆ γτ(R)},

such that 〈Cτ, ατ, γτ,Reachτ〉 is a Galois connection. Therefore, Requirement 4.2 is satisi-
fied and Reachτ is actually an abstract domain, in the sense of abstract interpretation. �

5.4.3 Monotonicity of the Propagation Rules

Another important condition necessary for the proof of existence of the least solution of
our analysis is the monotonicity of the propagation rules. These rules represent an abstract
semantics of bytecode instructions. We enunciate the following lemma without a proof,
since it is straightforward.

Lemma 5.34. The propagation rules from Figures 5.3 and 5.4 satisfy Requirement 4.3,
i.e., they are monotonic with respect to ⊆.

Proof. This proof is straightforward from the definition of the propagation rules. �
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5.4.4 Sequential Arcs

This subsection is dedicated to Requirement 4.4, which states that the sequential arcs
should propagate only the non-exceptional concrete states in the concretization of a cor-
rect approximation of the property of interest before a bytecode instruction is executed.
This holds because sequential arcs link a bytecode instruction with its normally subse-
quently executed bytecode, when no exception is thrown, and their semantics must hence
be consistent with that situation.

Lemma 5.35. The propagation rules #1-#11 from Fig. 5.3 satisfy Requirement 4.4. More
precisely, let us consider a sequential arc from a bytecode ins and its propagation rule Π .
Assume that ins has static type information τ at its beginning and τ′ immediately after its
non-exceptional execution. Then, for every R ∈ Reachτ we have:

ins(γτ(R)) ∩ Ξτ′ ⊆ γτ′ (Π(R))

(we recall that ins is the semantics of ins, see Fig. 3.6).

Proof. Let dom(τ) = L∪S contain i local variables L = {l0, . . . , li−1} and j operand stack
elements S = {s0, . . . , sj−1}. Let dom(τ′) = L′ ∪ S ′, where L′ and S ′ are the local and
operand stack variables of dom(τ′). Consider an arbitrary abstract element R ∈ Reachτ
and a state ω′ = 〈ρ′, µ′〉 ∈ ins(γτ(R)) ∩ Ξτ′ . We prove that ω′ ∈ γτ′ (Π(R)), i.e., (Defini-
tion 5.20) that

for every x , y ∈ dom(τ′), x ω′y entails x y ∈ Π(R).

The latter can be proved by showing that either x 6 ω′y or x y ∈ Π(R). Note that, by the
choice of ω′, there exists ω = 〈ρ, µ〉 ∈ γτ(R) such that ω′ = ins(ω). Moreover, ω ∈ γτ(R)
implies that for every x , y ∈ dom(τ), x ωy entails x y ∈ R. We analyze different
propagation rules corresponding to different types of sequential arcs.

If ins = load k t. We have L′ = L, S ′ = S ∪ {sj }, µ′ = µ and for every a ∈ dom(τ′)r {sj },
ρ′(a) = ρ(a), while ρ′(sj ) = ρ′(lk ). By definition of the propagation rules, Π(R) =

R ∪ R[lk/sj ] ∪ R1, where R1 = {lk sj , sj lk | lk lk ∈ R}. We distinguish the
following cases:

• if x , y , sj , then, ρ′(x ) = ρ(x ) and ρ′(y) = ρ(y). Hence, by Lemma 5.7,

x ω′y ⇔ x ωy ⇒ x y ∈ R ⊆ Π(R).

• if x = sj and y , sj , then ρ′(x ) = ρ′(sj ) = ρ(lk ) and ρ′(y) = ρ(y). Hence, by
Lemma 5.7,

sj 
ω′y ⇔ lk 

ωy ⇒ lk y ∈ R.
If y = lk , then lk lk ∈ R, hence x y = sj lk ∈∈ R1 ⊆ Π(R). If y , lk , then
lk y ∈ R implies that x y = sj y ∈ R[lk/sj ] ⊆ Π(R).

• if x , sj and y = sj , then ρ′(x ) = ρ(x ) and ρ′(y) = ρ′(sj ) = ρ(lk ). Hence, by
Lemma 5.7,

x ω′sj ⇔ x ωlk ⇒ x lk ∈ R.
If x = lk , then lk lk ∈ R, hence x y = lk sj ∈ R1 ⊆ Π(R). If x , lk , then
x lk ∈ R implies that x y = x sj ∈ R[lk/sj ] ⊆ Π(R).
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• if x = y = sj , then ρ′(x ) = ρ(lk ) and ρ′(y) = ρ(lk ). Hence, by Lemma 5.7,

sj 
ω′sj ⇔ lk 

ωlk ⇒ lk lk ∈ R,

and therefore x y = sj sj ∈ R[lk/sj ] ⊆ Π(R).

If ins = store k t. We have L′ = L, S ′ = S r {sj−1}, µ′ = µ, and for every a ∈ dom(τ′) r
{lk }, ρ′(a) = ρ(a), while ρ′(lk ) = ρ(sj−1). By definition of the propagation rules, Π(R) =

{(a b)[sj−1/lk ] | a b ∈ R ∧ a , b , lk }. We distinguish the following cases:

• if x , y , lk , then, ρ′(x ) = ρ(x ) and ρ′(y) = ρ(y). Hence, by Lemma 5.7,

x ω′y ⇔ x ωy ⇒ x y ∈ R,

and therefore x y ∈ Π(R).
• if x = lk and y , lk , then ρ′(x ) = ρ′(lk ) = ρ(sj−1) and ρ′(y) = ρ(y). Hence, by

Lemma 5.7,
lk 

ω′y ⇒ sj−1 
ωy ⇒ sj−1 y ∈ R,

and therefore x y = lk y = (sj−1 y)[sj−1/lk ] ∈ Π(R).
• if x , lk and y = lk , then ρ′(x ) = ρ(x ) and ρ′(y) = ρ′(lk ) = ρ(sj−1). Hence, by

Lemma 5.7,
x ω′ lk ⇔ x ωsj−1 ⇒ x sj−1 ∈ R,

and therefore x y = x lk = (x sj−1)[sj−1/lk ] ∈ Π(R).
• if x = y = lk , then ρ′(x ) = ρ′(y) = ρ′(lk ) = ρ(sj−1). Hence, by Lemma 5.7,

lk 
ω′ lk ⇔ sj−1 

ωsj−1 ⇒ sj−1 sj−1 ∈ R,

and therefore x y = lk lk = (sj−1 sj−1)[sj−1/lk ] ∈ Π(R).

ins = const x . We have L′ = L, S ′ = S ∪ {sj }, ρ′(sj ) = v ∈ Z ∪ {null}, µ′ = µ
and, for every a ∈ dom(τ′) r {sj }, ρ′(a) = ρ(a). By definition of the propagation rules,
Π(R) = {a b ∈ R | a , b ∈ dom(τ′)}. We distinguish the following cases:

• if x = sj or y = sj , since ρ′(sj ) ∈ Z ∪ {null}, no variable reaches x nor y nor can be
reached from them; hence x 6 ω′y .

• if x , y , sj , then ρ′(x ) = ρ(x ) and ρ′(y) = ρ(y). Hence, by Lemma 5.7, x ω′y iff
x ωy , which entails x y ∈ R, and since x , y ∈ dom(τ′), we have x y ∈ Π(R).

If ins = new κ. We have L′=L and S ′=S ∪ {sj }. Moreover, for every a ∈dom(τ′) r {sj },
ρ′(a) = ρ(a), while ρ′(sj ) = ` ∈L, where ` is a fresh location, hence only reachable from
itself, and µ′=µ[` 7→ o], where o is a new object of class κ. Since ` is a fresh location, we
have Lµ′ (`) = {`} and for every `′ ∈ dom(µ′), ` < Lµ′ (`′). By definition of the propagation
rules, Π(R) = R ∪ {sj sj }. We distinguish the following cases:

• if x , y , sj , then, ρ′(x ) = ρ(x ), ρ′(y) = ρ(y) and for every ` ∈ dom(µ), µ′(`) = µ(`).
Hence, by Lemma 5.7,

x ω′y ⇔ x ωy ⇒ x y ∈ R ⊆ Π(R).

• if x = y = sj , then x y = sj sj ∈ Π(R).
• if x = sj and y , sj , then since ` is fresh, ρ′(y) < {`} = Lω′ (x ), hence x 6 ω′y .
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• if x , sj and y = sj , then since ` is fresh, ρ′(y) = ` < Lω′ (x ), hence x 6 ω′y .

If ins = getfield f . We have L′ = L, S ′ = S , µ′ = µ and for every a ∈ dom(τ′) r {sj−1},
ρ′(a) = ρ(a), while ρ′(sj−1) = (µρ(sj−1).φ)(f ). Moreover, for every a ∈ dom(τ′) r {sj−1},
τ′(a) = τ(a), while τ′(sj−1) ≤ t and τ(sj−1) τ′(sj−1). By definition of the propagation
rules,

Π(R) =

R1︷                          ︸︸                          ︷
{a b ∈ R | a , b , sj−1} ∪

R2︷                         ︸︸                         ︷
{sj−1 b ∈ R | t τ(b)}

{a sj−1 | τ(a) t , int ∧ [a and sj−1 might share at ins]}.︸                                                                            ︷︷                                                                            ︸
R3

We distinguish the following cases:

• if x , y , sj−1, then, ρ′(x ) = ρ(x ) and ρ′(y) = ρ(y). Hence, by Lemma 5.7,

x ω′y ⇔ x ωy ⇒ x y ∈ R,

and therefore x y ∈ R1 ⊆ Π(R).
• if x = sj−1 and y , sj−1, if sj−1 

ω′y then, by Lemma 5.17 and Definition 5.12, we
have τ′(sj−1) τ′(y) = τ(y) ⇒ τ(y) ∈ T(τ′(sj−1)). On the other hand, τ′(sj−1) ≤ t
and, by Lemma 5.15, T(τ′(sj−1)) ⊆ T(t), hence τ(y) ∈ T(τ′(sj−1)) ∈ T(t), i.e.,

t τ(y). (5.7)

The locations reachable from a field of an object are included in those reachable from
the object itself. More precisely, since ρ′(sj−1) = (µρ(sj−1).φ)(f ) and µ′ = µ, we have
Lω′ (sj−1) ⊆ Lω(sj−1), and therefore sj−1 

ω′y entails:

ρ(y) = ρ′(y) ∈ Lω′ (sj−1) ⊆ Lω(sj−1).

Therefore, sj−1 
ωy and

sj−1 y ∈ R. (5.8)

From (5.7) and (5.8) we conclude that x y = sj−1 y ∈ R2 ⊆ Π(R).
• if y = sj−1, then if x ω′sj−1, by Definition 5.4 we have ρ′(sj−1) = (µρ(sj−1).φ)(f ) ∈
L, which entails τ′(sj−1) , int. By type correctness, τ′(sj−1) ≤ t and hence t ,
int. By Lemma 5.17, x ω′sj−1 implies that τ′(x ) τ′(sj−1) and, since τ′(sj−1) ≤
t, Lemma 5.13 entails τ′(x ) t. If x = sj−1 then, by Definition 5.12, we have that
τ(sj−1) τ′(sj−1) t, hence τ(sj−1) , int and it is obvious that sj−1 shares with
itself at getfield. Otherwise, if x , sj−1, then τ(x ) = τ′(x ) t. In this case, x ω′sj−1
and Lemma 5.7 entail:

ρ′(sj−1) ∈ Lω′ (x ) = Lω(x ). (5.9)

Moreover, Definition 5.1 and the fact that ρ′(sj−1) ∈ L ensure that

ρ′(sj−1) = (µρ(sj−1).φ)(f ) ∈ rng(µρ(sj−1).φ) ∩ L ⊆ Lω(sj−1). (5.10)

Thus, (5.9) and (5.10) entail that Lω(x ) ∩ Lω(sj−1) , ∅, i.e., x and sj−1 share at ins.
Therefore, τ(x ) t , int and x and sj−1 share at ins, which entails that x y =

x sj−1 ∈ R3 ⊆ Π(R).
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If ins = putfield f . We have L′ = L and S ′ = S r {sj−2, sj−1}. Moreover, ρ′ = ρ and
µ′ = µ[(µρ(sj−2).φ)(κ.f : t) 7→ ρ(sj−1)]. By definition of the propagation rules,

Π(R) =

R1︷                                   ︸︸                                   ︷
{a b ∈ R | a , b < {sj−1, sj−2}} ∪

{a b | a , b < {sj−1, sj−2} ∧ a sj−2 ∈ R ∧ sj−1 b ∈ R}︸                                                                        ︷︷                                                                        ︸
R2

Assume that x ω′y . We distinguish two cases:

• if x ωy then x y ∈ R and since x , y < {sj−2, sj−1} we have x y ∈ R1 ⊆ Π(R).
• if x 6 ωy then (since x ω′y) we show that the following relations hold: x ωsj−2

and sj−1 
ωy . Suppose that x 6 ωsj−2, then by Definition 5.4, ρ(sj−2) < Lω(x ). Recall

that µ and µ′ differ on location ρ(sj−2) only, and since ρ(sj−2) < Lω(x ), we have
that for every ` ∈ Lω(x ).µ′(`) = µ(`). Moreover, ρ′(x ) = ρ(x ), ρ′(y) = ρ(y) and
dom(µ′) = dom(µ), hence, by Lemma 5.7, x ω′y entails x ωy , a contradiction.
Therefore, x ωsj−2 and x sj−2 ∈ R. Since µ′ = µ[(µρ(sj−2).φ)(κ.f : t) 7→ ρ(sj−1)],
we have, by Definition 5.3 and Lemma 5.2,

Lω′ (x ) = Lµ′ (ρ′(x )) = Lµ′ (ρ(x )) ⊆ Lµ(ρ(x )) ∪ Lµ(ρ(sj−1)) = Lω(x ) ∪ Lω(sj−1).

It is worth noting that x ω′y entails ρ(y) = ρ′(y) ∈ Lω′ (x ) ⊆ Lω(x ) ∪ Lω(sj−1). By
hypothesis, ρ(y) < Lω(x ) (since x 6 ωy), and therefore ρ(y) ∈ Lω(sj−1), i.e., sj−1 

ωy
and sj−1 y ∈ R. In conclusion we have x sj−2 ∈ R and sj−1 y ∈ R and hence
x y ∈ R2 ⊆ Π(R).

If ins = arraynew α. We have L′=L and S ′=S . Moreover, for every a ∈dom(τ′)r {sj−1},
ρ′(a)=ρ(a), while ρ′(sj−1)=`∈L, where ` is a fresh location, hence only reachable from
itself, and µ′ = µ[` 7→ a], where a is a new array of class α containing ρ(sj−1) elements.
By definition of the propagation rules, Π(R) = {a b ∈ R | a , b , sj−1} ∪ {sj−1 sj−1}.
We distinguish the following cases:

• if x , y , sj−1, then, ρ′(x ) = ρ(x ), ρ′(y) = ρ(y) and for every ` ∈ dom(µ), µ′(`) = µ(`).
Hence, by Lemma 5.7,

x ω′y ⇔ x ωy ⇒ x y ∈ R ⊆ Π(R).

• if x = y = sj−1, then x y = sj−1 sj−1 ∈ Π(R).
• if x = sj−1 and y , sj−1, then since ` is fresh, ρ′(y) < {`} = Lω′ (x ), hence x 6 ω′y .
• if x , sj−1 and y = sj−1, then since ` is fresh, ρ′(y) = ` < Lω′ (x ), hence x 6 ω′y .

If ins = arraylength α. We have L′ = L and S ′ = S . Moreover, for every a ∈ dom(τ′) r
{sj−1}, ρ′(a) = ρ(a), while ρ′(sj−1) = µρ(sj−1).length ∈ Z, µ′ = µ. By Definition 4.1,
Π(R) = {a b ∈ R | a , b , sj−1}. We distinguish the following cases:

• if x , y , sj−1, then, ρ′(x ) = ρ(x ), ρ′(y) = ρ(y) and for every ` ∈ dom(µ), µ′(`) = µ(`).
Hence, by Lemma 5.7,

x ω′y ⇔ x ωy ⇒ x y ∈ R ⊆ Π(R).

• if x = sj−1 or y = sj−1, then x 6 ω′y , since at least one of x and y is of type int and
these variables do not reach anything and are not reachable from anything.
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If ins = arrayload t[ ]. Analogously to the case ins = getfield f , we have L′ = L, S ′ =

S r {sj−1}, µ′ = µ and for every a ∈ dom(τ′) r {sj−2}, ρ′(a) = ρ(a), while ρ′(sj−2) =

(µρ(sj−2).φ)(ρ(sj−1)). Moreover, for every a ∈ dom(τ′) r {sj−2}, τ′(a) = τ(a), while
τ′(sj−2) ≤ t and τ(sj−2) τ′(sj−2). By definition of the propagation rules,

Π(R) =

R1︷                                   ︸︸                                   ︷
{a b ∈ R | a , b < {sj−1, sj−2}} ∪

R2︷                         ︸︸                         ︷
{sj−2 b ∈ R | t τ(b)}

{a sj−2 | τ(a) t , int ∧ [a and sj−2 might share at ins]}.︸                                                                            ︷︷                                                                            ︸
R3

We distinguish the following cases:

• if x , y , sj−2, then, ρ′(x ) = ρ(x ) and ρ′(y) = ρ(y). Hence, by Lemma 5.7,

x ω′y ⇔ x ωy ⇒ x y ∈ R,

and therefore x y ∈ R1 ⊆ Π(R).
• if x = sj−2 and y , sj−2, if sj−2 

ω′y then, by Lemma 5.17 and Definition 5.12, we
have τ′(sj−2) τ′(y) = τ(y)⇒ τ(y) ∈ T(τ′(sj−2)). On the other hand, τ′(sj−2)≤ t and,
by Lemma 5.15, T(τ′(sj−2)) ⊆ T(t), hence τ(y) ∈ T(τ′(sj−2)) ∈ T(t), i.e.,

t τ(y). (5.11)

The locations reachable from a array element are included in those reachable from the
array itself. More precisely, since ρ′(sj−2) = (µρ(sj−2).φ)(ρ(sj−1)) and µ′ = µ, we have
Lω′ (sj−2) ⊆ Lω(sj−2), and therefore sj−2 

ω′y entails:

ρ(y) = ρ′(y) ∈ Lω′ (sj−2) ⊆ Lω(sj−2).

Therefore, sj−2 
ωy and

sj−2 y ∈ R. (5.12)

From (5.11) and (5.12) we conclude that x y = sj−2 y ∈ R2 ⊆ Π(R).
• if y = sj−2, then if x ω′sj−2, by Definition 5.4, ρ′(sj−2) = (µρ(sj−2).φ)(ρ(sj−1)) ∈
L, which entails τ′(sj−2) , int. By type correctness, τ′(sj−2) ≤ t and hence t ,
int. By Lemma 5.17, x ω′sj−2 implies that τ′(x ) τ′(sj−2) and, since τ′(sj−2) ≤
t, Lemma 5.13 entails τ′(x ) t. If x = sj−2 then, by Definition 5.12, we have that
τ(sj−2) τ′(sj−2) t, hence τ(sj−2) , int and it is obvious that sj−2 shares with itself
at arrayload. Otherwise, if x , sj−2, then τ(x ) = τ′(x ) t. In this case, x ω′sj−2 and
Lemma 5.7 entail:

ρ′(sj−2) ∈ Lω′ (x ) = Lω(x ). (5.13)

Moreover, Definition 5.1 and the fact that ρ′(sj−2) ∈ L ensure that

ρ′(sj−2) = (µρ(sj−2).φ)(ρ(sj−1)) ∈ rng(µρ(sj−2).φ) ∩ L ⊆ Lω(sj−2). (5.14)

Thus, (5.13) and (5.14) entail that Lω(x ) ∩ Lω(sj−2) , ∅, i.e., x and sj−2 share at ins.
Therefore, τ(x ) t , int and x and sj−2 share at ins, which entails that x y =

x sj−2 ∈ R3 ⊆ Π(R).
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If ins = arraystore t[ ]. Analogously to the case ins = putfield f , we have L′ = L, S ′ =

S r {sj−3, sj−2, sj−1}, ρ′ = ρ and µ′ = µ[(µρ(sj−3).φ)(ρ(sj−2)) 7→ ρ(sj−1)]. By definition of
the propagation rules,

Π(R) =

R1︷                                          ︸︸                                          ︷
{a b ∈ R | a , b < {sj−1, sj−2, sj−3}} ∪

{a b | a , b < {sj−1, sj−2, sj−3} ∧ a sj−3 ∈ R ∧ sj−1 b ∈ R}︸                                                                               ︷︷                                                                               ︸
R2

Assume that x ω′y . We distinguish two cases:

• if x ωy then x y ∈ R and since x , y < {sj−3, sj−2, sj−1} we have x y ∈ R1 ⊆
Π(R).

• if x 6 ωy then (since x ω′y) we show that the following relations hold: x ωsj−3
and sj−1 

ωy . Suppose that x 6 ωsj−3, then by Definition 5.4, ρ(sj−3) < Lω(x ). Recall
that µ and µ′ differ on location ρ(sj−3) only, and since ρ(sj−3) < Lω(x ), we have that
for every ` ∈ Lω(x ).µ′(`) = µ(`). Moreover, ρ′(x ) = ρ(x ), ρ′(y) = ρ(y) and dom(µ′) =

dom(µ), hence, by Lemma 5.7, x ω′y entails x ωy , a contradiction. Therefore,
x ωsj−3 and x sj−3 ∈ R. Since µ′ = µ[(µρ(sj−3).φ)(ρ(sj−2)) 7→ ρ(sj−1)], we have,
by Definition 5.3 and Lemma 5.2,

Lω′ (x ) = Lµ′ (ρ′(x )) = Lµ′ (ρ(x )) ⊆ Lµ(ρ(x )) ∪ Lµ(ρ(sj−1)) = Lω(x ) ∪ Lω(sj−1).

It is worth noting that x ω′y entails ρ(y) = ρ′(y) ∈ Lω′ (x ) ⊆ Lω(x ) ∪ Lω(sj−1). By
hypothesis, ρ(y) < Lω(x ) (since x 6 ωy), and therefore ρ(y) ∈ Lω(sj−1), i.e., sj−1 

ωy
and sj−1 y ∈ R. In conclusion we have x sj−3 ∈ R and sj−1 y ∈ R and hence
x y ∈ R2 ⊆ Π(R).

ins = dup t. We have L′ = L, S ′ = S ∪ {sj }, µ′ = µ and for every a ∈ dom(τ′) r {sj },
ρ′(a) = ρ(a), while ρ′(sj ) = ρ′(sj−1). By definition of the propagation rules, Π(R) =

R∪R[sj−1 7→ sj ]∪R1, where R1 = {sj−1 sj , sj sj−1 | sj−1 sj−1 ∈ R}. We distinguish
the following cases:

• if x , y , sj , then, ρ′(x ) = ρ(x ), ρ′(y) = ρ(y). Hence, by Lemma 5.7,

x ω′y ⇔ x ωy ⇒ x y ∈ R ⊆ Π(R).

• if x = sj or y = sj , we consider τ′(sj ): if τ′(sj ) = τ(sj−1) = int, we have x 6 ω′y .
Otherwise we distinguish 3 cases:
1. if x = sj and y , sj , then ρ′(x ) = ρ′(sj ) = ρ(sj−1) and ρ′(y) = ρ(y). Hence, by

Lemma 5.7,
sj 

ω′y ⇔ sj−1 
ωy ⇒ sj−1 y ∈ R.

This implies x y = sj y ∈ R[sj−1/sj ] ∪ R1 ⊆ Π(R).
2. if x , sj and y = sj , then ρ′(x ) = ρ(x ) and ρ′(y) = ρ′(sj ) = ρ(sj−1). Hence, by

Lemma 5.7,
x ω′sj ⇔ x ωsj−1 ⇒ x sj−1 ∈ R.

This implies x y = x sj ∈ R[sj−1/sj ] ∪ R1 ⊆ Π(R).
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3. if x = y = sj , then ρ′(x ) = ρ(sj−1) and ρ′(y) = ρ(sj−1). Hence, by Lemma 5.7,

x ω′y ⇔ sj−1 
ωsj−1 ⇒ sj−1 sj−1 ∈ R.

This implies x y = sj sj ∈ R[sj−1/sj ] ⊆ Π(R).

If ins = ifne t (ifeq t). We have L′ = L, S ′ = S r {sj−1}, µ′ = µ and for every a ∈
dom(τ′), ρ′(a) = ρ(a). By definition of the propagation rules, Π(R) = {a b ∈ R | a , b ∈
dom(τ′)}. By Lemma 5.7, x ω′y iff x ωy , which entails x y ∈ R, and therefore
x y ∈ Π(R), since x , y ∈ dom(τ′).
If ins ∈ {add, sub,mul, div, rem}. We have L′ = L, S ′ = S r {sj−1}, µ′ = µ and for every
a ∈ dom(τ′) r {sj−1}, ρ′(a) = ρ(a), while ρ′(sj−1) = ρ(sj−2) ⊕ ρ(sj−1) ∈ Z, where ⊕ is the
arithmetic operation corresponding to ins. Hence, for every variable a ∈ dom(τ′), both
sj−1 6 ω′a and a 6 ω′sj−1 hold. By definition of the propagation rules, Π(R) = {a b ∈
R | a , b ∈ dom(τ′)}. Suppose that x ω′y , then x , y , sj−1. By Lemma 5.7, x ω′y iff
x ωy , which entails x y ∈ R, and therefore x y ∈ Π(R), since x , y ∈ dom(τ′).
If ins = inc k x . We have L′ = L, S ′ = S , µ′ = µ and for every a ∈ dom(τ′) r {lk },
ρ′(a) = ρ(a), while ρ′(lk ) = ρ(lk ) + x ∈ Z. Hence, for every variable a ∈ dom(τ′), both
lk 6 ω′a and a 6 ω′ lk hold. By definition of the propagation rules, Π(R) = {a b ∈ R |
a , b ∈ dom(τ′)}. Suppose that x ω′y , then x , y , lk . By Lemma 5.7, x ω′y iff x ωy ,
which entails x y ∈ R, and therefore x y ∈ Π(R), since x , y ∈ dom(τ′).
ins ∈ {catch, exception_is K }. We have L′ = L, S ′ = S = {s0}, µ′ = µ and, for every
a ∈ dom(τ′), ρ′(a) = ρ(a). By definition of the propagation rules, Π(R) = {a b ∈ R |
a , b ∈ dom(τ′)}. By Lemma 5.7, we have x ω′y iff x ωy , and since x , y ∈ dom(τ′), it
entails x y ∈ R ∈ Π(R). �

5.4.5 Final Arcs

This subsection is dedicated to Requirement 4.5, which states that in the case of the prop-
agation rules of the final arcs, both exceptional and non-exceptional concrete states be-
longing to the concretization of a correct approximation of the property of interest before
a bytecode instruction is executed, are correctly propagated by the corresponding rule. It
means that the propagation rules of the final arcs must soundly approximate the concrete
behavior of each final bytecode instruction (return t, return void, throw κ) of a method
or a constructor belonging to the program under analysis. Let us show that this property
actually holds.

Lemma 5.36. The propagation rules #12-#14 from Fig. 5.3 satisfy Requirement 4.5. More
precisely, let us consider a final arc from a bytecode ins and its propagation rule Π .
Assume that ins has static type information τ at its beginning and τ′ immediately after its
execution (its non-exceptional execution if ins is a return, its exceptional execution if ins
is a throw κ). Then, for every R ∈ Reachτ we have:

ins(γτ(R)) ⊆ γτ′ (Π(R))

(we recall that ins is the semantics of ins, see Fig. 3.6).

Proof. Let dom(τ) = L∪S contain i local variables L = {l0, . . . , li−1} and j operand stack
elements S = {s0, . . . , sj−1}; let dom(τ′) = L′ ∪ S ′, where L′ and S ′ are the local and
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operand stack variables of dom(τ′). Consider an arbitrary abstract element R ∈ Reachτ
and a state ω′ = 〈ρ′, µ′〉 ∈ ins(γτ(R)) ∩ Ξτ′ . We prove that ω′ ∈ γτ′ (Π(R)), i.e., (Defini-
tion 5.20) that

for every x , y ∈ dom(τ′), x ω′y entails x y ∈ Π(R).

The latter can be proved by showing that either x 6 ω′y or x y ∈ Π(R). Note that, by the
choice of ω′, there exists ω = 〈ρ, µ〉 ∈ γτ(R) such that ω′ = ins(ω). Moreover, ω ∈ γτ(R)
implies that for every x , y ∈ dom(τ), x ωy entails x y ∈ R. We analyze different
propagation rules corresponding to different types of final arcs.
ins = return void. We have L′ = L, S ′ = ∅, µ′ = µ and for every a ∈ dom(τ′), ρ′(a) =

ρ(a). By Definition 4.1, Π(R) = {a b | a , b < S }. By Lemma 5.7, x ω′y iff x ωy ,
which entails x y ∈ R and then x y ∈ Π(R) (since x and y are local variables).
ins = return t. We have L′ = L, S ′ = {s0}, µ′ = µ and for every a ∈ dom(τ′) r {s0},
ρ′(a) = ρ(a), while ρ′(s0) = ρ(sj−1). By Definition 4.1, Π(R) = {(a b)[sj−1/s0] |
a b ∈ R ∧ a , b < {s0, . . . , sj−2}}. We consider the following cases:

• if x , y , s0, then x and y are local variables, ρ′(x ) = ρ(x ) and ρ′(y) = ρ(y). Hence,
by Lemma 5.7,

x ω′y ⇔ x ωy ⇒ x y ∈ R.
Therefore, since x and y are local variables, we conclude x y ∈ Π(R).

• if x , s0 and y = s0, then ρ′(x ) = ρ(x ) and ρ′(y) = ρ′(s0) = ρ(sj−1). Hence, by
Lemma 5.7,

x ω′s0 ⇔ x ωsj−1 ⇒ x y ∈ R.
Therefore, since x is a local variable and sj−1 < {s0, . . . , sj−2}, we conclude x y =

x s0 = (x sj−1)[sj−1/s0] ∈ Π(R).
• if x = s0 and y , s0, then ρ′(x ) = ρ′(s0) = ρ(sj−1) and ρ′(y) = ρ(y); hence, by

Lemma 5.7,
s0 

ω′y ⇔ sj−1 
ωy ⇒ x y ∈ R.

Therefore, since sj−1 < {s0, . . . , sj−2} and y is a local variable, we condlude x y =

s0 y = (sj−1 y)[sj−1/s0] ∈ Π(R).
• if x = y = s0, then ρ′(x ) = ρ′(y) = ρ′(s0) = ρ(sj−1). Hence, by Lemma 5.7,

s0 
ω′s0 ⇔ sj−1 

ωsj−1 ⇒ x y ∈ R.

Therefore, since sj−1 < {s0, . . . , sj−2}, we conclude

x y = s0 s0 = (sj−1 sj−1)[sj−1/s0] ∈ Π(R).

ins = throw κ. We have L′ = L, S ′ = {s0} and for every a ∈ L′, ρ′(a) = ρ(a). By Def-
inition 4.1, Π(R) = {(a b)[sj−1/s0] | a b ∈ R ∧ a , b < {s0, . . . , sj−2}} ∪ {s0 s0}.
From Fig. 3.6 we have two possibilities: either ρ′(s0) = ρ(sj−1) and µ′ = µ, in which
case, with the same proof as for return t above, we conclude that if x ω′y then
x y ∈ {(a b)[sj−1/s0] | a b ∈ R ∧ a , b < {s0, . . . , sj−2}} ⊆ Π(R). Or otherwise
ρ′(s0) = ` where ` is fresh and µ′ = µ[` 7→ npe], where npe is a new object of class
NullPointerException containing only fresh locations (Lµ′ (`) ∩ dom(µ) = ∅). In this
latter case we have the following cases:
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• if x , y , s0, then, ρ′(x ) = ρ(x ) and ρ′(y) = ρ(y); hence, by Lemma 5.7, x ω′y iff
x ωy , which entails x y ∈ R and therefore x y ∈ Π(R) (since x and y are local
variables).

• if x , s0 and y = s0, then ρ′(x ) = ρ(x ) and ρ′(y) = ρ′(s0) = `. Since ` is fresh,
Lµ′ (ρ′(x )) ⊆ dom(µ) and ρ′(y) < dom(µ), which entails x 6 ω′y .

• if x = s0 and y , s0, then ρ′(y) = ρ(y) and ρ′(x ) = ρ′(s0) = `; then ρ′(y) ∈ dom(µ)
and Lµ′ (ρ′(x )) ∩ dom(µ) = ∅. Then x 6 ω′y .

• if x = y = s0 we have s0 s0 ∈ Π(R).

�

5.4.6 Exceptional Arcs

This subsection is dedicated to Requirements 4.6 and 4.7. The latter states that in the case
of the propagation rules of the exceptional arcs, the exceptional concrete states belonging
to the concretization of a correct approximation of the property of interest before a byte-
code instruction is executed, are correctly propagated by the corresponding rule. It means
that the propagation rules of the exceptional arcs simulating the exceptional executions
of the bytecode instructions which can throw an exception have to be sound. Let us show
that this property actually holds.

Lemma 5.37. The propagation rules #15 and #17 from Fig. 5.3 satisfy Requirement 4.6.
More precisely, let us consider an exceptional arc from a bytecode ins distinct from call
and its propagation rule Π . Assume that ins has static type information τ at its beginning
and τ′ immediately after its exceptional execution. Then, for every R ∈ Reachτ we have:

ins(γτ(R)) ∩ Ξτ′ ⊆ γτ′ (Π(R))

(we recall that ins is the semantics of ins, see Fig. 3.6).

Proof. Let dom(τ) = L ∪ S contain i local variables L = {l0, . . . , li−1} and j operand
stack elements S = {s0, . . . , sj−1}; let dom(τ′) = L′ ∪ S ′, where L′ and S ′ = {s0} are
the local and operand stack variables of dom(τ′). Consider an arbitrary abstract element
R ∈ Reachτ and a state ω′ = 〈ρ′, µ′〉 ∈ ins(γτ(R)) ∩ Ξτ′ . We prove that ω′ ∈ γτ′ (Π(R)),
i.e., (Definition 5.20) that

for every x , y ∈ dom(τ′), x ω′y entails x y ∈ Π(R).

The latter can be proved by showing that either x 6 ω′y or x y ∈ Π(R). Note that, by the
choice of ω′, there exists ω = 〈ρ, µ〉 ∈ γτ(R) such that ω′ = ins(ω). Moreover, ω ∈ γτ(R)
implies that for every x , y ∈ dom(τ), x ωy entails x y ∈ R. We analyze different
propagation rules corresponding to different types of exceptional arcs.
If ins ∈ {div, rem, new, getfield, putfield, arraynew, arraylength, arrayload, arraystore}.
In this case we have L′ =L and S ′ = {s0}. Moreover, for every a ∈L′, ρ′(a) = ρ(a), while
ρ′(s0) = ` ∈ L, where ` is a fresh location and µ′ = µ[` 7→ o], where o is a new instance
of the subclass of Throwable thrown by ins containing only fresh locations (Lµ′ (`) ∩
dom(µ) = ∅). By Definition 4.1, Π(R) = {a b | a b ∈ R ∧ a , b < {s0, . . . , sj−1}} ∪
{s0 s0}. We distinguish the following cases:
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• if x , y , s0, then, ρ′(x ) = ρ(x ), ρ′(y) = ρ(y) and for every ` ∈ dom(µ), µ′(`) = µ(`);
hence, by Lemma 5.7, x ω′y iff x ωy , which entails x y ∈ R and therefore
x y ∈ Π(R) (since x , y ∈ L′).

• if x = y = s0 we have s0 s0 ∈ Π(R).
• if x = s0 and y , s0, then ρ′(y) ∈ dom(µ) and Lµ′ (ρ′(x )) ∩ dom(µ) = ∅. Hence

x 6 ω′y .
• if x , s0 and y = s0, then ρ′(y) = ` < dom(µ) and Lµ′ (ρ′(x )) ⊆ dom(µ) (since ` is

fresh). Then x 6 ω′y .

ins = throw κ. Analogously to the proof of Lemma 4.2 for throwκ, when ρ′(s0) = `, where
` is a fresh location. �

On the other hand, Requirement 4.7 deals with one particular case of the exceptional
arcs: when a method is invoked on a null receiver. In that case we require that the excep-
tional states launched by the method are included in the approximation of the property of
interest after the call to that method. Let us show that our propagation rules satisfy this
requirement.

Lemma 5.38. The propagation rule #16 from Fig. 5.3 satisfies Requirement 4.7. More
precisely, consider an exceptional arc from a method invocation insC =callm1 . . .mn and
its propagation rule Π , and let π be the number of its actual arguments (this included).
Then, for each 1 ≤ w ≤ q , and every σ = 〈〈l ‖ vπ−1 :: . . . :: v1 :: null : s〉, µ〉 ∈ γτ(R) (σ
assigns null to the receiver of insC right before it is executed), where R ∈ Reachτ is an
arbitrary abstract element, we have:

〈〈l ‖ `〉, µ[` 7→ npe]〉 ⊆ γτ′ (Π(R)),

where ` is a fresh location, and npe is a new instance of NullPointerException.

Proof. Let dom(τ) = L ∪ S contain local variables L and j ≥ π operand stack el-
ements S = {s0, . . . , sj−π, . . . , sj−1}, where π is the number of parameters of method
mw (including this). Consider an arbitrary abstract element R ∈ Reachτ and a state
σ = 〈ρ, µ〉 = 〈〈l ‖ vπ−1 :: . . . :: v1 :: null : s〉, µ〉 ∈ γτ(R). Then, by Rule 3 from Fig. 3.7,
we have that dom(τ′) = L ∪ {s0}, and the resulting state σ′ = 〈ρ′, µ′〉 is such that for
each a ∈ dom(τ′) r {s0}, ρ′(a) = ρ(a), ρ(s0) = `, where ` is a fresh location and
µ′ = µ[` 7→ npe], where npe is a new instance of NullPointerException. Hence,
σ′ = 〈〈l ‖ `〉, µ[` 7→ npe]〉. Moreover, by definition of the propagation rules,

Π(R)= {a b ∈ R | a , b ∈ {l0, . . . , li−1} ∪ {s0 s0}
∪ {a s0 | a ∈ L ∧ τ(a) Throwable}︸                                           ︷︷                                           ︸

R1

∪ {s0 a | a ∈ L ∧ Throwable τ(a)}︸                                           ︷︷                                           ︸
R2

.

We must prove that σ′ ∈ γτ′ (Π(R)) i.e., (Definition 5.20) that

for every x , y ∈ dom(τ′), x σ′y ⇒ x y ∈ Π(R).

The latter can be proved by showing that either x 6 σ′y or x y ∈ Π(R). Note that, by
hypothesis, σ ∈ γτ(R), i.e., for every x , y ∈ dom(τ), x σy ⇒ x y ∈ R. Let x and y
be arbitrary variables from dom(τ′). We distinguish the following cases:
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• if x , y ∈ L, then ρ′(x ) = ρ(x ) and ρ′(y) = ρ(y). Hence, by Lemma 5.7, x σy iff
x σy , which entails x y ∈ R, and therefore x y ∈ Π(R).

• if x = s0 and y , s0, then if there exists a variable z ∈ L such that s0 
σ′z , then

by Lemma 5.17, τ′(s0) τ′(z ) = τ(z ), i.e., τ(z ) ∈ T(τ′(s0)). Moreover, τ′(s0) ≤
Throwable, hence by Lemma 5.15, T(τ′(s0)) ⊆ T(Throwable), which entails τ(z ) ∈
T(Throwable), i.e., Throwable τ(z ). Hence, s0 z ∈ R2.

• if x , s0 and y = s0, then if there exists a variable z ∈ L such that z σ′s0, then
by Lemma 5.17, τ(z ) = τ′(z ) τ′(s0). Moreover, τ′(s0) ≤ Throwable, hence, by
Lemma 5.13, we have that τ(z ) Throwable. Hence, z s0 ∈ R1.

• if x = y = s0, then s0 s0 ∈ Π(Rp).

Therefore, 〈〈l ‖ `〉, µ[` 7→ npe]〉 = σ′ ∈ γτ′ (Π(R)). �

5.4.7 Parameter Passing Arcs

This subsection is dedicated to Requirement 4.8 which states that the propagation rules of
the parameter passing arcs are sound. Namely, this rule soundly approximates the behav-
ior of the makescope function. Let us show that this property holds.

Lemma 5.39. The propagation rule #18 from Fig. 5.3 satisfies Requirement 4.8. More
precisely, let us consider a parameter passing arc from a method invocation insC =

call m1 . . .mn to the first bytecode of a callee mw , for some w ∈ [1..k ], and its prop-
agation rule Π . Assume that insC has static type information τ at its beginning and that
τ′ is the static type information at the beginning of mw . Then, for every R ∈ Reachτ we
have:

(makescope mw )(γτ(R)) ⊆ γτ′ (Π(R))

Proof. Let dom(τ) = L ∪ S contain local variables L and j ≥ π operand stack ele-
ments S = {s0, . . . , sj−π, . . . , sj−1}, where π is the number of parameters of method mw

(including this). Then, dom(τ′) = {l0, . . . , lπ−1}. Consider an arbitrary abstract element
R ∈ Reachτ and a state ω′ = 〈ρ′, µ′〉 ∈ ins(γτ(R)) ∩ Ξτ′ . We prove that ω′ ∈ γτ′ (Π(R)),
i.e., (Definition 5.20) that

for every x , y ∈ dom(τ′), x ω′y entails x y ∈ Π(R).

By the choice of ω′, there exists ω = 〈ρ, µ〉 ∈ γτ(R) such that ω′ = (makescope mw )(ω).
Moreover, ω ∈ γτ(R) implies that for every x , y ∈ dom(τ), x ωy entails x y ∈ R. By
definition of the propagation rules we have:

Π(R) =

{
(a b)

[
sj−π/l0
...

sj−1/lπ−1

]∣∣∣∣∣ a b ∈ R and a , b ∈ {sj−π, . . . , sj−1}
}

By Definition 3.17, for every p ∈ [0, π), ρ′(lp) = ρ(sj−π+p) and µ′ = µ. Consider x , y ∈
dom(τ′) = L′. There exist p, q ∈ [0..π) such that x = lp and y = lq , and therefore
ρ′(x ) = ρ′(lp) = ρ(sj−π+p) and ρ′(y) = ρ(lq ) = ρ(sj−π+q ). Hence, by Lemma 5.7,

x ω′y ⇔ sj−π+p 
ωsj−π+q ⇒ sj−π+p sj−π+q ∈ R.

Therefore, x y = lp lq = (sj−π+p sj−π+q )[sj−π+p/lp , sj−π+q/lq ] ∈ Π(R). �
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5.4.8 Return and Side-Effects Arcs at Non-Exceptional Ends

In this subsection we show that our reachability analysis satisfies Requirements 4.9
and 4.10. The following lemmas deal with the return values and side-effects of the non-
exceptional executions of methods. Namely, in the case of a non-void method, the propa-
gation rule of the return value arc enriches the resulting approximation of the reachability
immediately after the call to that method by adding all those reachability pairs that the re-
turned value might correspond to. On the other hand, that method might modify the initial
memory from which the method has been executed. These modifications must be cap-
tured by the propagation rules of the side-effects arcs. The approximation of the property
of interest after the call to the method is, therefore, determined as the union of the approx-
imations obtained from the propagation rules of the return value and the side-effects arcs,
and it is sound, like Lemma 5.40 shows. Lemma 5.41 handles the case of a void method,
and therefore only the corresponding side-effects arc is considered there.

Lemma 5.40. The propagation rules from Fig. 5.4 satisfy Requirement 4.9. More pre-
cisely, the propagation rules for the return value arcs and side-effects arcs are sound at
a non-void method return. Namely, let w ∈ [1..n] and consider a return value and a
side-effect arc from nodes C = call m1 . . .mn and E = exit@mw to a node Q = insq and
their propagation rules Π#19 and Π#20, respectively. Let τc , τq and τe be the static type
information at C, Q and E, respectively, and let d be the denotation of mw , i.e., a partial
function from a state at its beginning to the corresponding state at its end. Then, for every
Rc ∈ Reachτc and Re ∈ Reachτe , we have:

d ((makescope mw )(γτc (Rc)) ∩ Ξτq ⊆ γτq (Π#19(Rc ,Re ) ∪ Π#20(Rc ,Re )).

Proof. Consider states σc ∈ γτc (Rc), σe ∈ γτe (Re ) and σq = d ((makescope mw )(σc)) ∈
Ξτq and let us show that σq ∈ γτq (Rq ), where Rq = Π#19(Rc ,Re ) ∪ Π#20(Rc ,Re ). By
Definition 5.20,

σq ∈ γτq (Rq ) ⇔ ∀a , b ∈ dom(τq ).a σq b ⇒ a b ∈ Rq

⇔ ∀a , b ∈ dom(τq ).a b < Rq ⇒ a 6 σq b.

In the following we use the following hypotheses: dom(τa ) = La∪Sa , where a can be c, e
or q , Sc = {s0, . . . , sj }, Se = {s0}, Sq = {s0, . . . , sj−π−1, sj−π}, Lq = Lc and {l0, . . . , lπ−1} ⊆
Le , where j and π are number of operand stack elements in dom(τc) and number of
parameters of method m , respectively. By Definition 3.19, σc , σe and σq have to satisfy
the following conditions: σc = 〈〈lc ‖ vj−1 :: . . . :: vj−π :: . . . :: v0〉, µc〉, σe = 〈〈le ‖ top〉, µe〉
and σq = 〈〈lc ‖ top :: vj−π−1 :: . . . :: v0〉, µe〉. Let a and b be two arbitrary variables from
dom(τq ) and suppose that a b < Rq . We show that in that case a 6 σq b. We distinguish
the following cases:

Case a: If a = b = sj−π: Rule Π#15 adds the pair sj−π sj−π only if s0 s0 ∈ Re .
Thus, sj−π sj−π < Rq implies s0 s0 < Re , which entails s0 6 σe s0 (σe ∈ γτe (Re )),
and it is possible only if τe (s0) = int. Since τq (sj−π) = τe (s0) = int, we conclude
sj−π 6 σq sj−π.

Case b: If a ∈ dom(τq ) r {sj−π} and b = sj−π: If a sj−π < Rq then, by rule Π#19:
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1.τq (a) 6 t or
2.there is no j − π ≤ p < j , such that a might share with sp at C or
3.there exists a j − π ≤ p < j , such that a is definitely aliased to sp at C and

no store lp−j+π occurs in mw and lp−j+π s0 < Re .

We analyze these 3 cases:

1. if τq (a) 6 t, then since τq (sj−π) ≤ t (sj−π contains the value returned by method m ,
whose type is t), by Lemma 5.13, τq (a) 6 τq (sj−π) holds, which, by Lemma 5.17
implies a 6 σq sj−π.

2. if there is no j − π ≤ p < j , such that a might share with sp at C, i.e., if at call-time a
cannot share with the parameters of method m then, by Proposition 5.8, Lσc

(a) ⊆ Lσc

and ρq (sj−π) < Lσc
, which entails ρq (sj−π) < Lσc

(a). Since ρc(a) = ρq (a) ∈ Lσc
,

by Lemma 5.10, we have Lσc
(a) = Lσq

(a). Thus, ρq (sj−π) < Lσc
(a) = Lσq

(a), i.e.,
a 6 σq sj−π.

3. if there exists a j−π ≤ p < j , such that a is definitely aliased to sp at C, no storelp−j+π

occurs in mw and lp−j+π s0 < Re , we have:

ρc(a) = ρc(sp) [a is definitely aliased to sp at C]
ρc(sp) = ρe (lp−j+π) [sp at C corresponds to lp−j+π at E and there is no store lp−j+π in mw ]
ρc(a) = ρq (a) [a ∈ dom(τq ) r {sj−π} and Definition 3.19]
lp−j+π s0 < Re ⇒ lp−j+π 6 σe s0 [By Definition 5.20]

Since ρq (a) = ρe (lp−j+π), ρq (sj−π) = ρe (s0) and µq = µe (hypotheses about σq and
σe ), by Lemma 5.7, a σq sj−π ⇔ lp−j+π 

σe s0. Since lp−j+π 6 σe s0, we conclude
that a 6 σq sj−π.

Thus, we proved that a 6 sj−π < Rq entails a 6 σq sj−π.
Case c: If a = sj−π and b ∈ dom(τq ) r {sj−π}: If sj−π b < Rq , then, by rule Π#19:

1.t 6 τq (b) or
2.there is no j − π ≤ p < j , such that sp b ∈ Rc or
3.there exists a j − π ≤ p < j , such that b is definitely aliased to sp at C and

no store lp−j+π occurs in mw and s0 lp−j+π < Re .

We analyze these 3 cases:

1. if t 6 τq (b), then τq (b) < T(t). Since sj−π contains the value returned by method m ,
whose type is t, we have τq (sj−π) ≤ t. By Lemma 5.15, T(τq (sj−π)) ⊆ T(t), which
entails τq (b) < T(τq (sj−π)), i.e., τq (sj−π) 6 τq (b) and, by Lemma 5.17, sj−π 6 σq b.

2. if there is no j − π ≤ p < j , such that sp b ∈ Rc then, by Definition 5.20, for
each j − π ≤ p < j , sp 6 σcb, i.e., ρc(b) <

⋃
p∈[j−π,j ) Lσc

(sp). By Proposition 5.8,
ρc(b) ∈ Lσc

and ρq (sj−π) < Lσc
. By Lemma 5.9, Lσq

(sj−π) ∩ Lσc
= ∅, hence

ρc(b) < Lσq
(sj−π) and, since ρc(b) = ρq (b), we conclude that ρq (b) < Lσq

(sj−π), i.e.,
sj−π 6 σq b.

3. if there exists a j−π ≤ p < j , such that b is definitely aliased to sp at C, no storelp−j+π

occurs in mw and s0 lp−j+π < Re , we have:
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ρc(b) = ρc(sp) [b is definitely aliased to sp at C]
ρc(sp) = ρe (lp−j+π) [[sp at C corresponds to lp−j+π at E and there is no store lp−j+π in mw ]
ρc(b) = ρq (b) [b ∈ dom(τq ) r {sj−π} and Definition 3.19]
s0 lp−j+π < Re ⇒ s0 6 σe lp−j+π [By Definition 5.20]

Since ρq (sj−π) = ρe (s0), ρq (b) = ρe (lp−j+π) and µq = µe (hypotheses about σq and
σe ), by Lemma 5.7, sj−π σq b ⇔ s0 

σe lp−j+π. Since s0 6 σe lp−j+π, we conclude
that sj−π 6 σq b.

Thus, we proved that sj−π b < Rq imples that sj−π 6 σq b.
Case d: If a , b ∈ dom(τq ) r {sj−π}: In this case, ρc(a) = ρq (a) and ρc(b) = ρq (b)

(Definition 3.19). If a b < Rq then, by rule Π#20:

1.[a b < Rc and τq (a) 6 τq (b)] or
2.[a b < Rc and ∀j − π ≤ pa < j , a does not share with spa

at C] or
3.[a b < Rc and ∀j − π ≤ pb < j , spb

 b < Rc] or
4.[a b < Rc and ∀j − π ≤ qa , qb < j , a is definitely aliased to sqa at C and

b is definitely aliased to sqb at C and no store lqa−j+π nor store lqb−j+π

occurs in mw and lqa−j+π lqb−j+π < Re ]

We analyze these 4 cases:

1. if τq (a) 6 τq (b) then, by Lemma 5.17, a 6 σq b.
2. if a b < Rc and for each j − π ≤ pa < j , a does not share with spa

, then from
the latter condition we realize that a does not share with any actual parameter of m
at call-time and by Proposition 5.8, Lσc

(a) ⊆ Lσc
. By Lemma 5.10, ρc(a) = ρq (a)

entails Lσc
(a) = Lσq

(a). Since a b < Rc , by Definition 5.20, a 6 σcb, i.e. ρc(b) <
Lσc

(a) = Lσq
(a). Moreover, ρq (b) = ρc(b), hence ρq (b) < Lσc

(a) = Lσq
(a), and

therefore a 6 σq b.
3. if a b < Rc and for each j − π ≤ pb < j , spb

 b < Rc , then from the latter
condition we realize that ρc(b) is not a location reachable from the actual parameters
of m at call-time, and therefore, by Proposition 5.8, ρc(b) ∈ Lσc

. Since a b < Rc ,
by Definition 5.20, a 6 σcb, i.e. ρc(b) < Lσc

(a), and therefore ρc(b) < Lσc
(a) ∩ Lσc

.
By Lemma 5.11, ρc(a) = ρq (a) entails Lσc

(a) ∩ Lσc
= Lσq

(a) ∩ Lσc
, and since

ρc(b) = ρq (b), we have ρq (b) < Lσq
(a), i.e., b 6 σqa .

4. in this case, for every j − π ≤ qa , qb < j we have:

ρc(a) = ρc(sqa ) [a is definitely aliased to sj−π+qa at C]
ρc(sqa ) = ρe (lqa−j+π) [sqa at C corresponds to lqa−j+π at E and

no store lqa−j+π occurs in mw ]
ρc(a) = ρq (a) [a ∈ dom(τq ) r {sj−π} and Definition 3.19]
ρc(b) = ρc(sqb ) [b is definitely aliased to sqb at C]
ρc(sqb ) = ρe (lqb−j+π) [sqb at C corresponds to lqb−j+π at E and

no store lqb−j+π occurs in mw ]
ρc(b) = ρq (b) [b ∈ dom(τq ) r {sj−π} and Definition 3.19]
lqa−j+π lqb−j+π < Re ⇒ lqa−j+π 6 σe lqb−j+π [By Definition 5.20]

Since, ρq (a) = ρe (lqa−j+π), ρq (b) = ρe (lqb−j+π) and µq = µe , by Lemma 5.7, a σq b
⇔ lqa−j+π 

σe lqb−j+π. Since lqa−j+π 6 σe lqb−j+π, we conclude that a 6 σq b.
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�

Lemma 5.41. The propagation rule #20 from Fig. 5.4 satisfies Requirement 4.10. More
precisely, the propagation rules for the side-effects arcs is sound at a void method return.
Namely, let w ∈ [1..n] and consider a side-effect arc from nodes C = call m1 . . .mn and
E = exit@mw to a node Q = insq and its propagation rule Π#20. Let τc , τq and τe be
the static type information at C, Q and E, respectively, and let d be the denotation of mw ,
i.e., a partial function from a state at its beginning to the corresponding state at its end.
Then, for every Rc ∈ Reachτc and Re ∈ Reachτe , we have:

d ((makescope mw )(γτc (Rc)) ∩ Ξτq ⊆ γτq (Π#20(Rc ,Re )).

Proof. The proof is analogous to the proof of Case d of Lemma 4.6. �

5.4.9 Side-Effects and Exceptional Arcs at Exceptional Ends

In this section we show that our reachability analysis satisfies also Requirement 4.11. The
following lemma deals with the exceptional executions of the methods. Namely, the ap-
proximation of the reachability information at the catch which captures the exceptional
states of the method we are interested in, has to be affected by all possible modifications
of the initial memory due to the side-effects of the method. This is the task of the prop-
agation rules of the side-effects arcs. On the other hand, the final approximation of the
reachability property at the point of interest (catch) has to be affected by the exceptions
launched by the method when it is invoked on a null object too. Like in the previous
case, the approximation of the reachability information is determined as the union of the
two approximations mentioned above, and Lemma 5.42 shows that it is correct.

Lemma 5.42. The propagation rules #16 and #20 from Figures 5.3 and 5.4 satisfy Re-
quirement 4.11. More precisely, the propagation rules for the exceptional arcs of the call
and side-effects arcs are sound when a method throws an exception. Namely, given nodes
Q = catch , C = call m1 . . .mn and E = exception@mw , for a suitable w ∈ [1..n], consider
an exceptional arc from C to Q and a side-effect arc from C and E to Q, with their propa-
gation rules Π#16 and Π#20, respectively. Let τc , τq and τe be the static type information
at C, Q and E, respectively, and let d be the denotation of mw , i.e., a partial function from
a state at its beginning to the corresponding state at its end. Then, for every Rc ∈ Reachτc
and Re ∈ Reachτe , we have:

d ((makescope mw )(γτc (Rc)) ∩ Ξτq ⊆ γτq (Π#16(Rc) ∪ Π#20(Rc ,Re )).

Proof. Consider states σc ∈ γτc (Rc), σe ∈ γτe (Re ) and σq = d ((makescope mw )(σ)) ∈
Ξτq and let us show that σq ∈ γτq (Rq ), where Rq = Π#16(Rc) ∪ Π#20(Rc ,Re ). By Defi-
nition 5.20,

σq ∈ γτq (Rq ) ⇔ ∀a , b ∈ dom(τq ).a σq b ⇒ a b ∈ Rq

⇔ ∀a , b ∈ dom(τq ).a b < Rq ⇒ a 6 σq b.

In the following we use the following hypotheses: dom(τa ) = La ∪ Sa , where a can
be c, e or q , Sc = {s0, . . . , sj }, Se = {s0}, Sq = {s0}, Lq = Lc and {l0, . . . , lπ−1} ⊆
Le , where j and π are number of operand stack elements in dom(τc) and number of
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parameters of method m respectively. By Definition 3.19, σc , σe and σq have to satisfy
the following conditions: σc = 〈〈lc ‖ vj−1 :: . . . :: vj−π :: . . . :: v0〉, µc〉, σe = 〈〈le ‖ `〉, µe〉 and
σq = 〈〈lc ‖ `〉, µe〉, where ` represents the location holding the exception thrown by mw .
Hence, τe (s0) ≤ Throwable and τq (s0) ≤ Throwable. Let a and b be two arbitrary
variables from dom(τq ) and suppose that a σq b. We show that in that case a b ∈ Rq .
We distinguish the following cases:

If a = s0 and b , s0: Since s0 
σq x then, by Lemma 5.7 and Definition 5.12, we have

that τq (s0) τq (b), i.e., τq (b) ∈ T(τq (s0)). Since τq (s0) ≤ Throwable we have, by
Lemma 5.15, T(τq (s0)) ⊆ T(Throwable), and therefore τq (b) ∈ T(Throwable), i.e.,
Throwable τq (b). Moreover, x < Sq , hence a b = s0 b ∈ Π#16(Rc) ⊆ Rq .

If a , s0 and b = s0: Since a σq s0 then, by Lemma 5.7, τq (a) τq (s0). Moreover,
τq (s0) ≤ Throwable and, by Lemma 5.13, τq (a) Throwable. Since a < Sq , we have
a b = a s0 ∈ Π#16(Rc) ⊆ Rq .

If a = b = s0: In this case a b = s0 s0 trivially belongs to Π#16 ⊆ Rq .
If a , b ∈ dom(τq ) r {s0}: In this case we suppose that a b < Rq , and we show that

a 6 σq b. The proof is analogous to the proof of Case d of Lemma 4.6. �

5.4.10 Conclusion

In this section we have shown that all the requirements provided in Chapter 4 are satisfied
by the abstract domain Reach introduced in Section 5.3.1 and by the propagation rules
introduced in Section 5.3.2. This fact allows us to assert the following two results.

Theorem 5.43. There exists the least solution to the reachability analysis introduced in
this chapter.

Proof. This proof directly follows from the results obtained in Section 4.5, where instead
of a generic abstract domain

Aτk = 〈Aτk ,v,t,u,>τk ,⊥τk 〉,

for a type environment τk corresponding to a node k , we use the abstract domain

Reachτk = 〈℘(dom(τk ) × dom(τk )),⊆,∪,∩, ℘(dom(τk ) × dom(τk )), ∅〉,

defined in this chapter. Theorem 4.11 shows that when Requirements 4.1 and 4.3 are
satisfied, then there exists the least solution to the system of constraints constructed in
Section 4.5, representing the actual static analysis of interest. Lemmas 5.31 and 5.34
show that Requirements 4.1 and 4.3 are satisfied by the instantiation of the framework
concerning the reachability analysis, hence hypotheses of Theorem 4.11 are satisfied and
we can use its results. �

Example 5.44. In Figure 5.7 we give the least solution to the system of constraints intro-
duced in Example 5.30 (Fig. 5.6) and concerning the ACG from Fig. 5.5. ut

Finally, we can state that our reachability analysis is sound, i.e., at each program point
the set of reachability pairs obtained by our analysis represent an over-approximation of
the actual reachability information available at that point.
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Node Solution of reachability approximation

A

{
l0 l0, l1 l1, l3 l3, l1 s3, l3 s2, s2 l3,

s0 s0, s0 s1, s1 s0, s1 s1, s2 s2, s3 s3

}
1 {l0 l0, l1 l1, l2 l2}
2 {l0 l0, l1 l1, l2 l2, l0 s0, s0 l0, s0 s0}
3 {l0 l0, l1 l1, l2 l2}
4 {l0 l0, l1 l1, l2 l2, l0 s0, s0 l0, s0 s0}
5

{
l0 l0, l1 l1, l2 l2, l0 s0,

l1 s1, s0 l0, s1 l1, s0 s0, s1 s1

}
6 {l0 l0, l0 l1, l1 l1, l2 l2}
7

{
l0 l0, l0 l1, l1 l1, l2 l2,

l0 s0, s0 l0, s0 l1, s0 s0

}
8

{
l0 l0, l0 l1, l1 l1, l2 l2, l0 s0,

l2 s1, s0 l0, s0 l1, s1 l2, s0 s0, s1 s1

}
9 {l0 l0, l0 l1, l0 l2, l1 l1, l2 l2}10

11
{l0 l0, l0 l1, l1 l1, l2 l2, s0 s0}12

13
B {l0 l0, l1 l1, l1 s0, l1 l3, l3 l3, s0 l3, s0 s0}
C

Fig. 5.7. The solution of the constraint system from Fig. 5.6

Theorem 5.45. Let 〈bfirst(main) ‖ ξ〉 ⇒∗ 〈 ins
rest
→
→

b1
· · ·
bm
‖ σ〉 :: a be the execution of our

operational semantics, from the block bfirst(main) starting with the first bytecode instruc-
tion of method main, ins0, and an initial state ξ ∈ Στ0 (containing no reachability except
the this object which reaches itself), to a bytecode instruction ins and assume that this
execution leads to a state σ ∈ Στ, where τ0 and τ are the static type information at ins0
and ins, respectively. Moreover, let R0 = {l0 l0} ∈ Reachτ0 , and let R ∈ Reachτ be the
reachability approximation at ins, as computed by our reachability analysis starting from
R0. Then, σ ∈ γτ(R) holds.

Proof. This proof directly follows from Theorem 4.14 and the fact that the requirements
provided in Chapter 4 are satisfied, which has been shown in this section (Lemmas 5.31-
5.42). �

Therefore, the reachability analysis instantiated in the parameterized general frame-
work for constraint-based static analyses of Java bytecode programs is sound and has the
least solution.

5.5 Experimental Evaluation of the Reachability Analysis

We have implemented our reachability analysis inside the Julia analyzer for Java and
Android [4]. It is a commercial tool developed by Julia Srl, a spin-off company of the
University of Verona. In the next sections we describe the tool and the experiments that
we have performed in order to evaluate our reachability analysis.
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5.5.1 The Julia Analyzer

Julia is a static analyzer for bytecode, completely written in Java, that includes classes
for the definition of denotational (bottom-up) analyses, constraint-based analyses and
automaton-based analyses.

Denotational analyses define a functional abstract behavior (denotation) for each sin-
gle bytecode instruction and compose such behaviors in a bottom-up way, computing fix-
points in order to analyze loops and recursion. An example is the nullness analysis in [84].
Their strength is that these analyses are fully context-sensitive, since the denotation of a
method is a function from its context at call-time to its context at return-time; however, it
is difficult to provide context-sensitive approximations for the fields of the objects, since
the analyses become computationally too expensive. Binary decision diagrams [26] are
typically used to implement denotations and Julia provides support for this choice.

Constraint-based analyses follow the approach used, for instance, in this thesis. A sys-
tem of constraints is built from the program under analysis (and the libraries that it uses).
Nodes might stand for program points, as in this article, when the abstract interpretation
abstracts states (see in our case Definition 5.20). They might also stand for local variables,
stack elements, fields or return values, when the abstract interpretation abstracts values
rather than states (examples are [63, 86]). Or they might stand for whole methods and
constructors, as in the case of side-effect analysis. Moreover, the approximation at a node
can be the union of the approximations of the incoming arcs (as in this chapter) or their in-
tersection. In the first case, we deal with a possible analysis (an over-approximation of the
property under analysis is computed); in the second case, we deal with a definite analysis
(an under-approximation of the property under analysis is computed). In all cases, Julia
provides standard implementations of the construction of a system of constraints, that can
be personalized by subclassing, if needed. The elements of the abstract domain (in our
case, sets of ordered pairs of variables) are represented through bitsets of singletons, in
order to make set operations very fast (they become bitwise operations over arrays of Java
64 bits longs) and keep the memory footprint small (singletons are created once; bitsets
are very compact). The fixpoint algorithm that finds a solution, in two versions for possi-
ble and definite analysis, is implemented in Julia through a working-set, demand-driven
approach: the arcs of the constraint are put in a stack and processed one at a time; when
the approximation of a node changes, all its outgoing arcs are added again to the stack,
until stabilization. This means, in particular, that the programmer of a static analysis does
not need to care about the fixpoint algorithm or the bitset implementation, since the in-
frastructure is available, debugged and optimized once and for all inside Julia. Its code is
shared by all constraint-based analyses.

Automaton-based static analyses abstract execution traces into states of a finite state
automaton. The automaton is executed from the initial bytecode instruction of the pro-
gram and each bytecode instruction induces a state transition in the automaton. Possible
states of the automaton at a program point are an abstraction of all the execution paths
that might lead to that point. The advantage of this approach is that one can easily ab-
stract traces rather than states and the analysis has a very efficient and relatively simple
implementation. An example is the determination of program points where a given array
has been fully initialized [62, 65].

The reachability analysis of this article uses preliminary, supporting analyses, namely
definite aliasing and possible sharing analysis. They are both implemented as constraint-
based analyses themselves and computed before our reachability analysis starts. That is,
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we do not use a reduced product of more analyses, but implement a sequence of analyses.
The result of reachability is then used by client analyses, namely, side-effects, field ini-
tialization, cyclicity and path-length analysis. The propagation of sharing information is
described in [82].

Side-effects analysis collects the fields that might be read or modified by a method or
constructor and that were already allocated before the call to that method or constructor.
It is a constraint-based analysis where the node for each method or constructor collects
the fields explicitly read or modified. Arcs propagate these sets from callees to callers.
Reachability improves the precision of the side-effects analysis (Section 5.1). Field ini-
tialization determines the fields f that are always initialized by all constructors of their
defining class, before being read. Hence, the fact that null is the default value for ref-
erence fields becomes irrelevant for f , since that value is never read. This is important,
for instance, for a subsequent nullness analysis. This field initialization analysis is imple-
mented through a dataflow algorithm in Julia, that collects the fields of this definitely
written at each program point of the constructors and the fields of this possibly read at
the same program points. This algorithm is described in [65, 84, 85]. It exploits the avail-
able reachability information (Section 5.1). Cyclicity analysis is a denotational analysis,
where each variable is approximated through a Boolean variable stating if it might be
cyclical or not, and exploits reachability at field updates (Section 5.1). Path-length analy-
sis is denotational, again, and uses polyhedra or simpler domains to represent the size of
the numerical values bound to variables of primitive type, or the maximal height of the
data structures bound to variables of reference type. Reachability helps here by restricting
the set of variables whose path-length might be affected by a field update (Section 5.1).
More detail in [87].

The nullness analyzer of Julia is a sequential composition of many analyses, through
an oracle-based semantics for the nullness of the fields. Its detailed description can be
found in [85]. It uses a denotational nullness analysis for local and stack variables [84]
combined with an array initialization analysis that guarantees that the default value (null)
for the elements of some arrays of reference type is never read [62,65]. It is also combined
with constraint-based analyses for tracking arrays, collections or iterators whose elements
have only been assigned to non-null values, and for tracking the expressions that defi-
nitely evaluate to non-null values (for instance, expressions explicitly compared against
null or already dereferenced in a previous statement, identified through the constraint-
based analysis in [63]). All these analyses exploit reachability, sharing and side-effects to
restrict the effects of a field update on variables distinct from its receiver, or of a method
call on the variables of the caller. For instance, a method call might invalidate, by side-
effects, the fact that the evaluation of an expression is a non-null value.

The termination analyzer of Julia is based on path-length, used to determine if loops
or recursion happen on integers or data structures of strictly decreasing (yet positive)
size. Here, again, we use preliminary reachability and sharing information in order to
restrict the effects of field updates and method calls to the path-length of the variables.
The detailed definitions are in [87]. Moreover, termination analysis often uses expressions
as symbolic constants (for instance, expressions used as upper bounds of loops) and side-
effect analysis provides the information needed to be sure that such expressions keep their
value unchanged across iterations and can hence be used as actual, constant upper bounds
to loops.
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Fig. 5.8. Run-times in seconds of sharing and reachability analyses of our sample programs.

Fig. 5.9. Precision of sharing and reachability analyses of our sample programs w.r.t. the reachabil-
ity property. Here, precision is the ratio of ordered pairs of distinct variables 〈v ,w〉 s.t. the analysis
concludes that v might reach w , over the total number of ordered pairs of variables of reference type:
the lower the ratio, the higher the precision (this ratio never reaches 0% in practice, since real-life
programs contain reachability). For sharing, we assume that v might reach w if v might share with
w . Both for sharing and reachability analysis, if the static type of v does not reach the static type of
w (Def. 5.12), the ordered pair (v ,w ) is not counted in this figure, since in that case it is statically
known that the value held in v will never be able to reach the value held in w (Lemma 5.17).
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Fig. 5.10. The effects of reachability analysis on the precision of side-effects, field initialization
and cyclicity analyses. Source lines counts non-comment non-blank lines of codes. Analyzed lines
includes the portion of java.*, javax.* and android.* libraries analyzed with each program and
is a more faithful measure of the analyzed codebase. Times are in seconds. For side-effects analysis,
precision is the average number of fields modified or read by a method or constructor: the lower
the numbers, the better the precision. For field initialization analysis, precision is the number of
fields of reference type proven to be always initialized before being read, in all constructors of their
defining class: the higher the numbers, the better the precision. For cyclicity analysis, precision is
the average number of variables of reference type proven to hold a non-cyclical data structure; the
higher the numbers, the better the precision
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Fig. 5.11. Our experiments with the nullness and termination tools of Julia. Times are in seconds.
For nullness analysis, ws counts the warnings issued by Julia (possible dereference of null, possibly
passing null to a library method) and prec reports its precision, as the ratio of the dereferences
proved safe over their total number (100% is the maximal precision). For termination analysis, ws
counts the warnings issued by Julia (constructors or methods possibly diverging) and prec reports
its precision, as the ratio of the constructors or methods proved to terminate over the total number of
constructors or methods containing loops or recursive (100% is the maximal precision). Asterisks
stand for actual bugs in the programs. Boldface highlights the cases where reachability improves
the precision of the tools
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5.5.2 Sample Programs

We have analyzed a set of sample programs. Most of our benchmarks are Android appli-
cations: Mileage, OpenSudoku, Solitaire and TiltMazes [11]; ChimeTimer, Dazzle, On-
Watch and Tricorder [5]; TxWthr [10]. There are also some Java programs: JFlex is a
lexical analyzers generator [3]; Plume is a library by Michael D. Ernst [8]; NTI is a non-
termination analyzer by Étienne Payet [6]; Lisimplex is a numerical simplex implemen-
tation by Ricardo Gobbo [7]. The others are sample programs taken from the Android 3.1
distribution by Google. and are bundled with the Android SDK Tools r12 [1].

Experiments have been performed on a Linux quad-core Intel Xeon machine running
at 2.66GHz, with 8 gigabytes of RAM.

5.5.3 Sharing vs. Reachability Analysis

Figure 5.8 shows that reachability analysis is in general more expensive than sharing
analysis. Moreover, reachability analysis needs to be supported by a preliminary sharing
analysis. The extra cost of reachability analysis is compensated by its increased preci-
sion when it comes to compute reachability information itself. To prove this claim, in
Figure 5.9 we have built reachability analysis from sharing analysis, by assuming that
a variable v might reach a distinct variable w whenever v and w might possibly share,
according to the results of sharing analysis. We have compared these reachability infor-
mation with that gathered through the reachability analysis computed as described in this
article. The latter yields around 20% fewer reachability pairs than reachability analysis
built from sharing. Fewer pairs, here, mean better precision.

Although reachability analysis is more expensive than sharing analysis, we are going
to show that it actually reduces the cost in time of larger static analyses, where it is used
as a supporting analysis (Section 5.5.5). This is because its extra precision simplifies the
subsequent analyses. Moreover, in the overall economy of a parallel static analyzer such
as Julia, the few extra seconds required by reachability analysis are a small fraction of the
time required by nullness or termination analyses, that use reachability as a supporting
analysis and are greatly benefited by any increase in precision of the latter.

5.5.4 Reachability vs. Shape Analysis

Reachability might be abstracted from a more concrete analysis, such as some flavor of
shape analysis. The Julia analyzer does not include any shape analysis and there is no plan
in that direction. In particular, we are not aware of any static shape analysis for Java byte-
code that deals with exceptional paths. There are dynamic shape analyses for Java, such
as for instance [47, 72]. But dynamic analyses are only sound w.r.t. the execution traces
that are generated at run-time and analyzed. As a consequence, they cannot be taken as
basis for a sound static reachability analysis. We are aware of two static shape analyses
for Java. The first [30] is intraprocedural only; experiments do not report its cost in time.
The second [54] is able to analyze interprocedural Java programs; exceptional paths are
not mentioned. Experiments reported in that article show that the analysis of a program
of 3, 705 statements requires 35.11 seconds; libraries have not been included in the anal-
ysis. Our reachability analysis analyzes 112, 423 statements in 32 seconds (Figures 5.8
and 5.10, see the case of OnWatch). Libraries are analyzed along the application. If one



102 5 Possible Reachability Analysis of Program Variables

considers that sharing is needed before reachability, the total time of our analysis amounts
to 47 seconds, but the analyzed code base of 112, 423 statements is 30 times larger than
their 3, 705 statements. There is no report on the precision of the analysis in [54] w.r.t.
reachability information, but the major difference in the computational cost of the two
analyses is apparent. It is true that our hardware is multicore, so potentially faster than
that used in [54], but sharing and reachability analyses are performed sequentially in Ju-
lia, so that only one core is used for them.

5.5.5 Effects of Reachability Analysis on Other Analyses

We verify here whether reachability analysis actually improves the precision of side-
effects, field initialization and cyclicity, as hinted in Section 5.1. We also verify if the extra
reachability information improves the precision of the nullness and termination checking
tools available in Julia, that use side-effects, field initialization, cyclicity and path-length
as (some of their) supporting analyses. We do not have any measure of precision for path-
length analysis, so we do not evaluate its improvements directly but only as a component
of the termination checking tool. To reach these goals, we have analyzed our sample
programs with reachability analysis turned off (hence relying on sharing analysis as an
approximation of reachability analysis) and then on.

Figure 5.10 shows that reachability analysis improves the precision of the side-effects
analysis and has positive effects on field initialization as well. Instead, cyclicity analysis
seems unaffected. Sharing analysis is always used in these experiments, both when we
use reachability information and when we do not compute it. Thus, this figure shows the
importance of having also reachability information instead of just sharing information.

Figure 5.11 presents our experiments with the nullness and termination tools of Julia
and reports their run-time, including reachability analysis. In 8 cases over 24, the extra
reachability information improves the precision of the nullness checking tool. But this
never happens for termination, consistently with the fact that cyclicity is not improved
(Figure 5.10). This is because the methods of the programs that we have analyzed termi-
nate since they perform loops over numerical counters or iterators. There is no complex
case of recursion over data structures dynamically allocated in memory (lists or trees)
where cyclicity would help. To investigate further the case of termination analysis, we
have applied Julia to the set of (very tiny) programs used for the international termina-
tion competition2 that is performed every year. Those programs, although small and often
unrealistic, are nevertheless interesting since the proof of their termination often requires
non-trivial arguments, also related to objects dynamically allocated in memory. Over a
total of 164 test programs, the reachability information allows Julia to prove the termina-
tion of six more tests: LinkedList, List, ListDuplicate, PartitionList, Test5 and Test6, by
supporting a more precise cyclicity and path-length analysis.

For both nullness and termination checking, the presence of reachability analysis ac-
tually reduces the total run-time of the tools. This is because reachability helps subsequent
analyses, in particular side-effects analysis, and prevents them from generating too much
spurious information. For instance, side-effects analysis computes much smaller sets of
affected fields per method (Figure 5.10, compare the 5th and the 6th columns).

2 http://termination-portal.org/wiki/Termination_Competition

http://termination-portal.org/wiki/Termination_Competition
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Definite Expression Aliasing Analysis

In this chapter we define a novel static analysis for Java bytecode, called definite expres-
sion aliasing. It infers, for each variable v at each program point p, a set of expressions
whose value at p is equal to the value of v at p, for every possible execution of the pro-
gram. Namely, it determines which expressions must be aliased to local variables and
stack elements of the Java Virtual Machine. This is a useful piece of information for an
inter-procedural static analyzer, such as Julia, since it can be used to refine other analyses
at conditional statements or assignments. This analysis is formalized like an instantiation
of the general parameterized framework for constraint-based static analyses introduced
in Chapter 4. The latter allows us to easily prove our new analysis sound. Our definite
expression aliasing analysis has been implemented inside the Julia analyzer, and we show
its benefits for nullness and termination tools of Julia.

The present chapter is based on the work already published in [63] and its extended
version [60].

6.1 Introduction

Static analyses infer properties of computer programs and and prove the absence of some
classes of bugs inside those programs. Modern programming languages are, however,
very complex. Static analysis must cope with that complexity and remain precise enough
to be of practical interest. This is particularly true for low-level languages such as Java
bytecode [53], whose instructions operate on stack and local variables, which are typically
aliased to expressions. Consider, for instance, the method onOptionsItemSelected in
Fig. 6.1, taken from the Google’s HoneycombGallery Android application. The state-
ment if (mCamera!=null) at line 4 is compiled into the following bytecode instruc-
tions:

aload_0
getfield mCamera:Landroid/hardware/Camera;
ifnull [go to the else branch]
[then branch]

Bytecode ifnull checks whether the topmost variable of the stack, top, is null and
passes control to the opportune branch. A static analysis that infers non-null variables
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1 public boolean onOpt ionsItemSelected (MenuItem item ) {
2 switch ( item . getItemId ( ) ) {
3 case R. id . menu switch cam :
4 i f (mCamera != null ) {
5 mCamera . stopPreview ( ) ;
6 mPreview . setCamera ( null ) ;
7 mCamera . r e l e a s e ( ) ;
8 mCamera = null ;
9 }

10 mCurrentCamera = ( mCameraCurrentlyLocked+1)%mNumberOfCameras ;
11 mCamera = Camera . open (mCurrentCamera ) ;
12 mCameraCurrentlyLocked = mCurrentCamera ;
13 mCamera . s ta r tPrev i ew ( ) ;
14 return true ;
15 case . . . .
16 . . . .
17 }

Fig. 6.1. A method of the CameraFragment class by Google

can, therefore, conclude that top is non-null at the [then branch]. But this informa-
tion is irrelevant: top gets consumed by the ifnull and disappears from the stack. It is,
instead, much more important to know that top was a definite alias of the field mCamera of
local 0, i.e., of this.mCamera, because of the previous two bytecodes (local 0 stands for
this). That observation is important at the subsequent call to mCamera.stopPreview()
at line 5, since it allows us to conclude that this.mCamera is still non-null there: line
5 is part of the then branch starting at line 4 and we proved that top (definitely aliased to
this.mCamera) is non-null at that point.

As another example of the importance of definite aliasing for static analysis, suppose
that we statically determined that the value returned by the method open and written in
this.mCamera at line 11 is non-null. The compilation of that assignment is:

aload_0
aload_0
getfield mCurrentCamera:I
invokestatic android/hardware/Camera.open:(I)Landroid/hardware/Camera;
putfield mCamera:Landroid/hardware/Camera;

and the putfield bytecode writes the top of the stack (open’s returned value) into the
field mCamera of the underlying stack element s . Hence s .mCamera becomes non-null,
but this information is irrelevant, since s disappears from the stack after the putfield
is executed. The actual useful piece of information at this point is that s was a definite
alias of expression this (local variable 0) at the putfield, which is guaranteed by the
first aload_0 bytecode. Hence, this.mCamera becomes non-null there, which is much
more interesting for the analysis of the subsequent statements.

The previous examples show the importance of definite expression aliasing analysis
for nullness analysis. However, the former is useful for other analyses as well. For in-
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stance, consider the termination analysis of a loop whose upper bound is the return value
of a function call:

for (i = 0; i < max(a, b); i++)
body

In order to prove its termination, a static analyzer needs to prove that the upper bound
max(a, b) remains constant during the loop. However, in Java bytecode, that upper
bound is just a stack element and the static analyzer must rather know that the latter is
a definite alias of the return value of the call max(a, b).

These examples show that it is important to know which expressions are definitely
aliased to stack and local variables of the Java Virtual Machine (JVM) at a given program
point. In this chapter, we introduce a static analysis called definite expression aliasing
analysis, which provides, for each program point p and each variable v , a set of expres-
sions E such that the values of E and v at point p coincide, for every possible execution
path. We call these expressions definite expression aliasing information. In general, we
want to deal with relatively complex expressions (e.g., a field of a field of a variable, the
return value of a method call, possibly non-pure, and so on). We show, experimentally,
that this analysis supports nullness and termination analyses of our tool Julia, but this
chapter is only concerned with the expression aliasing analysis itself. Our definite expres-
sion aliasing analysis is an instantiation of the parameterized framework for constraint-
based static analyses of Java bytecode programs introduced in Chapter 4. We introduce
the abstract domain for definite expression aliasing analysis Alias and the propagation
rules representing an abstract semantics of bytecode instructions over Alias. Moreover,
we show that Alias and the propagation rules mentioned above satisfy Requirements 4.1-
4.11 introduced in Chapter 4., which entails the soundness of our approach.

We opt for a semantical analysis rather than simple syntactical checks. For instance,
in Fig. 6.1, the result of the analysis must not change if we introduce a temporary variable
temp = this.mCamera and then check whether temp != null: it is still the value of
this.mCamera that is compared to null there. Moreover, since we analyze Java byte-
code, a semantical approach is important in order to be independent from the specific
compilation style of high-level expressions and be able to analyze obfuscated code (for
instance, malware) or code not decompilable into Java (for instance, not organized into
scopes).

The rest of the chapter is organized as follows. Section 6.2 defines the notion of
alias expressions, their non-standard evaluation and specifies which bytecode instruc-
tions might modify the value of these expressions. Section 6.3 introduces our definite
expression aliasing analysis and shows how the parameters of the general constraint-based
framework introduced in Chapter 4 are instantiated to deal with that analysis: we define
the abstract domain Alias and the propagation rules for definite expression aliasing anal-
ysis. Section 6.4 shows that the parameters mentioned above satisfy the requirements
imposed by the framework, which entails the soundness of our static analysis. Section 6.5
introduces an implementation of our analysis, discus its improvements and shows the re-
sults of an application of our analysis to many real-life benchmarks, its precision and the
way it affects the other analyses performed by our static analyzer Julia.
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6.2 Alias Expressions

Tho goal of this chapter is to define a static analysis which infers, for each program point,
and each variable available at that point, a set of expressions which must have the same
value assigned to the variable, for every possible execution of the program. In order to
reach that goal, we choose a subset of all possible expressions available at each program
point, and we deal with these expressions only.

In this section, we define our expressions of interest (Definition 6.1), their non-
standard evaluation (Definition 6.7), which might modify the content of some memory
locations and we introduce the notion of alias expression (Definition 6.9). Moreover, we
specify in which cases a bytecode instruction might affect the value of an expression
(Definition 6.11), and when the evaluation of an expression might modify a field (Defini-
tion 6.12).

Definition 6.1 (Expressions). Given τ ∈ T , let Fτ andMτ respectively denote the sets of
the names of all possible fields and methods of all the objects available in Στ. We define
the set of expressions over dom(τ):

Eτ 3 E ::= n constants
| v variables
| E ⊕ E arithmetical operations
| E.f field accesses
| E.length array lengths
| E[E] array elements
| E.m(E, . . .) results of method invocations,

where n ∈ Z, v ∈ dom(τ), ⊕ ∈ {+,−,×, div,%}, f ∈ Fτ and m ∈ Mτ.

For every expression E we define the set of its sub-expressions.

Definition 6.2 (Sub-expressions). Given a type environment τ ∈ T and an expression
E ∈ Eτ, we define subExp(E) ⊆ Eτ, the set of E’s sub-expressions, according to the form
of E:

E subExp(E)
n {n}
v {v }

E1 ⊕ E2 {E1 ⊕ E2} ∪ subExp(E1) ∪ subExp(E2)
E1.f {E1.f } ∪ subExp(E1)

E1.length {E1.length} ∪ subExp(E1)
E1[E2] {E1[E2]} ∪ subExp(E1) ∪ subExp(E2)

E0.m(E1, . . . ,Eπ) {E0.m(E1, . . . ,Eπ)} ∪⋃π
i=0 subExp(Ei )

Every expression has some important properties that can be determined statically. We
formally define the notions of depth, variables occurring in an expression and fields an
expression might read.

Definition 6.3 (Expressions depth). For every type environment τ ∈ T , we define a func-
tion depth : Eτ → N mapping expressions to their depths:
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depth(n) = 0,∀n ∈ V
depth(v ) = 0,∀v ∈ dom(τ)

depth(E1 ⊕ E2) = 1 + maxi∈{1,2}{depth(Ei )}
depth(E.f ) = 1 + depth(E)

depth(E.length) = 1 + depth(E)
depth(E1[E2]) = 1 + maxi∈{1,2}{depth(Ei )}

depth(E0.m(E1, . . . ,Eπ)) = 1 + max0≤i≤π{depth(Ei )}.
Definition 6.4 (Variables). For every type environment τ ∈ T , we define a map variables :
Eτ → ℘(dom(τ)) yielding the variables occurring in an expression as:

variables(n) =∅

variables(v ) ={v }
variables(E1 ⊕ E2) =variables(E1) ∪ variables(E2)

variables(E.f ) =variables(E)
variables(E.length) =variables(E)

variables(E1[E2]) =variables(E1) ∪ variables(E2)

variables(E0.m(E1, . . . ,Eπ)) =

π⋃
i=0

variables(Ei ),

where n ∈ Z, v ∈ dom(τ), f ∈ Fτ and m ∈ Mτ.

Definition 6.5 (Fields). For every type environment τ ∈ T , we define a map fields : Eτ →
℘(Fτ) yielding the fields that might be read during the evaluations of an expression as:

fields(n) =∅

fields(v ) =∅

fields(E1 ⊕ E2) =fields(E1) ∪ fields(E2)
fields(E.f ) =fields(E) ∪ {f }

fields(E.length) =fields(E)
fields(E1[E2]) =fields(E1) ∪ fields(E2)

fields(E0.m(E1, . . . ,Eπ)) =

π⋃
i=0

fields(Ei ) ∪ {f | m might read f },

where n ∈ Z, v ∈ dom(τ), f ∈ Fτ and m ∈ Mτ.

Note that the definition of flds requires a preliminary computation of the fields possi-
bly read by a method m , which might just be a transitive closure of the fields f for which
a getfield occurs in m or in at least one method invoked by m . There exist some more
precise approximations of this useful piece of information, e.g., the one determined by
our Julia tool. Anyway, in the absence of this approximation, we can always assume the
least precise sound hypothesis: every method can read every field.

Example 6.6. Consider the class Event introduced in Fig. 4.1 and let us assume that the
static type of the local variable l2 is Event. Then expression E = l2.delayMinBy(15)
satisfies the following equalities:
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• depth(l2.delayMinBy(15)) = 1 + max{depth(l2), depth(15)} = 1 + max{0, 0} = 1;
• variables(l2.delayMinBy(15)) = variables(l2) ∪ variables(15) = {l2};
• fields(l2.delayMinBy(15)) = fields(l2)∪ fields(15)∪ {f | delayMinBy might read f } =

{min}.
The latter follows from the fact that delayMinBy contains only one getfield concerning
the field min and no call instruction (Fig. 4.1). ut

In the following we show how the expressions introduced in Definition 6.1 are evalu-
ated in an arbitrary state 〈ρ, µ〉. It is worth noting that some of these expressions represent
the result of a method invocation. Their evaluation, in general, might modify the initial
memory µ, so we must be aware of the side-effects of the methods appearing in these
expressions. We define the non-standard evaluation of an expression e in a state 〈ρ, µ〉
as a pair 〈w , µ′〉, where w is the computed value of e , while µ′ is the updated memory
obtained from µ after the evaluation of e .

Definition 6.7 (Non-standard evaluation of expressions). A non-standard evaluation of
expressions in a state σ = 〈ρ, µ〉 ∈ Στ is a partial map ~·�∗ : Eτ → Στ → V ×M defined
as:

1. for every n ∈ Z, ~n�∗σ = 〈n , µ〉;
2. for every v ∈ dom(τ), ~v�∗σ = 〈ρ(v ), µ〉;
3. ~E1 ⊕ E2�∗σ is defined only if
• ~E1�∗σ = 〈n1, µ1〉,
• ~E2�∗〈ρ, µ1〉 = 〈n2, µ2〉 and
• n1,n2 ∈ Z.
In that case ~E1 ⊕ E2�∗σ = 〈n1 ⊕ n2, µ2〉, otherwise it is undefined;

4. ~E.f �∗σ is defined only if
• ~E�∗σ = 〈`, µ1〉,
• ` ∈ L,
• µ1(`).type ∈ K and
• f ∈ F(µ1(`).type).
In that case ~E.f �∗σ = 〈(µ1(`).φ)(f ), µ1〉, otherwise it is undefined;

5. ~E.length�∗σ is defined only if
• ~E�∗σ = 〈`, µ1〉,
• ` ∈ L and
• µ1(`).type ∈ A.
In that case ~E.length�∗σ = 〈µ1(`).length, µ1〉, otherwise it is undefined;

6. ~E1[E2]�∗σ is defined only if
• ~E1�∗σ = 〈`, µ1〉,
• ~E2�∗〈ρ, µ1〉 = 〈n , µ2〉,
• ` ∈ L,
• µ2(`).type ∈ A,
• n ∈ Z and
• 0 ≤ n < µ2(`).length.
In that case ~E1[E2]�∗σ = 〈(µ2(`).φ)(n), µ2〉, otherwise it is undefined;

7. in order to compute ~E0.m(E1, . . . ,Eπ)�∗σ, we determine ~E0�∗〈ρ, µ〉 = 〈w0, µ0〉, and
for each 1 ≤ i <π, we evaluate Ei+1 in the state 〈ρ, µi 〉: ~Ei+1�∗〈ρ, µi 〉 = 〈wi+1, µi+1〉.
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If w0 ∈ L and µπ(w0).type ∈ K, we run the method m of the object µπ(w0) with pa-
rameters w1, . . . ,wπ and if it terminates with no exception, the result of the evaluation
is the pair composed of m’s return value w and the memory µ′ obtained from µπ as a
side-effect of m .

We write ~E�σ do denote the actual value of E in σ, without the updated memory.

The following example illustrates the non-standard evaluation of some simple expres-
sions.

Example 6.8. Consider the state σ = 〈ρ, µ〉 given in Fig. 6.2, where Event and List are
classes introduced in Figures 4.1 and 3.2. Let us evaluate the following expressions in
σ: l3.min, l4.head.min, l3.delayMinBy(15) and l4.removeFirst().setDelay(15), where
removeFirst is a method of the class List which returns the head of a list of events and
removes it from that list.

~l3.min�∗σ: By Definition 6.7 (case 2), we have ~l3�∗〈ρ, µ〉 = 〈ρ(l3), µ〉 = 〈`3, µ〉, where
`3 ∈ L. Moreover, µ(`3).type = Event ∈ K and min ∈ F(Event). Hence, the condi-
tions imposed by the case 4 are satisfied and

~l3.min�∗〈ρ, µ〉 = 〈(µ(`3).φ)(min), µ〉 = 〈20, µ〉,

while ~l3.min�〈ρ, µ〉 = 20.
~l4.head.min�∗σ: By Definition 6.7 (case 2), we have ~l4�∗〈ρ, µ〉 = 〈ρ(l4), µ〉 = 〈`4, µ〉,

where `4 ∈ L. Moreover, µ(`4).type = List ∈ K and head ∈ F(List). Hence, the
conditions imposed by the case 4 are satisfied and

~l4.head�∗〈ρ, µ〉 = 〈(µ(`4).φ)(head), µ〉 = 〈`3, µ〉,

while ~l4.head�〈ρ, µ〉 = `3. Similarly, µ(`3).type = Event ∈ K and min ∈ F(Event),
hence:

~l4.head.min�∗〈ρ, µ〉 = 〈(µ(`3).φ)(min), µ〉 = 〈20, µ〉.
while ~l4.head.min�〈ρ, µ〉 = 20.

~l3.delayMinBy(15)�∗σ: We have already shown that ~l3�∗〈ρ, µ〉 = 〈`3, µ〉, where `3 ∈ L
and µ(`3).type ∈ K. By Definition 6.7 (case 1), we have ~15�∗〈ρ, µ〉 = 〈15, µ〉. Since
the resulting memory did not change, we run the method delayMinBy of the object
µ(`3) = o3 with parameter 15 (case 5 of Definiton 6.7). This method has no side
effects (Fig. 4.1 ) and returns ((o3.φ)(min) + 15)%60 = 20 + 15 = 35. Therefore,
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~l3.delayMinBy(15)�∗〈ρ, µ〉 = 〈35, µ〉,

while ~l3.delayMinBy(15)�〈ρ, µ〉 = 35.
~l4.removeFirst().setDelay(15)�∗σ: We first determine ~l4.removeFirst()�∗σ. Sim-

ilarly to the previous two cases, we have ~l4�∗〈ρ, µ〉 = 〈ρ(l4), µ〉 = 〈`4, µ〉, where
`4 ∈ L and µ(`4).type = List ∈ K. Then we run the method removeFirst of
the object µ(`4) = o4, which returns the value of its field head, i.e., (o4.φ)(head) =

`3 ∈ L, which is then removed from the list. Therefore, ~l4.removeFirst()�∗〈ρ, µ〉 =

〈`3, µ1〉, where µ1 is the updated memory depicted in Fig. 6.3. Since ~l3�∗〈ρ, µ1〉 =

〈ρ(l3), µ1〉 = 〈`3, µ1〉, with `3 ∈ L, µ1(`3).type = Event ∈ K and ~15�∗〈ρ, µ1〉 =

〈15, µ〉, we can run the method setDelay of the object µ1(`3) = o3, which up-
dates the value of the field min of the latter and returns that updated value, i.e.,
((o3.φ)(min) + 15)%60 = 20 + 15 = 35. Thus, we obtain

~l4.removeFirst().setDelay(15)�∗〈ρ, µ〉 = 〈35, µ1[(µ(`3).φ)(min) 7→ 35]〉,

while ~l4.removeFirst().setDelay(15)�〈ρ, µ〉 = 35.

ut
Finally, we define the notion of alias expression.

Definition 6.9 (Alias Expression). We say that an expression E ∈ Eτ is an alias expres-
sion of a variable v ∈ dom(τ) in a state σ = 〈ρ, µ〉 ∈ Στ if and only if ~E�σ = ρ(v ).

Example 6.10. Consider again the state 〈ρ, µ〉 given in Fig. 6.2. The value of the lo-
cal variable 2 in that state is ρ(l2) = 20. Moreover, in Example 6.8 we showed that
~l3.min�〈ρ, µ〉 = 20 and ~l4.head.min�〈ρ, µ〉 = 20. Thus,

~l3.min�〈ρ, µ〉 = ~l4.head.min�〈ρ, µ〉 = ρ(l2) = 20

and, by Definition 6.9, we can state that both l3.min and l4.head.min are alias expressions
of l2 in 〈ρ, µ〉. Similarly,

~l4.head�〈ρ, µ〉 = ρ(l3) = `3,

and we can state that l4.head is an alias expression of l3 in 〈ρ, µ〉. ut
We specify when an execution of a bytecode instruction might affect the value of an

expression. The following definition requires an additional information about the fields
that might be updated and about the static types of the arrays that might be updated by
an execution of a method. These pieces of information can be computed statically, for
example, by the side-effects analysis of Julia. It is worth noting that when this information
is not available, our analysis is still sound, although less precise: we may assume that
every field and every array of any array type might be updated.

Definition 6.11 (canBeAffected). Let τ and τ′ be the static type information at and im-
mediately after a bytecode instruction ins. Suppose that dom(τ) contains i local variables
and j stack elements. In Fig. 6.4, we define a map canBeAffected(·, ins) : Eτ → {true, false}
which, for every expression E ∈ Eτ, determines whether E might be affected by an execu-
tion of ins.
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ins canBeAffected(E, ins) = true if and only if
const x

never
load k t
store k t variables(E) ∩ {lk , sj−1} , ∅
add

variables(E) ∩ {sj−1, sj−2} , ∅
sub
mul
div
rem
inc k x lk ∈ variables(E)

new κ never
getfield κ.f : t sj−1 ∈ variables(E)
putfield κ.f : t variables(E) ∩ {sj−1, sj−2} , ∅ ∨ κ.f : t ∈ fields(E)

arraynew t[ ] sj−1 ∈ variables(E)
arraylength t[ ] sj−1 ∈ variables(E)
arrayload t[ ] variables(E) ∩ {sj−1, sj−2} , ∅

arraystore t[ ]
variables(E) ∩ {sj−1, sj−2, sj−3} , ∅ ∨

[there exists an evaluation of E which might read
an element of an array of type t′[ ], where t′ ∈ compatible(t)]

dup t never

ifeq t
sj−1 ∈ variables(E)

ifne t

return t
variables(E) ∩ S , ∅return void

throw κ

catch
never

exception_is K

call m1, . . . ,mn

there exists an execution of a dynamic target mw , where 1≤w ≤n ,
1. [which might modify a field from fields(E)] or
2. [which might write into an element of an array of type t[ ] and

there exists an evaluation of E which might read an element of
an array of type t′[ ], where t′ ∈ compatible(t)]

Fig. 6.4. Definition of a map canBeAffected(·, ins) : Eτ → {true, false}

That is, instructions that remove some variables from the stack (store, add, sub, mul,
div, rem, putfield, arrayload, arraystore, ifeq, ifne, return and throw) affect the evalu-
ation of all the expressions in which these variables appear. For instance, the execution
of ifne t modifies the value of all the expressions containing the topmost stack element
sj−1. Instructions that write into a variable (store, add, sub, mul, div, rem, inc, getfield,
arraylength and arrayload) might affect the evaluation of the expressions containing that
variable. For instance, the execution of store k t might modify the value of all the ex-
pressions containing the local variable lk , since this instruction writes a new value into
that variable. Instruction putfield f might modify the evaluation of all the expressions that
might read f . Instruction arraystore t[ ] might modify the evaluation of all the expressions
that might read an array element whose type is compatible with t. Finally, call m1 . . .mk

might modify the evaluation of all the expressions that might read a field f possibly mod-
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ified by an mw and of all the expressions which might read an element of an array of type
t′[ ] if there exists a dynamic target mw which writes into an array of type t[ ], where t′

and t are compatible types. For example, putfield min and call setDelay might modify
the value of the expressions we evaluated in Example 6.8: l3.min, l3.delayMinBy(15) and
l4.removeFirst().setDelay(15).

On the other hand, the evaluation of an expression in a state might update the memory
component of that state by modifying the value of some fields. In the following we specify
whether any evaluation of an expression might modify some fields of interest.

Definition 6.12 (mightMdf). Function mightMdf specifies whether a field belonging to a
set of fields F ⊆ Fτ might be modified during the evaluation of an expression E:

mightModify(n ,F ) =false
mightModify(v ,F ) =false

mightModify(E1 ⊕ E2,F ) =mightModify(E1,F ) ∨ mightModify(E2,F )
mightModify(E.f ,F ) =mightModify(E,F )

mightModify(E.length,F ) =mightModify(E,F )
mightModify(E1[E2],F ) =mightModify(E1,F ) ∨ mightModify(E2,F )

mightModify(E0.m(E1, . . . ,Eπ),F ) =

π∨
i=0

mightModify(Ei ,F ) ∨ [an execution of m

might modify a field from F ],

where n ∈ Z, v ∈ dom(τ), f ∈ Fτ and m ∈ Mτ.

Namely, evaluations of constants and variables do not modify any field. Evaluations
of E1⊕E2 and E1[E2] modify a field from F if there exists an evaluation of E1 or E2 modi-
fying a field from F . Similarly, evaluations of E.f and E.lengthmodify a field from F if
there exists an evaluation of E modifying a field from F . Evaluations of E0.m(E1, . . . ,Eπ)
might modify a field from F if there is an evaluation of any of Eis modifying a field from
F or if the execution of m might modify a field from F .

Example 6.13. Consider one more time class Event shown in Fig. 4.1. Since the method
setDelay() writes into the field min of class Event, we have

mightModify(l4.removeFirst().setDelay(15), {Event.min:int}) = true.

ut
In the following we prove some technical lemmas. The first one states that if two

environments ρ and ρ′ coincide on all the variables appearing in an arbitrary expression E
but on a given variable a , and if, for a given constant n , ρ′(a) ⊕ n = ρ(a) holds then, for
an arbitrary memory µ, the evaluation of E in 〈ρ, µ〉 coincides with the evaluation of E in
which all occurrences of a are replaced by a ⊕ n in 〈ρ′, µ〉.
Lemma 6.14. Consider a type environment τ ∈ T , a variable a ∈ dom(τ), a constant
n ∈ Z and two environments ρ and ρ′ such that ρ′(a) ⊕ n = ρ(a). Let E ∈ Eτ be an
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arbitrary expression. If for every variable v ∈ variables(E) r {a}, ρ′(v ) = ρ(v ) holds, then
for every memory µ,

~E[(a ⊕ n)/a]�∗〈ρ′, µ〉 = ~E�∗〈ρ, µ〉,
where E[(a ⊕ n)/a] denotes the expression E with all the occurrences of a replaced with
a ⊕ n .

Proof. We proof this lemma by induction on the depth of E.
Base case: Let µ be an arbitrary memory. If depth(E) = 0, then E = m ∈ V or E = v ∈
dom(τ). In the former case, by Definition 6.7,

~m�∗〈ρ, µ〉 = 〈m , µ〉 = ~m�∗〈ρ′, µ〉 = ~m[(a ⊕ n)/a]�∗〈ρ′, µ〉.
In the latter case, if v , a then, by Definition 6.7,

~v�∗〈ρ, µ〉 = 〈ρ(v ), µ〉 = 〈ρ′(v ), µ〉 = ~v�∗〈ρ′, µ〉 = ~v [(a ⊕ n)/a]�∗〈ρ′, µ〉.
If v = a , by hypothesis, ρ(a) = ρ′(a) ⊕ n and by Definition 6.7, we obtain

~a�∗〈ρ, µ〉 = 〈ρ(a), µ〉 = 〈ρ′(a) ⊕ n , µ〉 = ~(a ⊕ n)�∗〈ρ′, µ〉 = ~a[(a ⊕ n)/a]�∗〈ρ′, µ〉.
Induction: Suppose that for every expression E′ of depth at most k hypothesis holds,
i.e., if for every variable v ∈ variables(E′) r {a}, ρ′(v ) = ρ(v ) holds, then for every
memory µ, ~E[(a ⊕ n)/a]�〈ρ′, µ〉 = ~E�〈ρ, µ〉 holds. Let E be an expression such that
depth(E) = k + 1. If there exists a variable v ∈ variables(E) r {a} such that ρ(v ) , ρ(v ′),
then the result trivially holds. Otherwise, ∀v ∈ variables(E) r {a}.ρ′(v ) = ρ(v ) holds and
we distinguish different possible forms of E:

• If E = E1 ⊕ E2, we have k + 1 = depth(E) = 1 + max{depth(E1), depth(E2)} (Defini-
tion 6.3), which entails depth(E1), depth(E2) ≤ k . Since variables(E) = variables(E1) ∪
variables(E2), and for every v ∈ variables(E) r {a}, ρ′(v ) = ρ(v ), we conclude that ρ
and ρ′ also agree on the values of all the variables different from a which appear in
E1 and E2. Let µ be an arbitrary memory, then by inductive hypothesis on E1 and E2
we have:

~E1�∗〈ρ, µ〉 = ~E1[(a ⊕ n)/a]�∗〈ρ′, µ〉 = 〈w1, µ1〉
~E2�∗〈ρ, µ1〉 = ~E2[(a ⊕ n)/a]�∗〈ρ′, µ1〉 = 〈w2, µ2〉,

where w1,w2 ∈ Z. Therefore:

~E�∗〈ρ, µ〉 = ~E1 ⊕ E2�∗〈ρ, µ〉
= 〈w1 ⊕ w2, µ2〉 [By Definition 6.7]
= ~E1[(a ⊕ n)/a] ⊕ E2[(a ⊕ n)/a]�∗〈ρ′, µ〉 [By hypothesis and Def. 6.7]
= ~E[(a ⊕ n)/a]�∗〈ρ′, µ〉.

• If E = E1.f , then k + 1 = depth(E) = 1 + depth(E1) (Definition 6.3), which en-
tails depth(E1) = k . Since variables(E) = variables(E1), we have that for every
v ∈ variables(E1)r{a}, ρ′(v ) = ρ(v ) and, by inductive hypothesis on E1, ~E1�∗〈ρ, µ〉 =

~E1[(a ⊕ n)/a]�∗〈ρ′, µ〉 = 〈`, µ1〉, where ` ∈ L and µ1(`).type ∈ K. Therefore:

~E�∗〈ρ, µ〉 = ~E1.f �∗〈ρ, µ〉
= 〈(µ1(`).φ)(f ), µ1〉 [By Definition 6.7]
= ~E1[(a ⊕ n)/a].f �∗〈ρ′, µ〉 [By hypothesis and Definition 6.7]
= ~E[(a ⊕ n)/a]�∗〈ρ′, µ〉.
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• If E = E1.length, then k + 1 = depth(E) = 1 + depth(E1) (Definition 6.3), which
entails depth(E1) = k . Since variables(E) = variables(E1), we have that for ev-
ery v ∈ variables(E1) r {a}, ρ′(v ) = ρ(v ) and, by inductive hypothesis on E1,
~E1�∗〈ρ, µ〉 = ~E1[(a ⊕ n)/a]�∗〈ρ′, µ〉 = 〈`, µ1〉, where ` ∈ L and µ1(`).type ∈ A.
Therefore:

~E�∗〈ρ, µ〉 = ~E1.length�∗〈ρ, µ〉
= 〈µ1(`).length, µ1〉 [By Definition 6.7]
= ~E1[(a ⊕ n)/a].length�∗〈ρ′, µ〉 [By hypothesis and Definition 6.7]
= ~E[(a ⊕ n)/a]�∗〈ρ′, µ〉.

• If E = E1[E2], we have k + 1 = depth(E) = 1 + max{depth(E1), depth(E2)} (Defini-
tion 6.3), which entails depth(E1), depth(E2) ≤ k . Since variables(E) = variables(E1) ∪
variables(E2), and for every v ∈ variables(E) r {a}, ρ′(v ) = ρ(v ), we conclude that ρ
and ρ′ also agree on the values of all the variables different from a which appear in
E1 and E2. Let µ be an arbitrary memory, then by inductive hypothesis on E1 and E2
we have:

~E1�∗〈ρ, µ〉 = ~E1[(a ⊕ n)/a]�∗〈ρ′, µ〉 = 〈`, µ1〉
~E2�∗〈ρ, µ1〉 = ~E2[(a ⊕ n)/a]�∗〈ρ′, µ1〉 = 〈k , µ2〉,

where ` ∈ L, µ2(`).type ∈ A and k ∈ Z. Therefore:

~E�∗〈ρ, µ〉 = ~E1[E2]�∗〈ρ, µ〉
= 〈(µ2(`).φ)(k ), µ2〉 [By Definition 6.7]
= ~E1[(a ⊕ n)/a][E2[(a ⊕ n)/a]]�∗〈ρ′, µ〉 [By hypothesis and Def. 6.7]
= ~E[(a ⊕ n)/a]�∗〈ρ′, µ〉.

• If E = E0.m(E1, . . . ,Eπ), we have k + 1 = depth(E) = 1 + max0≤i≤π{depth(Ei )}, and
therefore depth(Ei ) ≤ k , for each 0 ≤ i ≤ π. Since variables(E) =

⋃π
i=0 variables(Ei ),

and for every v ∈ variables(E) r {a}, ρ′(v ) = ρ(v ), we conclude that ρ and ρ′ agree on
the values of all the variables different from a which appear in each Ei . Let µ be an
arbitrary memory, then by inductive hypothesis on E1 and E2 we have:

~E0�∗〈ρ, µ〉 = ~E0[(a ⊕ n)/a]�∗〈ρ′, µ〉 = 〈w0, µ0〉
~E1�∗〈ρ, µ0〉 = ~E1[(a ⊕ n)/a]�∗〈ρ′, µ0〉 = 〈w1, µ1〉

· · ·
~Eπ�∗〈ρ, µπ−1〉 = ~Eπ[(a ⊕ n)/a]�∗〈ρ′, µπ−1〉 = 〈wπ, µπ〉

Hence, for each 1 ≤ i ≤ π, evaluations of both Ei and Ei [(a ⊕ n)/a] in 〈ρ, µi−1〉 and
〈ρ′, µi−1〉 respectively give equal results 〈wi , µi 〉 and, by Definition 6.7, it implies that
evaluations of both E in 〈ρ, µ〉 and E[(a ⊕ n)/a] in 〈ρ′, µ〉 are equal and correspond
to the value returned by the method m . Namely, in both cases, the execution of m
is deterministic since we fixed the actual parameters (receiver µπ(w0) and parameters
w1, . . . ,wπ) and the memory (µπ), hence in both cases it will produce the same return
value. This value is enriched with the resulting memory µ′ obtained from µπ as a
side-effect of m’s execution.

�

One particular case of Lemma 6.14 is when the constant n is 0. Namely, when ρ and
ρ′ coincide on all the variables appearing in E then the evaluations of the latter in 〈ρ, µ〉
and 〈ρ′, µ〉 coincide too.
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Corollary 6.15. Consider a type environment τ ∈ T and two environments ρ and ρ′. Let
E ∈ Eτ be an arbitrary expression. If for every variable v ∈ variables(E), ρ′(v ) = ρ(v )
holds, then for every memory µ,

~E�∗〈ρ′, µ〉 = ~E�∗〈ρ, µ〉.

Similarly, we prove another important result. The following lemma shows that if a
state assigns the same values to two fixed variables a and b, then the evaluation of an
arbitrary expression in that state does not change if we replace all the occurrences of a
with b.

Lemma 6.16. Consider a type environment τ ∈ T , variables a , b ∈ dom(τ) and an envi-
ronment ρ such that ρ(a) = ρ(b). Let E ∈ Eτ be an arbitrary expression. Then, for every
memory µ,

~E�∗〈ρ, µ〉 = ~E[b/a]�∗〈ρ, µ〉,
where E[b/a] denotes the expression E with all the occurrences of a replaced with b.

Proof. We proof this lemma by induction on the depth of E.
Base case: Let µ be an arbitrary memory. If depth(E) = 0, then E = n ∈ V or E = v ∈
dom(τ). In the former case, by Definition 6.7,

~n�∗〈ρ, µ〉 = 〈n , µ〉 = ~n[b/a]�∗〈ρ, µ〉.

In the latter case, if v , a then, by Definition 6.7,

~v�∗〈ρ, µ〉 = 〈ρ(v ), µ〉 = 〈ρ′(v ), µ〉 = ~v [b/a]�∗〈ρ, µ〉.

If v = a , by hypothesis, ρ(a) = ρ(b) and by Definition 6.7, we obtain

~a�∗〈ρ, µ〉 = 〈ρ(a), µ〉 = 〈ρ(b), µ〉 = ~b�∗〈ρ, µ〉 = ~a[b/a]�∗〈ρ, µ〉.

Induction: Suppose that for every expression E′ of depth at most k hypothesis holds, i.e.,
~E′�∗〈ρ, µ〉 = ~E′[b/a]�∗〈ρ, µ〉, for every memory µ. Let E be an expression such that
depth(E) = k + 1. We show that ~E�∗σ = ~E[b/a]�∗σ. We distinguish different possible
forms of E:

• If E = E1 ⊕ E2, we have k + 1 = depth(E) = 1 + max{depth(E1), depth(E2)} (Defi-
nition 6.3), which entails depth(E1), depth(E2) ≤ k . Therefore, inductive hypothesis
holds on both E1 and E2. More precisely, inductive hypothesis entails

~E1�∗〈ρ, µ〉 = ~E1[(a ⊕ n)/a]�∗〈ρ′, µ〉 = 〈w1, µ1〉
~E2�∗〈ρ, µ1〉 = ~E2[(a ⊕ n)/a]�∗〈ρ′, µ1〉 = 〈w2, µ2〉,

where w1,w2 ∈ Z. Therefore:

~E�∗〈ρ, µ〉 = ~E1 ⊕ E2�∗〈ρ, µ〉
= 〈w1 ⊕ w2, µ2〉 [By Definition 6.7]
= ~E1[b/a] ⊕ E2[b/a]�∗〈ρ, µ〉 [By hypothesis and Definition 6.7]
= ~E[b/a]�∗〈ρ, µ〉.
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• If E = E1.f , we have k + 1 = depth(E) = 1 + depth(E1), which entails depth(E1) = k ,
and therefore, hypothesis holds on it, i.e.,

~E1�∗〈ρ, µ〉 = ~E1[b/a]�∗〈ρ, µ〉 = 〈`, µ1〉,
where ` ∈ L and µ1(`).type ∈ K. We have

~E�∗〈ρ, µ〉 = ~E1.f �∗〈ρ, µ〉
= 〈(µ1(`).φ)(f ), µ1〉 [By Definition 6.7]
= ~E1[b/a].f �∗〈ρ′, µ〉 [By hypothesis and Definition 6.7]
= ~E[b/a]�∗〈ρ′, µ〉.

• If E = E1.length, we have k + 1 = depth(E) = 1 + depth(E1), which entails
depth(E1) = k , and therefore, hypothesis holds on it, i.e.,

~E1�∗〈ρ, µ〉 = ~E1[b/a]�∗〈ρ, µ〉 = 〈`, µ1〉,
where ` ∈ L and µ1(`).type ∈ A. We have

~E�∗〈ρ, µ〉 = ~E1.length�∗〈ρ, µ〉
= 〈µ1(`).length, µ1〉 [By Definition 6.7]
= ~E1[b/a].length�∗〈ρ′, µ〉 [By hypothesis and Definition 6.7]
= ~E[b/a]�∗〈ρ′, µ〉.

• If E = E1[E2], we have k + 1 = depth(E) = 1 + max{depth(E1), depth(E2)} (Defi-
nition 6.3), which entails depth(E1), depth(E2) ≤ k . Therefore, inductive hypothesis
holds on both E1 and E2. More precisely, inductive hypothesis entails

~E1�∗〈ρ, µ〉 = ~E1[(a ⊕ n)/a]�∗〈ρ′, µ〉 = 〈`, µ1〉
~E2�∗〈ρ, µ1〉 = ~E2[(a ⊕ n)/a]�∗〈ρ′, µ1〉 = 〈k , µ2〉,

where ` ∈ L, µ2(`).type ∈ A and k ∈ Z. Therefore:

~E�∗〈ρ, µ〉 = ~E1[E2]�∗〈ρ, µ〉
= 〈(µ2(`).φ)(k ), µ2〉 [By Definition 6.7]
= ~E1[b/a][E2[b/a]]�∗〈ρ, µ〉 [By hypothesis and Definition 6.7]
= ~E[b/a]�∗〈ρ, µ〉.

• If E = E0.m(E1, . . . ,Eπ), we have k + 1 = depth(E) = 1 + max0≤i≤π{depth(Ei )}, and
therefore depth(Ei ) ≤ k , for each 0 ≤ i ≤ π. Thus, hypothesis holds on each Ei , which
entails:

~E0�∗〈ρ, µ〉 = ~E0[b/a]�∗〈ρ, µ〉 = 〈w0, µ0〉
~E1�∗〈ρ, µ0〉 = ~E1[b/a]�∗〈ρ, µ0〉 = 〈w1, µ1〉

· · ·
~Eπ�∗〈ρ, µπ−1〉 = ~Eπ[b/a]�∗〈ρ, µπ−1〉 = 〈wπ, µπ〉.

Hence, for each 1 ≤ i ≤ π, evaluation of both Ei and Ei [b/a] in 〈ρ, µi−1〉 and 〈ρ′, µi−1〉
respectively gives equal result 〈wi , µi 〉 and, by Definition 6.7, it implies that evalua-
tions of both E and E[b/a] in 〈ρ, µ〉 are equal and correspond to the value returned
by the method m . Namely, in both cases, the execution of m is deterministic since
we fixed the actual parameters (receiver µπ(w0) and parameters w1, . . . ,wπ) and the
memory (µπ), hence in both cases it will produce the same return value. This value
is enriched with the resulting memory µ′ obtained from µπ as a side-effect of m’s
execution.

�
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6.3 Definition of Definite Expression Aliasing Analysis

The goal of this section is to define a static analysis that computes, for each program
point, and each variable available at that point, a subset of expressions whose value must
be equal to the value of that variable, for any possible execution of the program, every time
that program point is reached. We show how it is possible to instantiate the parameters
of the general parameterized framework introduced in Chapter 4 in order to obtain the
desired static analysis. There are two essential things a designer should do in order to
define such a static analysis:

1. Mathematically encode the property of interest, define the abstract domain and show
how it can be related to the concrete one (Section 4.3);

2. Define a propagation rule for every possible arc available in the ACG, i.e., define an
abstract semantics of our target language which simulates the behavior of concrete
bytecode instructions with respect to the abstract domain defined above.

Subsections 6.3.1 and 6.3.2 deal with the points 1. and 2. respectively.

6.3.1 Abstract Domain Alias

The first goal of this section is to mathematically encode the property of interest. In Sec-
tion 6.2 we explained when an expression E is aliased to a variable v in a state σ. This
notion strictly depends on the current state of the program. We want to determine that
property statically, and the most natural way for representing the fact that a variable must
be aliased to some expressions is to assign to each variable available at a program point,
a set of expressions that always have the same value as that variable itself. We followed
this idea and formally defined the abstract domain Alias.

Definition 6.17 (Concrete and Abstract Domain). The concrete and abstract domains
over τ ∈ T are Cτ = 〈℘(Στ),⊆,∪,∩, Στ,∅〉 and Aliasτ = 〈Aτ,v,t,u,>τ,⊥τ〉, where

• Aτ = (℘(Eτ))|τ|;
• for every A1 = 〈A1

0, . . . ,A
1
|τ|−1〉 ∈ Aτ and A2 = 〈A2

0, . . . ,A
2
|τ|−1〉 ∈ Aτ,

A1 v A2 ⇔ ∀0 ≤ i < |τ|,A1
i ⊇A2

i ;

• for every A1 = 〈A1
0, . . . ,A

1
|τ|−1〉 ∈ Aτ and A2 = 〈A2

0, . . . ,A
2
|τ|−1〉 ∈ Aτ,

A1 tA2 = 〈A1
0 ∩ A2

0, . . . ,A
1
|τ|−1 ∩ A2

|τ|−1〉;
• for every A1 = 〈A1

0, . . . ,A
1
|τ|−1〉 ∈ Aτ and A2 = 〈A2

0, . . . ,A
2
|τ|−1〉 ∈ Aτ,

A1 uA2 = 〈A1
0 ∪ A2

0, . . . ,A
1
|τ|−1 ∪ A2

|τ|−1〉;
• >τ = ∅|τ|;
• ⊥τ = (Eτ)|τ|.

For a fixed number d ∈ N, we write Aliasdτ to denote a restriction of Aliasτ in which all
expressions’s depth is at most d , i.e.,

〈A0, . . . ,A|τ|−1〉 ∈ Aliasdτ ⇔ ∀0 ≤ i < |τ|.∀E ∈ Ai .depth(E) ≤ d .

Aliasdτ ’s top and bottom elements are denoted by >d
τ and ⊥d

τ respectively.
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Concrete states σ corresponding to an abstract element 〈A0, . . . ,A|τ|−1〉 must satisfy
the aliasing information represented by the latter, i.e., for each 0 ≤ r < |τ|, the value of
all the expressions from the set Ar in σ must coincide with the value of vr in σ (definite
aliasing). Our concretization map formalizes this intuition.

Definition 6.18 (Concretization map). Consider a type environment τ ∈ T and an ab-
stract state A = 〈A0, . . . ,A|τ|−1〉 ∈ Aliasτ. We define γτ : Aliasτ → Cτ, the concretization
map of our abstract domain Aliasτ as follows:

γ(A) = {〈ρ, µ〉 ∈ Στ | ∀0 ≤ r < |τ|.∀E ∈ Ar .~E�〈ρ, µ〉 = ρ(vr )}.

Example 6.19. Consider a type environment τ ∈ T with dom(τ) = {l0, . . . , l4} and the state
σ = 〈ρ, µ〉 ∈ Στ given in Fig. 6.2. We define the following abstract states from Aliasτ:

A1 = 〈
l0︷︸︸︷
∅ ,

l1︷︸︸︷
∅ ,

l2︷   ︸︸   ︷
{l3.min} ,

l3︷    ︸︸    ︷
{l4.head} ,

l4︷︸︸︷
∅ 〉 ∈ Alias1τ

A2 = 〈 ∅ , ∅ , {l3.min, l4.head.min} , {l4.head} , ∅ 〉 ∈ Alias2τ
A3 = 〈 ∅ , {l3} , {l3.min, l4.head.min} , ∅ , ∅ 〉 ∈ Alias2τ.

By Definition 6.17, we can state that the aliasing information contained in A2 is more
precise comparing to A1, i.e., A2 v A1. On the other hand, we cannot compare A1 and
A3, since the approximation of the aliasing information related to l2 of A1 is less precise
than the one of A3, but the approximation of the aliasing information related to l3 of A1 is
more precise than the one of A3.

Moreover, σ satisfies the aliasing information contained in both A1 and A2: in Exam-
ple 6.10 we have shown that in σ variable l2 is aliased to l3.min and l4.head.min, while
variable l3 is aliased to l4.head. Hence,

σ ∈ γτ(A2) ⊆ γτ(A1).

On the other hand, according to A3, l1 is aliased to l3, which is not the case in σ: (ρ(l1) =

`2 , `3 = ρ(l3), which entails σ < γτ(A3). ut
Requirements 4.1 and 4.2 deal with the abstract domain representing the property of

interest. We will show in Section 6.4 that the Aliasdτ abstract domain actually satisfies
these requirements.

6.3.2 Propagation Rules

In Chapter 4 we defined the notion of abstract constraint graph, ACG, and we showed
how these graphs can be constructed from the text of the program under analysis. We
recall that an ACG is composed of the set of nodes, corresponding to different program
bytecode instructions, and of the set of arcs which connect those nodes. Each node of an
ACG created for the definite expression aliasing analysis is enriched with an element of
the abstract domain Alias. That abstract element represents an approximation of the ac-
tual aliasing information available at that point. On the other hand, each arc of that ACG
is enriched with a propagation rule showing how the abstract elements (i.e., approxima-
tions) available at arc’s sources are propagated to its sink. In Section 4.4 we specified the
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requirements that these propagation rules have to satisfy in order to guarantee the sound-
ness of the overall analysis, but we did not give any concrete definition of any propagation
rule, since they strictly depend on the property which is being analyzed, while we were
dealing with a generic property in that chapter. On the contrary, in this chapter, we are
interested in one particular property, i.e., expressions definitely aliased to program vari-
ables, we have shown how it can be mathematically represented in our framework, and
in this subsection we show how we propagate the abstract elements approximating that
property.

In the following we assume the presence of a side-effects approximation. Namely, we
suppose that, for each method or constructor m available in the program under analy-
sis, or in any of the libraries that program may use, there exist the following pieces of
information computed statically:

• a set of fields that might be read during any possible execution of m;
• a set of fields that might be updated during any possible execution of m;
• a set of array types of all possible arrays whose elements might be read during any

possible execution of m and
• a set of array types of all possible arrays whose elements might be updated during

any possible execution of m .

These pieces of information can be computed statically, and our tool Julia is able to pro-
vide them. Our analysis works correctly even when these approximations are not avail-
able: we can always assume that each method or constructor might read and modify every
field and elements of arrays of every possible array type. In that case the definite expres-
sion aliasing information we determine would be less precise, but still sound.

According to Definition 4.1, we distinguish between simple (1−1) arcs, having one
source and one sink node, and multi (2−1) arcs, which have two source and one sink node.
We assume for all 1−1 arcs that τ and τ′ are the static type information at and immediately
after the execution of a bytecode instruction ins, respectively. Moreover, we assume that
τ contains j stack elements and i local variables. We write noStackElements(E) to denote
that an expression E contains no stack elements, i.e., variables(E) ∩ {s0, . . . , sj−1} = ∅. In
the following we define the propagation rules related to the definite expression aliasing
analysis.

Definition 6.20 (Sequential arcs). If ins is a bytecode instruction, distinct from call,
immediately followed by a bytecode instruction ins′, distinct from catch, then an 1−1
sequential arc is built from ins to ins′ , with a propagation rule

λ〈A0, . . . ,A|τ|−1〉.〈A′0, . . . ,A′|τ′ |−1〉,

where, for each 0 ≤ r < |τ′|, A′r is defined by one of the following rules:

Rule #1: If ins = const x , then

A′r =

Ar if r , |τ|
{x } if r = |τ|.

Rule #2: If ins = load k t, then
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A′r =


Ar ∪ Ar [sj /lk ] if r < {k , |τ|}
Ak ∪ {sj } if r = k

Ak ∪ {lk } if r = |τ|.
Rule #3: If ins = store k t, then

A′r =

{E ∈ Ar | ¬canBeAffected(E, ins)} if r , k

{E ∈ A|τ|−1 | ¬canBeAffected(E, ins)} if r = k .

Rule #4: If ins ∈ {add, sub,mul, div, rem}, then

A′r =


{E ∈ Ar | ¬canBeAffected(E, ins)} if r , |τ|−2
{E1⊕E2 | E1 ∈A|τ|−2 ∧ ¬canBeAffected(E1, ins)∧

E2 ∈A|τ|−1 ∧ ¬canBeAffected(E2, ins) if r = |τ|−2,

where ⊕ is +, −, ×, div, % when ins is add, sub, mul, div, rem respectively.
Rule #5: If ins = inc k x , then

A′r =

{E[lk − x/lk ] | E ∈ Ar } if r , k

∅ if r = k .

Rule #6: If ins = new κ, then

A′r =

Ar if r , |τ|
∅ if r = |τ|.

Rule #7: If ins = getfield f , then

A′r =

{E ∈ Ar | ¬canBeAffected(E, ins)} if r , |τ|−1

{E.f | E∈A|τ|−1 ∧ ¬canBeAffected(E, ins) ∧ ¬mightModify(E, {f })} if r = |τ|−1.

Rule #8: If ins = putfield f , then

A′r = {E ∈ Ar | ¬canBeAffected(E, ins)}.
Rule #9: If ins = arraynew t[ ], then

A′r =

{E ∈ Ar | ¬canBeAffected(E, ins)} if r , |τ|−1
∅ if r = |τ|−1.

Rule #10: If ins = arraylength t[ ], then

A′r =

{E ∈ Ar | ¬canBeAffected(E, ins)} if r , |τ|−1
{E.length | E∈A|τ|−1 ∧ ¬canBeAffected(E, ins)} if r = |τ|−1.

Rule #11: If ins = arrayload t[ ], then

A′r =


{E ∈ Ar | ¬canBeAffected(E, ins)} if r , |τ|−2
{E1[E2] | E1 ∈A|τ|−2 ∧ ¬canBeAffected(E1, ins)∧

E2 ∈A|τ|−1 ∧ ¬canBeAffected(E2, ins)∧
[E1 and E2 do not invoke any method] if r = |τ|−2.
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Rule #12: If ins = arraystore t[ ], then

A′r = {E ∈ Ar | ¬canBeAffected(E, ins)}.

Rule #13: If ins = dup t, then

A′r =


Ar ∪ Ar [sj /sj−1] if r < |τ|−1
A|τ|−1 ∪ {sj } if r = |τ|−1
A|τ|−1 ∪ {sj−1} if r = |τ|.

Rule #14: If ins ∈ {ifeq t, ifne t, catch, exception_is K }, then

A′r = {E ∈ Ar | ¬canBeAffected(E, ins)}.

Let us now explain, in more detail, the propagation rules introduced in Definition 6.20.
The sequential arcs link an instruction ins to its immediate successor ins′ propagating,
for every variable v at ins′, all those expressions E aliased to v at ins that cannot be
affected by ins itself, i.e., such that ¬canBeAffected(E, ins) holds. However, some new
alias expressions might be added to the initial approximation as well. We discuss the rules
introduced above:

const x - in this case, a new variable (v|τ| = sj is pushed onto the operand stack, and its
value is x , while everything else stays unchanged. Therefore, for each variable avail-
able in dom(τ), we just propagate its current approximation, while the approximation
related to v|τ| is {x }.

load k t - In this case a new variable (sj ) is pushed onto the operand stack and its value
is equal to that of lk . Therefore, for each variable vr ∈ dom(τ), we propagate all the
alias expressions already present in Ar and by using the fact that lk = sj , we also add
all those alias expression from Ar obtained by replacing all the occurrences of lk with
sj . Obviously, sj and lk become alias expressions of sj and lk respectively.

store k t - In this case the topmost variable is popped from the operand stack (sj−1) and
its value is assigned to lk . Therefore, all the alias expressions involving lk and sj−1 in
the initial approximations Ar , for any r , k , should be removed from the final ones
(by Definition 6.11, canBeAffected(E, store k t) = true if and only if lk or sj−1 occurs
in E). On the other hand, the final approximation related to lk contains all the alias
expressions E ∈ A|τ|−1 belonging to the initial approximation related to sj−1 which are
not modified by the store k t, i.e, such that ¬canBeAffected(E, store k t) holds.

add, sub, mul, div, rem - in this case two topmost stack elements (memorized in sj−1 and
sj−2) of integer type are popped from the operand stack and the result of an opportune
arithmetic operations applied to these two values is pushed back onto the operand
stack (memorized in sj−2). Therefore, for each variable vr from dom(τ′), except sj−2,
we propagate all those alias expressions belonging to their initial approximations
which might not be affected by this bytecode instruction, i.e., the ones not containing
any occurrence of sj−1 and sj−2. On the other hand, the expressions definitely aliased
to the new topmost stack element sj−2 are of form E1 ⊕ E2, where ⊕ is the arithmetic
operation corresponding to this bytecode instruction, while E1 and E2 are expressions
definitely aliased to sj−1 and sj−2 before the bytecode instruction is executed and
which are not affected by this bytecode instruction.
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inc k x - in this case the value memorized in the local variable lk is incremented by x .
Therefore, the final approximation related to each variable except lk is composed of
all the expressions available in the initial one in which all the occurrences of lk are
replaced with lk − x . In the case of lk , we soundly assume that there is no expression
aliased to that variable, after the bytecode instruction is executed.

new κ - In this case a new object is created and the location it is bound to is pushed onto
the operand stack, in sj . Therefore, for each variable, except sj , its initial approxima-
tion is kept. On the other hand, since sj holds a fresh location, we soundly assume
there is no expressions aliased to sj .

getfield f - In this case the location memorized in the topmost operand stack element
sj−1 is replaced with the value of the field f of the object corresponding to the former.
Therefore, for each variable, except sj−1, its final approximation contains all the alias
expressions from the initial one which are not modified by this bytecode instruction,
i.e., the ones with no occurrence of sj−1 (Definition 6.11). On the other hand, the
final approximation related to sj−1 contains the expressions E.f where E is aliased to
sj−1 before the bytecode instruction is executed, it cannot be modified by the latter
(¬canBeAffected(E, ins), i.e., E contains no occurrences of sj−1) and no evaluation of
E might modify the field f (¬mightModify(E, {f })).

putfield f - In this case the value memorized in the topmost operand stack element sj−1
is written in the field f of the object corresponding to the location memorized in the
second topmost operand stack element sj−2, and both sj−1 and sj−2 are popped from
the operand stack. Hence, for each variable, we propagate all the alias expressions
E belonging to its initial approximation which cannot be modified by this bytecode
instruction, i.e., such that there is no occurrence of sj−2 and sj−1 in E and such that
no evaluation of E might read the field f (Definition 6.11).

arraynew α - In this case the topmost operand stack element containing an integer value
is replaced with the fresh location bound to the new created array. The propagation is
similar to the case of new κ.

arraylength α - In this case the topmost operand stack element sj−1 containing a refer-
ence to an array is replaced with the length of that array. Therefore, for each variable,
except sj−1, its final approximation contains all the alias expressions from the initial
one which are not modified by this bytecode instruction, i.e., the ones in which sj−1
does not appear (Definition 6.11). On the other hand, the expressions aliased to sj−1
are of the form E.length, where E is an alias expression of the old topmost stack
element, which is not modified by this bytecode instruction.

arrayload α - In this case the k -th element of the array corresponding to the location
memorized in the second topmost operand stack element sj−2, where k is the topmost
operand stack element, is written onto the top of the stack. Previously, both sj−1 and
sj−2 are popped from the stack. The propagation rule and its explanation are analo-
gous to the case of arithmetic operations.

arraystore α - In this case the value memorized in the topmost operand stack element
sj−1 is written in the k -th element of the array corresponding to the location mem-
orized in the third topmost operand stack element sj−3, where k is the integer value
memorized in the second topmost operand stack element. All sj−1, sj−2 and sj−3 are
popped from the operand stack. The propagation rule and its explanation are analo-
gous to the case of putfield f .
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dup t - In this case, the new topmost stack element sj is a copy of the former topmost
stack element sj−1, hence they are trivially aliased to each other, and all the alias ex-
pressions of sj−1 at ins become the alias expressions of sj at ins′. More precisely, we
let A′|τ|−1 = A|τ|−1 ∪ {sj } and A′|τ| = A|τ|−1 ∪ {sj−1}. The approximations of the aliasing
expressions of all other variables are enriched by all the expressions containing sj−1
already present in those approximations in which occurrences of sj−1 are repliced by
sj : A′r = Ar ∪ Ar [sj /sj−1].

otherwise - catch and exception_isK do not modify the initial state, and therefore do not
change the definite expression aliasing information available at that point, while ifne t
and ifeq t just pop the topmost operand stack element, and therefore do not modify
the aliasing expressions of any other variable which contains no occurrence of sj−1.

Example 6.21. In Fig. 6.5 we give the ACG of the method delayMinBy from Fig. 4.1.
Nodes a, b and c belong to the caller of this method and exemplify the arcs related to
the call and return bytecodes. Arcs are decorated with the number of their associated
propagation rules. Note that the graph for the whole program includes other nodes and
arcs. Fig. 6.5 only shows the portion that is relevant for our example.

node anode c

catch

node 11
exception@delayMinBy

node b
store 3 int

node 8
exit@delayMinBy

call Event.delayMinBy(int) : int

node 1
load 0 Event

node 2
getfield Event.min: int

node 3
load 1 int

node 4
add int

node 5
const 60

node 6
rem

node 7
return int

node 9
catch

node 10
throw java.lang.Throwable

�19

�21
�23 �23
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Fig. 6.5. The ACG for the method delayMinBy in Fig. 4.1

In the following examples for each node x we let τx , ix and jx denote the type envi-
ronment, number of local variables and number of stack elements at x respectively. We
let Ax = 〈Ax

0 , . . . ,A
x
(ix +jx−1)〉 denote an approximation of the actual aliasing information
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at x , where each Ax
r denotes a set of expressions definitely aliased to the local variable

lr if 0 ≤ r < ix or to a stack element sr−ix if 0 ≤ r − ix < jx . Moreover, we assume that
ia = 3, ja = 2 and that the call at node a occurs in a context with

Aa
0 = ∅,Aa

1 = ∅,Aa
2 = {v1.getFirst(), v3},Aa

3 = {v1.getFirst(), v2} and Aa
4 = {15}. (6.1)

ut
The following example illustrates an application of some of the propagation rules

introduced by Definition 6.20.

Example 6.22. Consider, for instance, nodes 2, 3, 4 and 5 in Figure 6.5, and suppose that
i2 = 2 and j2 = 1, i.e., at node 2 there are 2 local variables (v0 = l0 and v1 = l1) and 1
operand stack element (v2 = s0). Moreover, suppose that the variables v0, v1 and v2 are
respectively aliased to the following sets of expressions:

A2
0 = {v2}, A2

1 = ∅ and A2
2 = {v0}.

Nodes 2 and 3 are linked by a sequential arc with propagation rule #7. It can be eas-
ily determined that i3 = 2 and j3 = 1. Note that at node 2, by Definition 6.11,
¬canBeAffected(E, getfield min) is equivalent to v2 < variables(E), since getfield might
only affect the values of the expressions containing the topmost stack element, i.e., v2.
Moreover, according to Definition 6.12,

mightModify(v0, {min}) = false.

Using these facts and Definition 6.20 (Rule #7) we obtain:

A3
0 = {E ∈ A2

0 | ¬canBeAffected(E, getfield min)} = {E ∈ {v2} | v2 < variables(E)} = ∅
A3

1 = {E ∈ A2
1 | ¬canBeAffected(E, getfield min)} = {E ∈ ∅ | v2 < variables(E)} = ∅

A3
2 = {E.min | E ∈ A2

2 ∧ ¬canBeAffected(E, getfield min) ∧ ¬mightModify(E, {min})}
= {E.min | E ∈ {v0} ∧ v2 < variables(E) ∧ ¬mightModify(E, {min})} = {v0.min}.

Thus,
Π#7(A2) = 〈∅,∅, {v0.min}〉. (6.2)

Nodes 3 and 4 are linked by a sequential arc with propagation rule #2, and at node 4 we
have i4 = j4 = 2. If we assume that A3 = Π#7(A2) (Equation 6.2), then, by Definition 6.20
(Rule #2), we have:

A4
0 = A3

0 ∪ A3
0[v3/v1] = ∅

A4
1 = A3

1 ∪ {v3} = ∅ ∪ {v3} = {v3}
A4

2 = A3
2 ∪ A3

2[v3/v1] = {v0.min} ∪ {v0.min}[v3/v1] = {v0.min}
A4

3 = A3
1 ∪ {v1} = ∅ ∪ {v1} = {v1}

Thus,
Π#2(A3) = 〈∅, {v3}, {v0.min}, {v1}〉. (6.3)

Nodes 4 and 5 are linked by a sequential arc with propagation rule #4, and at node 5
we have i5 = 2 and j5 = 1. Note that at node 4, by Definition 6.11, ¬canBeAffected(E, add)
holds if and only if variables(E) ∩ {v2, v3} = ∅, since add might only affect the values of
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the expressions containing two topmost stack elements, i.e., v2 and v3 (v3 is removed from
the stack, and the sum of the values held in v2 and v3 is written back in v2). If we assume
that A4 = Π#2(A3) (Equation 6.3), then, by Definition 6.20 (Rule #4), we have:

A5
0 = {E ∈ A4

0 | ¬canBeAffected(E, add)} = {E ∈ ∅ | v2, v3 < variables(E)} = ∅
A5

1 = {E ∈ A4
1 | ¬canBeAffected(E, add)} = {E ∈ {v3} | v2, v3 < variables(E)} = ∅

A5
2 = {E1+E2 | E1 ∈A4

2 ∧ ¬canBeAffected(E1, add) ∧ E2 ∈A4
3 ∧ ¬canBeAffected(E2, add)}

= {E1+E2 | E1 ∈{v0.min} ∧ variables(E1) ∩ {v2, v3}=∅
∧E2 ∈{v1} ∧ variables(E2} ∩ { v2, v3}=∅}

= {v0.min + v1}

Thus, A5 = 〈∅,∅, {v0.min + v1}〉. ut
Definition 6.23 (Final arcs). For each return t and throw κ occurring in a method or
constructor m , there are 1−1 final arcs from return t to exit@m and from throw κ to
exception@m , respectively, with a propagation rule

λ〈A0, . . . ,A|τ|−1〉.〈A′0, . . . ,A′|τ′ |−1〉,
where, for each 0≤r < |τ′|, A′r is defined by one of the following rules:

Rule #15: If ins = return void, then

A′r = {E ∈ Ar | noStackElements(E)}.
Rule #16: If ins = return t, then

A′r =

{E ∈ Ar | noStackElements(E)} if r , i

{E ∈ A|τ|−1 | noStackElements(E)} if r = i .

Rule #17: If ins = throw κ, then

A′r =

{E ∈ Ar | noStackElements(E)} if r , i

∅ if r = i ,

where noStackElements(E) is true if and only if variables(E) ∩ {s0, . . . , sj−1} = ∅, i.e., if E
contains no operand stack elements.

The final arcs introduced in Definition 6.23 feed nodes exit@m and exception@m for
each method or constructor m . They propagate, for each local variable lk available at
exit@m (respectively exception@m ), all those expressions aliased to lk at a return (respec-

tively throw ) in which no stack variable occurs. In the case of return t, with t , void,
the alias expressions of the only stack element at exit@m (i.e., vi = s0) are alias expres-
sions of the topmost stack element at return t (sj−1) with no stack elements. In the case of
throw κ, we conservatively assume that no expression is aliased to the only stack element
at exception@m (vi = s0).

Example 6.24. Consider nodes 7 and 8 in Fig. 6.5, which are linked by a final arc with
propagation rule #16. It can be easily determined that at node 7, i7 = 2 and j7 = 1,
therefore, the only stack element there is v2 = s0, and noStackElements(E) holds if and



126 6 Definite Expression Aliasing Analysis

only if v2 < variables(E). Moreover, at node 8 we have i8 = 2 and j8 = 1. If we assume
that A7 = 〈∅,∅, {(v0.min + v1)%60}〉, then, by Definition 6.23 (Rule #16), we have:

A8
0 = {E ∈ A5

0 | noStackElements(E)} = {E∈∅ | noStackElements(E)}=∅
A8

1 = {E ∈ A5
1 | noStackElements(E)}= {E∈∅ | noStackElements(E)}=∅

A8
2 = {E ∈ A5

2 | noStackElements(E)}= {E∈{v0.min+v1} | v2 <variables(E)}= {v0.min+v1}
Thus,

Π#16(A7) = 〈∅,∅, {v0.min + v1}〉. (6.4)

ut
Definition 6.25 (Exceptional arcs). For each ins throwing an exception, immediately
followed by a catch, an arc is built from ins to catch , with a propagation rule

λ〈A0, . . . ,A|τ|−1〉.〈A′0, . . . ,A′|τ′ |−1〉,
where, for each 0≤r < |τ′|, A′r is defined by the following rules:

Rule #18: If ins = throw κ, then:
Rule #19: If ins = call m1 . . .mn , then:
Rule #20: If ins is one of the following bytecode instructions: div, rem, new κ, getfield f ,

putfield f , arraynew α, arraylength α, arrayload α or arraystore α, then:

A′r =

{E ∈ Ar | noStackElements(E)} if r , i

∅ if r = i ,

where noStackElements(E) is true if and only if variables(E) ∩ {s0, . . . , sj−1} = ∅, i.e., if E
contains no operand stack elements.

The exceptional arcs link every instruction that might throw an exception to the catch
at the beginning of their exception handler(s). They propagate alias expressions of local
variables analogously to the final arcs. For the only stack element (vi = s0), holding the
thrown exception, there is no alias expression (Ai = ∅).

Example 6.26. Consider nodes 2 and 9 in Fig. 6.5, which are linked by an exceptional
arc with propagation rule #20. Recall that at node 2, i5 = 2 and j2 = 1, therefore,
the only stack element there is v2 = s0 and noStackElements(E) holds if and only if
v2 < variables(E). By Definition 6.25 and hypotheses about A2

0, A2
1 and A2

2 given in Exam-
ple 6.22 we obtain:

A7
0 = {E ∈ A2

0 | noStackElements(E)} = {E ∈ ∅ | noStackElements(E)} = ∅
A7

1 = {E ∈ A2
1 | noStackElements(E)} = {E ∈ ∅ | noStackElements(E)} = ∅

A6
2 = ∅

Thus, Π#20(A2) = 〈∅,∅,∅〉. ut
Definition 6.27 (Parameter passing arcs). For each call m1 . . .mq with π parameters
(including the implicit parameter this), for each 1≤w ≤ q we build an 1−1 parameter
parssing arc from call m1 . . .mq to the node corresponding to the first bytecode of mw , with
the propagation rule Rule #21:

λ〈A0, . . . ,A|τ|−1〉.〈A′0, . . . ,A′π−1〉,
where, for each 0≤r <π, A′r = ∅.
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In the following we give some auxiliary definitions, which are necessary for the defi-
nition of the propagation rules for return value and side-effects arcs. We start with a map
noParameters(), which specifies whether there exists an actual argument of a method call
among the variables appearing in an expression.

Definition 6.28 (noParameters). Consider a type environment τ ∈ T related to a pro-
gram point with a method call call m1 . . .mn , and suppose that this method has π actual
arguments (including the implicit parameter this). For every expression E ∈ Eτ, we
define a map noParameters : Eτ → {true, false} as:

noParameters(E) = variables(E) ∩ {v|τ|−π, . . . , v|τ|−1} = ∅

(we recall that variables v|τ|−π, . . . , v|τ|−1 correspond to π topmost operand stack elements).

The following definition specifies when the executions of a method are safe for an
alias expression available at the point that method is invoked.

Definition 6.29 (safeExecution). Consider a type environment τ ∈ T related to a pro-
gram point with a method call insC = call m1 . . .mn , and suppose that this method has π
actual arguments (including the implicit parameter this). For every expression E ∈ Eτ,
we define a map safeExecution(·, insC ) : Eτ → {true, false} as:

safeExecution(E, insC ) = noParameters(E) ∧ ¬canBeAffected(E, insC ).

Namely, we say that execution of insC is safe for an expression E, if all possi-
ble executions of all the dynamic targets mi of insC definitely do not affect E (i.e.,
¬canBeAffected(E, insC ) holds) and if no actual parameter of insC appears in E (i.e.,
noParameters(E) holds). The former requires that every field that might be read by E must
not be modified by any execution of any dynamic target mi of insC , and that no execution
of any dynamic target mi of insC might write into an array whose elements might be read
by E (Definition 6.11). The latter is required since the actual parameters of insC disappear
from the operand stack after insC is executed.

Let us now characterize when the executions of a method are safe for an alias expres-
sion composed of different sub-expressions aliased to the actual arguments of the method
call.

Definition 6.30 (safeAlias). Consider a type environment τ ∈ T related to a program
point with a method call insC = call m1 . . .mn , and suppose that this method has π actual
arguments (including the implicit parameter this). For every expression E ∈ Eτ such that
there exists a sub-expression Ei of E for each actual argument v|τ|−π+i of insC , and each
approximation A = 〈A0, . . . ,A|τ|−1〉 ∈ Aliasτ, we define a map safeAlias(·,A, insC ) : Eτ →
{true, false} as:

safeAlias(E,A, insC ) =
∧π−1

i=0(Ei ∈ A|τ|−π+i ) ∧∧π−1
i=0 safeExecution(Ei , insc)∧

[no evaluation of E might modify any field from fields(E)
or any array element of type t if E also might read

an array element of type t′ where t′ ∈ compatible(t)].

Hence, an alias expression E composed of sub-expressions E0, . . . ,Eπ−1 is safe w.r.t.
A = 〈A0, . . . ,A|τ|−1〉 and ins (i.e., safeAlias(E,A, ins) holds) if the following conditions
hold:
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• according to A, for each 0≤ i <π, the actual parameter v|τ|−π+i , is aliased to Ei ;
• for each 0≤ i <π, insC is safe for Ei , i.e., safeExecution(Ei , insC ) holds;
• no field and no array element might be both read and modified during all possible

evaluations of E.

Finally, we specify when an alias expression of the returned value of a method avail-
able at the non-exceptional end of that method is safe at that point.

Definition 6.31 (safeReturn). Consider a type environment τ ∈ T related to a non-
exceptional end of a method m , and suppose that this method has π formal arguments
(including the implicit parameter this). For every expression R ∈ Eτ, we define a map
safeRetrun(·,m) : Eτ → {true, false} as:

safeReturn(R,m) = variables(R) ⊆ {l0, . . . , lπ−1} ∧ ∀lk ∈ variables(R), lk is not modified by m

(we recall that the formal arguments of a callee are held in the local variables l0, . . . , lπ−1).

We say that an alias expression R of a return value at a non-exceptional end of a
calee m is safe at that point (i.e., safeReturn(R,m) holds) if only local variables holding
the formal arguments of m (l0, . . . , lπ−1) appear in R and none of them might be modified
by m . The latter condition requires that for each lk ∈ variables(R), no store k t nor inc k x
occurs in m .

We can finally define the propagation rules for the return value and side-effects arcs
of the ACGs for the definite expression aliasing analysis.

Definition 6.32 (Return value arcs). For each insC = call m1 . . .mq to a method with
π actual arguments (including the implicit parameter this) returning a value of type
t , void, and each subsequent bytecode instruction insN distinct from catch, we build,
for each 1 ≤ w ≤ q , a 2−1 return value arc from insC and exit@mw (2 sources, in that
order) to insN . Suppose that the static type information at insC , exit@mw and insN are
τC , τE and τN , respectively. Given A = 〈A0, . . . ,A|τC |−π, . . . ,A|τC |−1〉 ∈ AliasτC and
R = 〈R0, . . . ,R|τE |−1〉 ∈ AliasτE , the propagation rule of these arcs is defined as:

λA,R.〈A′0, . . . ,A′|τC |−π〉,

where for each 0≤r ≤|τC | − π, A′r is defined by the Rule #22:

A′r =


Ar if r , |τC |−π
{E=R[E0, . . . ,Eπ−1/l0, . . . , lπ−1]|R∈R|τE |−1 ∧ safeReturn(R,mw ) ∧ safeAlias(E,A, insC )}
∪ {E=E0.m(E1, . . . ,Eπ−1) | safeAlias(E,A, insC )} if r = |τC |−π.

Definition 6.33 (Side-effects arcs). For each insC = call m1 . . .mq to a method with π
actual arguments (including the implicit parameter this), and each subsequent bytecode
instruction insN , we build, for each 1 ≤ w ≤ q , a 2−1 side-effects arc from insC and
exit@mw (2 sources, in that order) to insN , if insN is not a catch and a 2−1 side-effects

arc from insC and exception@mw (2 sources, in that order) to catch . Suppose that the
static type information at insC , exit@mw (or exception@mw ) and insN are τC , τE and τN
respectively. The propagation rule of these arcs is defined as:
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λ〈A0, . . . ,A|τC |−π, . . . ,A|τC |−1〉, 〈R0, . . . ,R|τE |−1〉.〈A′0, . . . ,A′|τN |−1〉,

where for each 0≤r < |τN |, A′r is defined by the Rule #23:

A′r =

{E ∈ Ar | safeExecution(E, insC )} if r , |τC |−π
EτN if r = |τC |−π.

There exists a return value arc for each dynamic target mw of a call insC returning
a value. Rule #22) considers 〈A0, . . . ,A|τC |−1〉 and 〈R0, . . . ,R|τE |−1〉, approximations at
insC and exit@mw , and builds the alias expressions related to the returned value v|τC |−π =

v|τN |−1 at the node corresponding to the instruction which follows the call, insN . An alias
expression R ∈ R|τE |−1 of the computed value v|τE |−1 at exit@mw can be turned into an
alias expression of v|τC |−π at insN if

1. R is safe at mw and
2. every occurrence of a formal parameter lk in R is replaced by an alias expression

Ek ∈ A|τC |−π+k of the corresponding actual parameter v|τC |−π+k at insC , which is safe
w.r.t. insC .

Moreover, E = E0.mw (E1, . . . ,Eπ−1) can be an alias of v|τC |−π at insN if it is safe w.r.t.
insC .

The side-effects arcs consider the alias expressions E of the variables vr different from
the actual parameters (v|τC |−π, . . . , v|τC |−1) of the method at insC and insert them among
the alias expressions of vr also at insN if they are safe w.r.t. insC .

Example 6.34. Nodes a and b are linked to node b through a return value and a side-effects
arc with propagation rules #22 and #23. We recall that ia = 3, ja = π = 2 (Example 6.21),
i6 = 2, j6 = 1 (Example 6.24) and the static type of the returned value of delayMinBy is
not void. Therefore, ib and jb have to be 3 and 1 respectively. Let insC denote the call to
delayMinBy at node a and let us first consider the return value arc and let us assume that
Aa = 〈Aa

0,A
a
1,A

a
2,A

a
3,A

a
4〉 (Equation 6.1) and A8 = Π#16(A7) (Equation 6.4). Application

of the propagation rule #22 (Definition 6.32), on the pair (Aa,A8) gives: Ab
r = Aa

r for
0 ≤ r ≤ 2 and

Ab
3 = {E=R[E0,E1/l0, l1]|R∈A8

2 ∧ safeReturn(R, delayMinBy) ∧ safeAlias(E,Aa, insC )}
∪ {E = E0.delayMinBy(E1) | safeAlias(E,Aa, insC )}.

(6.5)
Let us consider the alias expression R = (v0.min + v1)%60, which is aliased to v2 at node
8, i.e.,

R ∈ A8
2. (6.6)

It is clear that only formal parameters of delayMinBy (l0 and l1) appear in R. Moreover,
it is possible to statically determine that delayMinBy does not modify l0 and l1 since that
method contains no store nor inc instructions (Fig. 3.3). Thus,

safeReturn(R, delayMinBy) = true. (6.7)

It is worth noting that the formal parameters l0 and l1 (node 1) correspond to the actual
parameters v3 = s0 and v4 = s1 (node a) of delayMinBy. By (6.5), an alias expression
E of v3 = s0 at node b (holding the returned value of delayMinBy) can be obtained by
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substituting all occurrences of l0 and l1 in R by alias expressions E0 and E1 of s0 and s1
at node a respectively, only if E is safe w.r.t. insC , i.e., if safeAlias(E,Aa, insC ) holds.
By hypotheses introduced in Example 6.21, the alias expressions of s0 at a are v2 and
v1.getFirst(), while the only alias expression of s1 at a is 15. These expressions contain
no actual parameter of the call at node a. Let us show that E = R[v1.getFirst(), 15/l0, l1] =

(v1.getFirst().min + 15)%60 is safe w.r.t. insC . First of all we have:

v1.getFirst() ∈ Aa
3 and 15 ∈ Aa

4. (6.8)

It is clear that no execution of delayMin might modify the evaluation of 15, since the
latter is a constant. Thus,

safeExecution(15, insC ) = true. (6.9)

On the other hand, delayMinBy does not modify any field (Fig. 4.1), and therefore, it
never modifies any field that might be read during any evaluation of v1.getFirst(), which
implies that ¬canBeAffected(v1.getFirst(), insC ) holds, and therefore

safeExecution(v1.getFirst(), insC ) = true. (6.10)

Finally, getFirst reads no array element and, by Definition 6.12, modifies no fields:

mightModify(v1.getFirst().min + 15, fields(v1.getFirst().min + 15))
= mightModify(v1.getFirst().min,F ) ∨ mightModify(15,F )
= mightModify(v1.getFirst(),F ) ∨ false
= false,

(6.11)

where F = {List.head:Object, Event.min:int}. From Equations 6.9, 6.10 and 6.11
we obtain safeAlias(E,Aa, insC ) = true, which, together with (6.6) and (6.7) implies that E
is an alias expression of v3 at node b. We can similarly show that also the alias expression
R[v2, 15/l0, l1] = (v2.min + 15)%60 is an alias expression of v3 at b. It can be easily
shown that also v1.getFirst().delayMinBy(15) and v2.delayMinBy(15) are safe w.r.t.
insC . Namely,

• v1.getFirst() ∈ Aa
3 and 15 ∈ Aa

4;
• safeAlias(v1.getFirst(),Aa, insC ) holds (see (6.10);
• safeAlias(15,Aa, insC ) holds (see (6.9);
• getFirst reads no array elements and by (6.6) modifies no fields that might be read

by v1.getFirst() and 15.

Hence, safeAlias(v1.getFirst.delayMinBy(15),Aa, insC ) holds. We can similarly show
that also safeAlias(v2.min + 15,Aa, insC ) holds. Therefore, Rule #22 gives rise to the
following aliasing information:

Ab′
0 =Ab′

1 = ∅

Ab′
2 ={v3, v1.getFirst()}

Ab′
3 ={(v1.getFirst().min+15)%60, v1.getFirst().delayMinBy(15),

(v2.min+15)%60, v2.delayMinBy(15)}.
On the other hand, rule #23 states that an alias expression E of any local variable

lk at node b is an alias expressions of the same variable at node a if E is safe w.r.t.
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Π#21 (Aa) v A1 Π#4
(
A4

)
v A5 Π#17

(
A8

)
v A9

Π#2
(
A1

)
v A2 Π#16

(
A5

)
v A6 Π#22

(
Aa,A6

)
t Π#23

(
Aa,A6

)
v Ab

Π#7
(
A2

)
v A3 Π#20

(
A2

)
v A7 Π#19 (Aa) t Π#23

(
Aa,A9

)
v Ac

Π#2
(
A3

)
v A4 Π#14

(
A7

)
v A8

Fig. 6.6. Constraints generated from the ACG from Fig. 6.5

the executions of delayMinBy (i.e., if safeExecution(E, insC )), while any expression
can be an alias of v3 at node b. It is obvious that insC is not safe for v3 ∈ Aa

2 (since
noParameters(v3) = false), while it is safe for v1.getFirst(), like we have already shown
above (see (6.10)). Therefore, rule #23 gives rise to the following aliasing information:

Ab′′
0 =Ab′′

1 = ∅

Ab′′
2 ={v1.getFirst()}

Ab′′
3 =Eτb

Hence, there are two arcs leading to node b, and bringing aliasing approximations Ab′

and Ab′′ , which permit us to compute the aliasing information at node b as

Ab = Ab′ tAb′′

= 〈Ab′
0 ∩ Ab′′

0 ,Ab′
1 ∩ Ab′′

1 ,Ab′
2 ∩ Ab′′

2 ,Ab′
3 ∩ Ab′′

3 〉
= 〈∅,∅,Ab′′

2 ,Ab′
3 〉.

ut
At this point we can formally define our definite expression aliasing analysis in the

general framework of constraint-based analyses.

Definition 6.35 (Definite Expression Aliasing Analysis). Definite Expression Aliasing
Analysis is a system of constraints extracted from the ACG whose nodes are enriched with
elements of the abstract domain Aliasdτ , where τ is the type environment corresponding
to the node, d ∈ N is the fixed expression depth, and whose arcs are enriched with the
propagation rules #1 − #23 introduced in Definitions 6.20 - 6.33. The extraction of con-
straints and the generation of the system of constraints concerning an ACG is explained
in Section 4.5.

Example 6.36. In Fig. 6.6 we provide the constraints extracted from the ACG introduced
in Fig. 6.5. ut

6.4 Soundness of the Definite Expression Aliasing Analysis

The goal of this section is to prove that there exists a solution to the system of constraints
extracted from the ACG for the definite expression aliasing analysis that we defined in
the previous section, and that this solution is sound. Since we follow the constraint-based
approach defined in Chapter 4, if we prove that the requirements provided in the latter
(Requirements 4.1- 4.11) hold, then the results obtained in Sections 4.5 and 4.6 guarantee
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the existence of the least solution of the system of constraints mentioned above, as well
as its soundness. The following subsections show that the instantiation of the general
parameterized framework for constraint-based statyc analyses of Java bytecode program
that we present in this section, i.e., the abstract domain Alias and the propagation rules
introduced in Definitions 6.20, 6.23, 6.25, 6.27, 6.32 and 6.33 satisfy those requirements.

6.4.1 ACC Condition

This requirement is one of the conditions which guarantee the existence and the unique-
ness of the least solution of our analyses, like Theorem 4.11 has shown. The following
lemma shows that the abstract domain Aliasdτ , and therefore our definite expression alias-
ing analysis satisfy it.

Lemma 6.37. The abstract domain Alias satisfies Requirement 4.1. More precisely, given
a type environment τ ∈ T and an integer d ∈ N, every ascending chain of elements in
Aliasdτ eventually stabilizes.

Proof. We recall that Aliasdτ = 〈Aτ,v,⊥d
τ ,>d

τ ,t,u〉, where

• Aτ = (℘(Edτ ))|τ|, where Edτ = {E ∈ Eτ | depth(E) ≤ d };
• for every A1 = 〈A1

0, . . . ,A
1
|τ|−1〉 ∈ Aτ and A2 = 〈A2

0, . . . ,A
2
|τ|−1〉 ∈ Aτ,

A1 v A2 ⇔ ∀0 ≤ i < |τ|,A1
i ⊇A2

i ;

• for every A1 = 〈A1
0, . . . ,A

1
|τ|−1〉 ∈ Aτ and A2 = 〈A2

0, . . . ,A
2
|τ|−1〉 ∈ Aτ,

A1 tA2 = 〈A1
0 ∩ A2

0, . . . ,A
1
|τ|−1 ∩ A2

|τ|−1〉;

• for every A1 = 〈A1
0, . . . ,A

1
|τ|−1〉 ∈ Aτ and A2 = 〈A2

0, . . . ,A
2
|τ|−1〉 ∈ Aτ,

A1 uA2 = 〈A1
0 ∪ A2

0, . . . ,A
1
|τ|−1 ∪ A2

|τ|−1〉;

• >d
τ = ∅|τ|;

• ⊥d
τ = (Edτ )|τ|.

By Definition 6.17, ⊥d
τ , i.e., the bottom element of Aliasdτ is finite since it might contain

only expressions whose depth is at most d , and variables in dom(τ), field and method
names are finite. Moreover, when A1 v A2, it means that for each variable vr ∈ dom(τ),
A2
r (the approximation A2 assigns to vr ) is included in A1

r (the approximation A1 assigns
to vr ), i.e., A2

r ⊆ A1
r . It means that greater elements in an ascending chain assign less alias

expressions to each variable. It is worth noting that the least and the greatest elements an
ascending chain might have are respectively ⊥d

τ (which is finite) and >d
τ = ∅|τ|, which

implies that this ascending chain eventually stabilizes, i.e., Aliasdτ satisfies the ACC con-
dition. Hence, Requirement 4.1 is satisfied. �
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6.4.2 Galois Connection

The next step is to show that the concretization map γ that we introduced in Defini-
tion 6.18 gives rise to a Galois connection (Chapter 2). This result would imply the satis-
fiability of Requirement 4.2. We start this proof by showing that our γ map is co-additive.

Lemma 6.38. For any type environment τ ∈ T , the function γτ is co-additive, i.e.,

γτ(
�
i≥0

Ai ) =
⋂
i≥0

γτ(Ai ).

Proof. Consider a family of abstract elements {〈Ai
0, . . . ,A

i
n−1〉}i , where n = |τ|. Then,

γτ(
�

i 〈Ai
0, . . . ,A

i
n−1〉) = γτ(〈⋃i Ai

0, . . .
⋃

i A1
n−1〉)

= {σ ∈ Στ | ∀0 ≤ r <n .∀E ∈ ⋃
i Ai

r .~E�σ = ρ(vr )}
= {σ ∈ Στ | ∀0 ≤ r <n .∀i .∀E ∈ Ai

r .~E�σ = ρ(vr )}
= {σ ∈ Στ | ∀i .∀0 ≤ r <n .∀E ∈ Ai

r .~E�σ = ρ(vr )}
=

⋂
i {σ ∈ Στ | ∀0 ≤ r <n .∀E ∈ Ai

r .~E�σ = ρ(vr )}
=

⋂
i γτ(〈Ai

0 . . .A
i
n−1〉).

�

We can now show that the map γ actually gives rise to a Galois connection.

Lemma 6.39. The abstract domain Alias satisfies Requirement 4.2. More precisely, given
a type environment τ ∈ T , and the function γτ : Aliasτ → Cτ, there exists a function
ατ : Cτ → Aliasτ such that 〈Cτ, ατ, γτ,Aliasτ〉 is a Galois connection.

Proof. Both Cτ and Aliasτ are complete lattices. Moreover, Lemma 6.38 shows that γτ
is co-additive and therefore, according to the results mentioned in Chapter 2 (subsection
Galois Connection), there exists the unique map ατ, determined as:

∀C ∈ Cτ.α(C ) =
⋂
{A ∈ Aliasτ|C ⊆ γτ(A)},

such that 〈Cτ, ατ, γτ,Aliasτ〉 is a Galois connection. Therefore, Requirement 4.2 is satisi-
fied and Aliasτ is actually an abstract domain, in the sense of abstract interpretation. �

6.4.3 Monotonicity of the Propagation Rules

Another important condition necessary for the proof of existence of the least solution of
our analysis is the monotonicity of the propagation rules. These rules represent an abstract
semantics of bytecode instructions. We enunciate the following lemma without a proof,
since it is straightforward.

Lemma 6.40. The propagation rules Rule #1 - Rule #23 satisfy Requirement 4.3, i.e.,
they are monotonic with respect to v.

Proof. This proof is straightforward from the definition of the propagation rules. �
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6.4.4 Sequential Arcs

This subsection is dedicated to Requirement 4.4, which states that in the case of the prop-
agation rules of the sequential arcs, only non-exceptional concrete states belonging to the
concretization of a correct approximation of the property of interest before a bytecode
instruction is executed, are correctly propagated by the corresponding rule. That is be-
cause the sequential arcs simulate only those bytecode instructions which are defined on
non-exceptional concrete states, and undefined on the exceptional ones. Let us show that
this property actually holds.

Lemma 6.41. The propagation rules Rule #1 - Rule #14 introduced by Definition 6.20
satisfy Requirement 4.4. More precisely, let us consider a sequential arc from a bytecode
ins and its propagation rule Π . Assume that ins has static type information τ at its begin-
ning and τ′ immediately after its non-exceptional execution. Then, for every A ∈ Aliasτ
we have:

ins(γτ(A)) ∩ Ξτ′ ⊆ γτ′ (Π(A))

(we recall that ins is the semantics of ins, see Fig. 3.6).

Proof. Let dom(τ)=L∪S contains i local variables L = {l0, . . . , li−1} and j stack elements
S = {s0, . . . , sj−1}. For ease of representation, we let dom(τ) = {v0, . . . , vn−1}, where
n = |τ|, vr = lr for 0 ≤ r < i and vr = sr−i for i ≤ r < n , like we did in Definition 3.7.
Moreover, let dom(τ′) = L′ ∪ S ′, where L′ and S ′ are the local variables and stack
elements of dom(τ′), and let n ′= |τ′|.

We choose an arbitrary abstract element A= 〈A0, . . . ,An−1〉∈Aliasτ, an arbitrary state
σ′ = 〈ρ′, µ′〉 ∈ ins(γτ(A)) ∩ Ξτ′ , and we show that σ′ ∈ γτ′ (Π(A)), i.e., (Definition 6.18)
that

for each 0≤r <n ′ and every E∈Ar , ~E�σ′ = ρ′(vr ). (6.12)

Note that, by the choice of σ′, there exists σ = 〈ρ, µ〉 ∈ γτ(A) such that σ′ = ins(σ) and
such that, for each 0≤r <n and every E∈Ar , ~E�σ=ρ(vr ).
ins = const x . We have L′ = L, S ′ = S ∪ {sj }. Moreover, for every v ∈ dom(τ′)r{sj },
ρ′(v ) = ρ(v ), while ρ′(sj ) = x and µ′ = µ. According to Rule #1 of Definition 6.20,
Π(〈A0, . . . ,An−1〉) = 〈A′0, . . . ,A′n 〉, where A′r = Ar for r , n and A′n = {x }. Consider an
expression E ∈ A′r . We distinguish the following cases:

• if 0≤r <n , then A′r = Ar , and therefore E ∈ Ar . By hypothesis,

~E�〈ρ, µ〉 = ρ(vr ) = ρ′(vr ).

In this case, sj < variables(E), and therefore, for each v ∈ variables(E), ρ′(v ) = ρ(v ).
Finally, by Corollary 6.15, we have:

~E�〈ρ′, µ′〉 = ~E�〈ρ′, µ〉 = ~E�〈ρ, µ〉 = ρ′(vr ).

• if r = n , then A′n = {x } and E = x . Therefore, ~E�〈ρ′, µ′〉 = x = ρ′(vn ).

ins = load k t. We have L′ = L, S ′ = S ∪ {sj }, µ′ = µ and for every v ∈ dom(τ′)r
{sj }, ρ′(v ) = ρ(v ), while ρ′(sj ) = ρ(lk ). According to Rule #2 of Definition 6.20,
Π(〈A0, . . . ,An−1〉) = 〈A′0, . . . ,A′n 〉, where A′r = Ar ∪ Ar [sj /lk ] for r < {k ,n}, A′k =

Ak ∪ {sj } and An = Ak ∪ {lk }. Consider an expression E ∈ A′r . We distinguish the follow-
ing cases:
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• if r < {k ,n}, then A′r = Ar ∪ Ar [sj /lk ]. If E ∈ Ar , then, by hypothesis,

~E�〈ρ, µ〉 = ρ(vr ) = ρ′(vr ).

In this case, sj < variables(E), and therefore, for every v ∈ variables(E), ρ′(v ) = ρ(v ).
By Corollary 6.15, we have:

~E�〈ρ′, µ′〉 = ~E�〈ρ′, µ〉 = ~E�〈ρ, µ〉 = ρ′(vr ).

Otherwise, if E ∈ Ar [sj /lk ], then there exists E1 ∈ Ar such that E = E1[sj /lk ]. Note
that, by hypothesis,

~E1�〈ρ, µ〉 = ρ(vr ) = ρ′(vr ).

Since ρ′(sj ) = ρ′(lk ), we have, by Lemma 6.16:

~E�〈ρ′, µ′〉 = ~E1[sj /lk ]�〈ρ′, µ′〉 = ~E1�〈ρ′, µ′〉 = ~E1�〈ρ′, µ〉.
On the other hand, E1 ∈ Ar entails sj < variables(E1), and therefore for every v ∈
variables(E1), ρ′(v ) = ρ(v ). By Corollary 6.15 we have:

~E1�〈ρ′, µ〉 = ~E1�〈ρ, µ〉 = ρ′(vr ).

Thus, ~E�〈ρ′, µ′〉 = ~E1�〈ρ′, µ〉 = ρ′(vr ).
• if r = k , then vk = lk and A′k = Ak ∪ {sj }. If E ∈ Ak , then by hypothesis,

~E�〈ρ, µ〉 = ρ(vk ) = ρ(lk ) = ρ′(sj ) = ρ′(vk ).

Moreover, sj < variables(E), and therefore, for every v ∈ variables(E), ρ′(v ) = ρ(v ).
By Corollary 6.15, we have

~E�〈ρ′, µ′〉 = ~E�〈ρ′, µ〉 = ~E�〈ρ, µ〉 = ρ′(vk ).

Otherwise, E = sj , and we have

~E�〈ρ′, µ′〉 = ρ′(sj ) = ρ′(lk ) = ρ′(vk ).

• if r = n , then vn = sj and A′n = Ak ∪ {lk }. If E ∈ Ak , then by hypothesis,

~E�〈ρ, µ〉 = ρ(vk ) = ρ′(vn ).

Moreover,sj < variables(E), and therefore, for every v ∈ variables(E), ρ′(v ) = ρ(v ).
By Corollary 6.15, we have:

~E�〈ρ′, µ′〉 = ~E�〈ρ′, µ〉 = ~E�〈ρ, µ〉 = ρ′(vn ).

Otherwise, E = lk , and we have

~E�〈ρ′, µ′〉 = ρ′(lk ) = ρ′(sj ) = ρ′(vn ).

ins = store k t. We have L′ = L, S ′ = S r {sj−1}, µ′ = µ, and for every v ∈ dom(τ′)r
{lk }, ρ′(v ) = ρ(v ), while ρ′(lk ) = ρ(sj−1). According to Rule #5 of Definition 6.20,
Π(〈A0, . . . ,An−1〉) = 〈A′0, . . . ,A′n−2〉, where A′r = {E ∈ Ar | ¬canBeAffected(E, ins)}
for r , k and A′k = {E ∈ Ak | ¬canBeAffected(E, ins)}. According to Definition 6.11,
for every E ∈ Eτ, ¬canBeAffected(E, ins) holds if lk , sj−1 < variables(E). Consider an
expression E ∈ A′r . We distinguish the following cases:
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• if r , k , then A′r = {E ∈ Ar | lk , sj−1 < variables(E)} ⊆ Ar . Since E ∈ A′r ⊆ Ar we
have, by hypothesis,

~E�〈ρ, µ〉 = ρ(vr ) = ρ′(vr ).

Moreover, lk , sj−1 < variables(E), and therefore, for every v ∈ variables(E), ρ′(v ) =

ρ(v ). By Corollary 6.15, we have:

~E�〈ρ′, µ′〉 = ~E�〈ρ′, µ〉 = ~E�〈ρ, µ〉 = ρ′(vr ).

• if r = k , then A′k = {E ∈ An−1 | lk , sj−1 < variables(E)}⊆An−1. Since E ∈ A′n−1⊆An−1
we have, by hypothesis,

~E�〈ρ, µ〉 = ρ(vn−1) = ρ(sj−1) = ρ′(lk ) = ρ′(vk ).

Moreover, lk , sj−1 < variables(E), and therefore, for every v ∈ variables(E), ρ′(v ) =

ρ(v ). By Corollary 6.15, we have:

~E�〈ρ′, µ′〉 = ~E�〈ρ′, µ〉 = ~E�〈ρ, µ〉 = ρ′(vk ).

ins ∈ {add, sub,mul, div, rem}. We have L′ = L, S ′ = S r {sj−1}, µ′ = µ, and for ev-
ery v ∈ dom(τ′)r {sj−2}, ρ′(v ) = ρ(v ), while ρ′(sj−2) = ρ(sj−2) ⊕ ρ(sj−1), where ⊕ is
the arithmetic operation corresponding to ins. According to Rule #4 of Definition 6.20,
Π(〈A0, . . . ,An−1〉) = 〈A′0, . . . ,A′n−2〉, where

A′r =


{E ∈ Ar | ¬canBeAffected(E, ins)} if r , |τ|−2
{E1⊕E2 | E1 ∈A|τ|−2 ∧ ¬canBeAffected(E1, ins)∧

E2 ∈A|τ|−1 ∧ ¬canBeAffected(E2, ins) if r = |τ|−2,

According to Definition 6.11, for every expresion E ∈ Eτ, ¬canBeAffected(E, ins) holds
if sj−2, sj−1 < variables(E). Consider an expression E ∈ A′r . We distinguish the following
cases:

• if r <n−2, then A′r = {E ∈ Ar | sj−2, sj−1 < variables(E)} ⊆ Ar . Since E ∈ A′r ⊆ Ar

we have, by hypothesis,
~E�〈ρ, µ〉 = ρ(vr ) = ρ′(vr ).

Moreover, sj−2, sj−1 < variables(E), and therefore, for every v ∈ variables(E), ρ′(v ) =

ρ(v ). By Corollary 6.15, we have:

~E�〈ρ′, µ′〉 = ~E�〈ρ′, µ〉 = ~E�〈ρ, µ〉 = ρ′(vr ).

• if r = n−2, then E = E1 ⊕ E2, where E1 ∈ An−2, E2 ∈ An−1, sj−2, sj−1 < variables(E1)
and sj−2, sj−1 < variables(E2)}. Since E1 ∈ An−2 and E2 ∈ An−1 we have, by hypothe-
sis,

~E1�〈ρ, µ〉 = ρ(vn−2) = ρ(sj−2)
~E2�〈ρ, µ〉 = ρ(vn−1) = ρ(sj−1).

Moreover, for h ∈ {1, 2}, sj−2, sj−1 < variables(Eh ), and therefore, for every v ∈
variables(Eh ), ρ′(v ) = ρ(v ). Hence, by Corollary 6.15,

~E1�∗〈ρ′, µ〉 = ~E1�∗〈ρ, µ〉 = 〈ρ(sj−2), µ1〉
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and
~E2�∗〈ρ′, µ1〉 = ~E2�∗〈ρ, µ1〉 = 〈ρ(sj−1), µ2〉.

Hence,

~E�∗〈ρ′, µ′〉 = ~E1 ⊕ E2�∗〈ρ′, µ′〉 = ~E1 ⊕ E2�∗〈ρ′, µ〉 = 〈ρ(sj−2) ⊕ ρ(sj−1), µ2〉,

i.e.,
~E�〈ρ′, µ′〉 = ρ(sj−2) ⊕ ρ(sj−1) = ρ′(sj−2) = ρ′(vn−2).

ins = inc k x . We have L′ = L, S ′ = S , µ′ = µ and for every v ∈ dom(τ′)r {lk },
ρ′(v ) = ρ(v ), while ρ′(lk ) = ρ(lk ) + x . According to Rule #5 of Definition 6.20,
Π(〈A0, . . . ,An−1〉) = 〈A′0, . . . ,A′n−1〉, where A′r = {E[lk −x/lk ] | E ∈ Ar } for r , k ,
and A′k = ∅. Consider an expression E ∈ A′r . We distinguish the following cases:

• if r , k , then A′r = {E[lk −x/lk ] | E ∈ Ar }. If lk < variables(E), then, E[lk −x/lk ] =

E ∈ Ar and, by hypothesis,

~E�〈ρ, µ〉 = ρ(vr ) = ρ′(vr ).

Moreover, for every v ∈ variables(E), ρ′(v ) = ρ(v ) and, by Corollary 6.15, we have:

~E�〈ρ′, µ′〉 = ~E�〈ρ′, µ〉 = ~E�〈ρ, µ〉 = ρ′(vr ).

Otherwise, lk ∈ variables(E), and we have that for any v ∈ variables(E) r {lk }, ρ′(v ) =

ρ(v ). Hence, by Lemma 6.14,

~E[lk−x/lk ]�〈ρ′, µ〉 = ~E�〈ρ, µ〉.

By hypothesis,
~E�〈ρ, µ〉 = ρ(vr ) = ρ′(vr ),

and therefore

~E[lk−x/lk ]�〈ρ′, µ′〉 = ~E[lk−x/lk ]�〈ρ′, µ〉 = ρ′(vr ).

• if r = k , then A′k = ∅, and therefore ∀E ∈ A′k .~E�〈ρ′, µ′〉 = ρ′(vk ) trivially holds.

ins = new κ. We have L′ = L, S ′ = S ∪ {sj }. For every v ∈ dom(τ′)r{sj }, ρ′(v ) = ρ(v ),
while ρ′(sj ) = ` ∈ L, where ` is a fresh location, i.e., a location not reachable from any
other location and which does not reach any other location. Moreover, µ′ = µ[` 7→ o],
where o is a new object of class κ. It is worth noting that, under these circumstances,

∀E ∈ Eτ′ .~E�〈ρ′, µ′〉 = ~E�〈ρ′, µ〉. (6.13)

According to Rule #6 of Definition 6.20, Π(〈A0, . . . ,An−1〉) = 〈A′0, . . . ,A′n 〉, where A′r =

Ar for r , n , while A′n = ∅. Consider an expression E ∈ A′r . We distinguish the following
cases:

• if 0≤r <n , then A′r = Ar , and therefore E ∈ Ar . By hypothesis,

~E�〈ρ, µ〉 = ρ(vr ) = ρ′(vr ).
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In this case, sj < variables(E), and therefore, for every v ∈ variables(E), ρ′(v ) = ρ(v ).
By Corollary 6.15, we have

~E�〈ρ′, µ〉 = ~E�〈ρ, µ〉 = ρ′(vr ).

Hence, the latter and ( 6.13) entail

~E�〈ρ′, µ′〉 = ~E�〈ρ′, µ〉 = ρ′(vr ).

• if r = n , then A′n = ∅, and therefore ∀E ∈ A′n .~E�〈ρ′, µ′〉 = ρ′(vn ) trivially holds.

ins = getfield f . We have L′ = L, S ′ = S , µ′ = µ, and for every v ∈ dom(τ′)r {sj−1},
ρ′(v ) = ρ(v ), while ρ′(sj−1) = (µρ(sj−1).φ)(f ). According to Rule #7 of Definition 6.20,
Π(〈A0, . . . ,An−1〉) = 〈A′0, . . . ,A′n−1〉, where for any r , n − 1,

A′r = {E ∈ Ar | ¬canBeAffected(E, ins)},
while

A′n−1 = {E.f | E ∈ An−1 ∧ ¬canBeAffected(E, ins) ∧ ¬mightModify(E, {κ.f : t})}.
According to Definition 6.11, for any E ∈ Eτ, ¬canBeAffected(E, ins) holds if sj−1 <
variables(E). Consider an expression E ∈ A′r . We distinguish the following cases:

• if r , n−1, then E ∈ A′r ⊆Ar and we have, by hypothesis,

~E�〈ρ, µ〉 = ρ(vr ) = ρ′(vr ).

Moreover, sj−1 < variables(E), and therefore, for every v ∈ variables(E), ρ′(v ) = ρ(v ).
By Corollary 6.15, we have

~E�〈ρ′, µ′〉 = ~E�〈ρ′, µ〉 = ~E�〈ρ, µ〉 = ρ′(vr ).

• if r = n −1, then since E ∈ A′n−1, there exists E1 ∈ An−1 such that E = E1.f . By
hypothesis,

~E1�〈ρ, µ〉 = ρ(vn−1) = ρ(sj−1).

In addition, sj−1 < variables(E1), and therefore, for every v ∈ variables(E1), ρ′(v ) =

ρ(v ). Hence, by Corollary 6.15, we have:

~E1�∗〈ρ′, µ〉 = ~E1�∗〈ρ, µ〉 = 〈ρ(sj−1), µ1〉.
Hence,

~E1�∗〈ρ′, µ′〉 = ~E1�∗〈ρ′, µ〉 = 〈ρ(sj−1), µ1〉.
Moreover, ¬mightModify(E1, {f }) guarantees that no evaluation of E1 might modify
the field f . In particular, evaluation of E1 in 〈ρ, µ〉 does not modify f , and therefore its
value before E1’s evaluation, (µρ(sj−1).φ)(f ), is equal to its value after E1’s evaluation,
(µ1ρ(sj−1).φ)(f ). Hence,

~E�∗〈ρ′, µ′〉 = ~E1.f �∗〈ρ′, µ′〉
= 〈(µ1ρ(sj−1).φ)(f ), µ1〉
= 〈(µρ(sj−1).φ)(f ), µ1〉
= 〈ρ′(sj−1), µ1〉,

which implies ~E�〈ρ′, µ′〉 = ρ′(sj−1) = ρ′(vr ).
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ins = putfield f . We have L′ = L, S ′ = S r {sj−2, sj−1}, µ′ = µ[(µρ(sj−2).φ)(f ) 7→ρ(sj−1)]
and ρ′ = ρ. According to Rule #8 of Definition 6.20,Π(〈A0, . . . ,An−1〉) = 〈A′0, . . . ,A′n−3〉,
where for each 0≤r <n−2,

A′r = {E ∈ Ar | ¬canBeAffected(E, ins)}.

According to Definition 6.11, for every expresion E ∈ Eτ, ¬canBeAffected(E, ins) holds
if sj−2, sj−1 < variables(E) and if no evaluation of E might read a field f . Consider an
expression E ∈ A′r ⊆ Ar , for an arbitrary 0≤r <n−2. By hypothesis,

~E�〈ρ, µ〉 = ρ(vr ).

Moreover, sj−2, sj−1 < variables(E), hence for every v ∈ variables(E), ρ(v ) = ρ′(v ) and, by
Corollary 6.15:

~E�〈ρ′, µ〉 = ~E�〈ρ, µ〉 = ρ(vr ) = ρ′(vr ).

Since no evaluation of E, and in particular its evaluation in 〈ρ′, µ〉, might read any field f ,
E’s value ~E�〈ρ′, µ〉 does not depend on a value of any field f in that state. In particular,
~E�〈ρ′, µ〉 does not depend on the value of the field f of the object memorized in location
ρ(sj−1), (µρ(sj−1).φ)(f ). Since µ′ = µ[(µρ(sj−2).φ)(f ) 7→ ρ(sj−1)], i.e., the only difference
between memories µ and µ′ is exactly the value of the field mentioned above, we conclude
that E’s values in 〈ρ′, µ′〉 and in 〈ρ′, µ〉 are equal, i.e.,

~E�〈ρ′, µ′〉 = ~E�〈ρ′, µ〉 = ρ′(vr ).

ins = arraynew α. We have L′ = L, S ′ = S . For every v ∈ dom(τ′)r{sj−1}, ρ′(v ) = ρ(v ),
while ρ′(sj−1) = ` ∈ L, where ` is a fresh location, i.e., a location not reachable from any
other location and which does not reach any other location. Moreover, µ′ = µ[` 7→ a],
where o is a new aray of array type α. It is worth noting that, under these circumstances,

∀E ∈ Eτ′ .~E�〈ρ′, µ′〉 = ~E�〈ρ′, µ〉. (6.14)

According to Rule #9 of Definition 6.20, Π(〈A0, . . . ,An−1〉) = 〈A′0, . . . ,A′n 〉, where
A′r = {E ∈ Ar | ¬canBeAffected(E, ins)} for r , n − 1, while A′n−1 = ∅. Accord-
ing to Definition 6.11, for every expresion E ∈ Eτ, ¬canBeAffected(E, ins) holds if
sj−1 < variables(E). Consider an expression E ∈ A′r . We distinguish the following cases:

• if 0≤ r < n , then A′r = {E ∈ Ar | sj−1 < variables(E)} ⊆ Ar . Since E ∈ A′r ⊆ Ar we
have, by hypothesis,

~E�〈ρ, µ〉 = ρ(vr ) = ρ′(vr ).

Moreover, sj−1 < variables(E), and therefore, for every v ∈ variables(E), ρ′(v ) = ρ(v ).
By (6.14 and Corollary 6.15, we have:

~E�〈ρ′, µ′〉 = ~E�〈ρ′, µ〉 = ~E�〈ρ, µ〉 = ρ′(vr ).

• if r = n−1, then A′n = ∅, and therefore ∀E ∈ A′n .~E�〈ρ′, µ′〉 = ρ′(vn ) trivially holds.

ins = arraylength α. We have L′ = L, S ′ = S , µ′ = µ, and for every v ∈ dom(τ′)r{sj−1},
ρ′(v ) = ρ(v ), while ρ′(sj−1) = µρ(sj−1).length. According to Rule #10 of Defini-
tion 6.20, Π(〈A0, . . . ,An−1〉) = 〈A′0, . . . ,A′n−1〉, where for any r , n − 1,
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A′r = {E ∈ Ar | ¬canBeAffected(E, ins)},

while
A′n−1 = {E.length | E ∈ An−1 ∧ ¬canBeAffected(E, ins)}.

According to Definition 6.11, for any E ∈ Eτ, ¬canBeAffected(E, ins) holds if sj−1 <
variables(E). Consider an expression E ∈ A′r . We distinguish the following cases:

• if r , n−1, then E ∈ A′r ⊆Ar and we have, by hypothesis,

~E�〈ρ, µ〉 = ρ(vr ) = ρ′(vr ).

Moreover, sj−1 < variables(E), and therefore, for every v ∈ variables(E), ρ′(v ) = ρ(v ).
By Corollary 6.15, we have

~E�〈ρ′, µ′〉 = ~E�〈ρ′, µ〉 = ~E�〈ρ, µ〉 = ρ′(vr ).

• if r = n−1, then since E ∈ A′n−1, there exists E1 ∈ An−1 such that E = E1.length. By
hypothesis,

~E1�〈ρ, µ〉 = ρ(vn−1) = ρ(sj−1).

In addition, sj−1 < variables(E1), and therefore, for every v ∈ variables(E1), ρ′(v ) =

ρ(v ). Hence, by Corollary 6.15, we have:

~E1�∗〈ρ′, µ′〉 = ~E1�∗〈ρ′, µ〉 = ~E1�∗〈ρ, µ〉 = 〈ρ(sj−1), µ1〉.

Moreover, no evaluation of any expression might modify the length of already existing
array, i.e., the length of the array µρ(sj−1) is equal before and after E1’s evaluation in
〈ρ, µ〉: µρ(sj−1).length = µ1ρ(sj−1).length. Hence,

~E�∗〈ρ′, µ′〉 = ~E1.length�∗〈ρ′, µ′〉
= 〈µ1ρ(sj−1).length, µ1〉
= 〈µρ(sj−1).length, µ1〉
= 〈ρ′(sj−1), µ1〉,

which implies ~E�〈ρ′, µ′〉 = ρ′(sj−1) = ρ′(vr ).

ins = arrayload α. We have L′ = L, S ′ = Sr{sj−1}, µ′ = µ, and for every v ∈ dom(τ′)r
{sj−2}, ρ′(v ) = ρ(v ), while ρ′(sj−2) = (µρ(sj−2).φ)(ρ(sj−1)). According to Rule #11 of
Definition 6.20, Π(〈A0, . . . ,An−1〉) = 〈A′0, . . . ,A′n−2〉, where

A′r =


{E ∈ Ar | ¬canBeAffected(E, ins)} if r , |τ|−2
{E1[E2] | E1 ∈A|τ|−2 ∧ ¬canBeAffected(E1, ins)∧

E2 ∈A|τ|−1 ∧ ¬canBeAffected(E2, ins)∧
[E1 and E2 do not invoke any method] if r = |τ|−2.

According to Definition 6.11, for every expresion E ∈ Eτ, ¬canBeAffected(E, ins) holds
if sj−2, sj−1 < variables(E). Consider an expression E ∈ A′r . We distinguish the following
cases:
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• if r <n−2, then A′r = {E ∈ Ar | sj−2, sj−1 < variables(E)} ⊆ Ar . Since E ∈ A′r ⊆ Ar

we have, by hypothesis,
~E�〈ρ, µ〉 = ρ(vr ) = ρ′(vr ).

Moreover, sj−2, sj−1 < variables(E), and therefore, for every v ∈ variables(E), ρ′(v ) =

ρ(v ). By Corollary 6.15, we have:

~E�〈ρ′, µ′〉 = ~E�〈ρ′, µ〉 = ~E�〈ρ, µ〉 = ρ′(vr ).

• if r = n−2, then E = E1[E2], where E1 ∈ An−2, E2 ∈ An−1, sj−2, sj−1 < variables(E1),
sj−2, sj−1 < variables(E2)} and E1 and E2 do not invoke any method. Since E1 ∈ An−2
and E2 ∈ An−1 we have, by hypothesis,

~E1�〈ρ, µ〉 = ρ(vn−2) = ρ(sj−2)
~E2�〈ρ, µ〉 = ρ(vn−1) = ρ(sj−1).

Since sj−2, sj−1 < variables(E1), for every v ∈ variables(E1), ρ′(v ) = ρ(v ), and, by
Corollary 6.15, we have:

~E1�∗〈ρ′, µ′〉 = ~E1�∗〈ρ′, µ〉 = ~E1�∗〈ρ, µ〉 = 〈ρ(sj−2), µ〉. (6.15)

Similarly, since sj−2, sj−1 < variables(E2), for every v ∈ variables(E2), ρ′(v ) = ρ(v ),
and, by Corollary 6.15, we have:

~E2�∗〈ρ′, µ′〉 = ~E2�∗〈ρ′, µ〉 = ~E2�∗〈ρ, µ〉 = 〈ρ(sj−1), µ〉. (6.16)

It is worth noting that since both E1 and E2 do not invoke any method, their evaluation
in any state 〈ρ1, µ1〉 do not modify the memory µ1, hence the resulting memory when
E1 and E2 are evaluated in 〈ρ, µ〉 is µ (Equations 6.15 and 6.16). Hence, Equations 6.15
and 6.16 entail

~E�∗〈ρ′, µ′〉 = ~E1[E2]�∗〈ρ′, µ′〉 = 〈(µρ(sj−2).φ)(ρ(sj−1)), µ〉 = 〈ρ′(sj−2), µ〉,
i.e.,

~E�〈ρ′, µ′〉 = ρ′(sj−2) = ρ′(vn−2).

ins = arraystore t[ ]. We have L′ = L, S ′ = S r {sj−3, sj−2, sj−1}, ρ′ = ρ and

µ′ = µ[(µρ(sj−3).φ)(ρ(sj−2)) 7→ ρ(sj−1)].

According to Rule #12 of Definition 6.20, Π(〈A0, . . . ,An−1〉) = 〈A′0, . . . ,A′n−4〉, where for
each 0≤r <n−3,

A′r = {E ∈ Ar | ¬canBeAffected(E, ins)}.
According to Definition 6.11, for every expresion E ∈ Eτ, ¬canBeAffected(E, ins) holds
if sj−3, sj−2, sj−1 < variables(E) and if there is no evaluation of E which might read an
element of an array of type t′[ ] where t′ ∈ compatible(t). Consider an expression E ∈
A′r ⊆ Ar , for an arbitrary 0≤r <n−3. By hypothesis,

~E�〈ρ, µ〉 = ρ(vr ) = ρ′(vr ).

Moreover, sj−3, sj−2, sj−1 < variables(E), hence for every v ∈ variables(E), ρ(v ) = ρ′(v )
and, by Corollary 6.15:
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~E�〈ρ′, µ〉 = ~E�〈ρ, µ〉 = ρ′(vr ). (6.17)

No evaluation of E might read an element of an array of type t′[ ], where t′ ∈ compatible(t).
Therefore, E’s value in any state definitely does not depend on any array element whose
type is compatible with t and, consequentially, arraystore t[ ] never affects its value.
Hence,

~E�〈ρ′, µ′〉 = ~E�〈ρ′, µ〉. (6.18)

Hence, Equations 6.17 and 6.18 entail:

~E�〈ρ′, µ′〉 = ~E�〈ρ′, µ〉 = ρ′(vr ).

ins = dup t. We have L′ = L, S ′ = S ∪ {sj }, µ′ = µ and for every v ∈ dom(τ′)r
{sj }, ρ′(v ) = ρ(v ), while ρ′(sj ) = ρ(sj−1). According to Rule #13 of Definition 6.20,
Π(〈A0, . . . ,An−1〉) = 〈A′0, . . . ,A′n 〉, where A′r = Ar ∪ Ar [sj /sj−1] for r < n−1, A′n−1 =

An−1 ∪ {sj } and An = An−1 ∪ {sj−1}. Consider an expression E ∈ A′r . We distinguish the
following cases:

• if 0≤r <n−1, then A′r = Ar ∪ Ar [sj /sj−1]. If E ∈ Ar , then, by hypothesis,

~E�〈ρ, µ〉 = ρ(vr ) = ρ′(vr ).

In this case, sj < variables(E), and therefore, for every v ∈ variables(E), ρ′(v ) = ρ(v ).
By Corollary 6.15, we have:

~E�〈ρ′, µ′〉 = ~E�〈ρ′, µ〉 = ~E�〈ρ, µ〉 = ρ′(vr ).

Otherwise, if E ∈ Ar [sj /sj−1], then there exists E1 ∈ Ar such that E = E1[sj /sj−1].
Note that, by hypothesis,

~E1�〈ρ, µ〉 = ρ(vr ) = ρ′(vr ).

Since ρ′(sj ) = ρ′(sj−1), we have, by Lemma 6.16,

~E�〈ρ′, µ′〉 = ~E1[sj /sj−1]�〈ρ′, µ′〉 = ~E1�〈ρ′, µ′〉 = ~E1�〈ρ′, µ〉.

On the other hand, E1 ∈ Ar entails sj < variables(E1), and therefore for every v ∈
variables(E1), ρ′(v ) = ρ(v ). By Corollary 6.15 we have

~E1�〈ρ′, µ〉 = ~E1�〈ρ, µ〉 = ρ′(vr ).

Thus, ~E�〈ρ′, µ′〉 = ~E1�〈ρ′, µ〉 = ρ′(vr ).
• if r = n−1, then vr = sj−1 and A′r = An−1 ∪ {sj }. If E ∈ An−1, then by hypothesis,

~E�〈ρ, µ〉 = ρ(vr ) = ρ′(vr ).

Moreover, sj < variables(E), and therefore, for every v ∈ variables(E), ρ′(v ) = ρ(v ).
By Corollary 6.15, we have:

~E�〈ρ′, µ′〉 = ~E�〈ρ′, µ〉 = ~E�〈ρ, µ〉 = ρ′(vr ).

Otherwise, E = sj , and we have ~E�〈ρ′, µ′〉 = ρ′(sj ) = ρ′(sj−1) = ρ′(vr ).
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• if r = n , then vr = sj and A′r = An−1 ∪ {sj−1}. If E ∈ An−1, then by hypothesis,

~E�〈ρ, µ〉 = ρ(vn−1) = ρ′(vn ).

Moreover,sj <variables(E), and therefore, for every v ∈ variables(E), ρ′(v ) = ρ(v ). By
Corollary 6.15, we have

~E�〈ρ′, µ′〉 = ~E�〈ρ′, µ〉 = ~E�〈ρ, µ〉 = ρ′(vn ).

Otherwise, E = sj−1, and ~E�〈ρ′, µ′〉 = ρ′(sj−1) = ρ′(sj ) = ρ′(vn ).

ins ∈ {ifne t, ifeq t, catch, exception_is K }. We have L′ = L, S ′ = S when ins ∈
{catch, exception_is K }, and S ′ = S r {sj−2, sj−1} otherwise. Moreover, µ′ = µ and
for every v ∈ dom(τ′), ρ′(v ) = ρ(v ). According to Rule #14 of Definition 6.20,
Π(〈A0, . . . ,An−1〉) = 〈A′0, . . . ,A′n ′−1〉, where A′r = {E ∈ Ar | ¬canBeAffected(E, ins)}
for each 0≤ r <n ′. According to Definition 6.11, for any E ∈ Eτ, ¬canBeAffected(E, ins)
always holds when ins ∈ {catch, exception_is K }, while ¬canBeAffected(E, ins) holds if
sj−2, sj−1 < variables(E) when ins ∈ {ifne t, ifeq t}. Consider an expression E ∈ A′r ⊆ Ar

for an arbitrary 0≤r <n ′. By hypothesis,

~E�〈ρ, µ〉 = ρ(vr ) = ρ′(vr ).

Moreover, ¬canBeAffected(E, ins) entails variables(E) ⊆ dom(τ′), and therefore for every
v ∈ variables(E), ρ′(v ) = ρ(v ). Then, by Corollary 6.15,

~E�〈ρ′, µ′〉 = ~E�〈ρ′, µ〉 = ~E�〈ρ, µ〉 = ρ′(vr ).

�

6.4.5 Final Arcs

This subsection is dedicated to Requirement 4.5, which states that in the case of the prop-
agation rules of the final arcs, both exceptional and non-exceptional concrete states be-
longing to the concretization of a correct approximation of the property of interest before
a bytecode instruction is executed, are correctly propagated by the corresponding rule. It
means that the propagation rules of the final arcs must soundly approximate the concrete
behavior of each final bytecode instruction (return t, return void, throw κ) of a method
or a constructor belonging to the program under analysis. Let us show that this property
actually holds.

Lemma 6.42. The propagation rules Rule #1 - Rule #14 introduced by Definition 6.23
satisfy Requirement 4.5. More precisely, let us consider a final arc from a bytecode ins
and its propagation rule Π . Assume that ins has static type information τ at its beginning
and τ′ immediately after its execution (its non-exceptional execution if ins is a return, its
exceptional execution if ins is a throw κ). Then, for every A ∈ Aliasτ we have:

ins(γτ(A)) ⊆ γτ′ (Π(A))

(we recall that ins is the semantics of ins, see Fig. 3.6).
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Proof. Let dom(τ) = L ∪ S contains i local variables L = {l0, . . . , li−1} and j stack
elements S = {s0, . . . , sj−1}. For ease of representation, we let dom(τ) = {v0, . . . , vn−1},
where n = |τ|, vr = lr for 0 ≤ r < i and vr = sr−i for i ≤ r < n , like we did in
Definition 3.7. Moreover, let dom(τ′) = L′ ∪ S ′, where L′ and S ′ are the local and stack
variables of dom(τ′), and let n ′ = |τ′|.

We choose an arbitrary abstract element A = 〈A0, . . . ,An−1〉 ∈ Aliasτ, an arbitrary
state σ′ = 〈ρ′, µ′〉 ∈ ins(γτ(A)), and we show that σ′ ∈ γτ′ (Π(A)), i.e., (Definition 6.18)
that

for each 0≤r <n ′ and every E ∈ Ar , ~E�σ′ = ~vr�σ′.

Note that, by the choice of σ′, there exists σ = 〈ρ, µ〉 ∈ γτ(A) such that σ′ = ins(σ) and
such that, for each 0≤r <n and every E ∈ Ar , ~E�σ = ~vr�σ = ρ(vr ).
ins = return void. We have L′ = L, S ′ = ∅, µ′ = µ and for every v ∈ dom(τ′), ρ′(v ) =

ρ(v ). According to Rule #15 of Definition 6.23, Π(〈A0, . . . ,An−1〉) = 〈A′0, . . . ,A′i−1〉,
where for each 0 ≤ r < i , A′r = {E ∈ Ar | noStackElements(E)}. Consider an expres-
sion E ∈ A′r ⊆ Ar for an arbitrary 0≤r < i . By hypothesis,

~E�〈ρ, µ〉 = ρ(vr ) = ρ′(vr ).

Moreover, noStackElements(E) entails variables(E) ⊆ dom(τ′), and therefore for every
v ∈ variables(E), ρ′(v ) = ρ(v ). Therefore, by Corollary 6.15, we have:

~E�〈ρ′, µ′〉 = ~E�〈ρ′, µ〉 = ~E�〈ρ, µ〉 = ρ′(vr ).

ins = return t. We have L′ = L, S ′ = {s0}, µ′ = µ and for every v ∈ dom(τ′)r {s0},
ρ′(v ) = ρ(v ), while ρ′(s0) = ρ(sj−1). According to Rule #16 of Definition 6.23,
Π(〈A0, . . . ,An−1〉) = 〈A′0, . . . ,A′i 〉, where A′r = {E ∈ Ar | noStackElements(E)} for
r , i and A′r = {E ∈ An−1 | noStackElements(E)} for r = i . Note that for any
E ∈ Eτ, noStackElements(E) entails variables(E)⊆dom(τ′), thus for every v ∈ variables(E),
ρ′(v ) = ρ(v ). Then, by Corollary 6.15,

~E�〈ρ′, µ〉 = ~E�〈ρ, µ〉. (6.19)

Consider an expression E ∈ A′r . We distinguish the following cases:

• If r , i then E ∈ Ar and, by hypothesis,

~E�〈ρ, µ〉 = ρ(vr ) = ρ′(vr ).

By (6.19), we have
~E�〈ρ′, µ′〉 = ~E�〈ρ′, µ〉 = ρ′(vr ).

• If r = i then E ∈ An−1 and, by hypothesis,

~E�〈ρ, µ〉 = ρ(vn−1) = ρ(sj−1) = ρ′(s0) = ρ′(vi ).

By (6.19), we have
~E�〈ρ′, µ′〉 = ~E�〈ρ′, µ〉 = ρ′(vi ).
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ins = throw κ. We have L′ = L, S ′ = {s0} and for every v ∈ L′, ρ′(v ) = ρ(v ). If ρ(sj−1) ,
null, ρ′(s0) = ρ(sj−1) and µ′ = µ. Otherwise, ρ′(s0) = ` where ` is fresh and µ′ =

µ[` 7→ npe], where npe is a new object of class NullPointerException containing
only fresh locations. It is worth noting that, under these circumstances, for every E ∈ Eτ′ ,
~E�〈ρ′, µ′〉 = ~E�〈ρ′, µ〉. According to Rule #17 of Definition 6.23, Π(〈A0, . . . ,An−1〉) =

〈A′0, . . . ,A′i 〉, where A′r = {E ∈ Ar | noStackElements(E)} for r , i and A′r = ∅ for r = i .
Consider an expression E ∈ Ar . For r , i , the proof is analogous to the proof of the
corresponding case for return t. If r = i , then A′i = ∅, and ∀E ∈ A′i .~E�〈ρ′, µ′〉 = ρ′(vi )
trivially holds. �

6.4.6 Exceptional Arcs

This subsection is dedicated to Requirements 4.6 and 4.7. The latter states that in the case
of the propagation rules of the exceptional arcs, the exceptional concrete states belonging
to the concretization of a correct approximation of the property of interest before a byte-
code instruction is executed, are correctly propagated by the corresponding rule. It means
that the propagation rules of the exceptional arcs simulating the exceptional executions
of the bytecode instructions which can throw an exception have to be sound. Let us show
that this property actually holds.

Lemma 6.43. The propagation rules Rule #18 and Rule #20 introduced by Defini-
tion 6.25 satisfy Requirement 4.6. More precisely, let us consider an exceptional arc from
a bytecode ins distinct from call and its propagation rule Π . Assume that ins has static
type information τ at its beginning and τ′ immediately after its exceptional execution.
Then, for every A ∈ Aliasτ we have:

ins(γτ(A)) ∩ Ξτ′ ⊆ γτ′ (Π(A))

(we recall that ins is the semantics of ins, see Fig. 3.6).

Proof. The proof is analogous to the proof of Lemma 6.42 when ins = throw κ. �

On the other hand, Requirement 4.7 deals with one particular case of the exceptional
arcs: when a method is invoked on a null receiver. In that case we require that the excep-
tional states launched by the method are included in the approximation of the property of
interest after the call to that method. Let us show that our propagation rules satisfy this
requirement.

Lemma 6.44. The propagation rule Rule #19 introduced by Definition 6.25 satisfies
Requirement 4.7. More precisely, consider an exceptional arc from a method invoca-
tion insC = call m1 . . .mn and its propagation rule Π , and let π be the number of
its actual arguments (this included). Then, for each 1 ≤ w ≤ q , and every σ =

〈〈l ‖ vπ−1 :: . . . :: v1 :: null : s〉, µ〉 ∈ γτ(A) (σ assigns null to the receiver of insC right
before it is executed), where A ∈ Aliasτ is an arbitrary abstract element, we have:

〈〈l ‖ `〉, µ[` 7→ npe]〉 ⊆ γτ′ (Π(A)),

where ` is a fresh location, and npe is a new instance of NullPointerException.
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Proof. Let dom(τ) = L ∪ S contain local variables L and j ≥ π operand stack el-
ements S = {s0, . . . , sj−π, . . . , sj−1}, where π is the number of parameters of method
mw (including this). Consider an arbitrary abstract element A ∈ Aliasτ and a state
σ = 〈ρ, µ〉 = 〈〈l ‖ vπ−1 :: . . . :: v1 :: null : s〉, µ〉 ∈ γτ(A). Then, by Rule 3 from Fig. 3.7,
we have that dom(τ′) = L ∪ {s0}, and the resulting state σ′ = 〈ρ′, µ′〉 is such that for
each a ∈ dom(τ′) r {s0}, ρ′(a) = ρ(a), ρ(s0) = `, where ` is a fresh location and
µ′ = µ[` 7→ npe], where npe is a new instance of NullPointerException. Hence,
σ′ = 〈〈l ‖ `〉, µ[` 7→ npe]〉. Moreover, according to Rule #19,

A′r =

{E ∈ Ar | noStackElements(E)} if r , i

∅ if r = i .

We must prove that σ′ ∈ γτ′ (Π(A)), i.e., (Definition 6.18) that

for each 0 ≤ r ≤ i and every E ∈ Ar , ~E�σ′ = ~vr�σ′.

Let Er ∈ A′r , for an arbitrary 0 ≤ r ≤ i . We distinguish the following cases:

• If r , i then E ∈ Ar and, by hypothesis,

~E�〈ρ, µ〉 = ρ(vr ) = ρ′(vr ).

Moreover, noStackElements(E) entails variables(E) ⊆ dom(τ′), and therefore for every
v ∈ variables(E), ρ′(v ) = ρ(v ). Then, by Corollary 6.15, we have:

~E�〈ρ′, µ〉 = ~E�〈ρ, µ〉 = ρ′(vr ).

The only difference between µ and µ′ is object o associated to a fresh location, which
is not reachable from any other location. Therefore, µ and µ′ behave like they were
the same memory. Hence, for every E ∈ Eτ′ ,

~E�〈ρ′, µ′〉 = ~E�〈ρ′, µ〉 = ρ′(vr ).

• If r = i then A′n = ∅, and therefore ∀E ∈ A′n .~E�〈ρ′, µ′〉 = ρ′(vn ) trivially holds.

Therefore, 〈〈l ‖ `〉, µ[` 7→ npe]〉 = σ′ ∈ γτ′ (Π(A)). �

6.4.7 Parameter Passing Arcs

This subsection is dedicated to Requirement 4.8 which states that the propagation rules of
the parameter passing arcs are sound. Namely, this rule soundly approximates the behav-
ior of the makescope function. Let us show that this property holds.

Lemma 6.45. The propagation rule Rule #21 introduced by Definition 6.27 satisfies Re-
quirement 4.8. More precisely, let us consider a parameter passing arc from a method in-
vocation insC = call m1 . . .mn to the first bytecode of a callee mw , for some w ∈ [1..k ],
and its propagation rule Π . Assume that insC has static type information τ at its begin-
ning and that τ′ is the static type information at the beginning of mw . Then, for every
A ∈ Aliasτ we have:

(makescope mw )(γτ(A)) ⊆ γτ′ (Π(A))
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exit@mw: t
insN

#22
〈A′0, . . . ,A′|τC |−π〉

#23

C

E
N

〈A0, . . . ,A|τC |−π, . . . ,A|τC |−1〉

〈R0, . . . ,R|τE |−1〉

call m1 . . .mq

Fig. 6.7. Arcs going into the node corresponding to insN .

Proof. Let dom(τ) = L ∪ S contains local variables L and j ≥ π stack elements
S = {s0, . . . , sj−π, . . . , sj−1}, where π is the number of parameters of method mi (in-
cluding this). Then, dom(τ′) = {l0, . . . , lπ−1}. We choose an arbitrary abstract element
A = 〈A0, . . . ,An−1〉 ∈ Aliasτ, an arbitrary state σ′ = 〈ρ′, µ′〉 ∈ (makescope mi )(γτ(A)),
and we show that σ′ ∈ γτ′ (Π(A)) i.e., (Definition 6.18) that

for each 0≤r <n ′ and every E ∈ Ar , ~E�σ′ = ~vr�σ′.

Note that, by the choice of σ′, there exists σ = 〈ρ, µ〉 ∈ γτ(A) such that σ′ = ins(σ) and
such that, for each 0≤r <n and every E ∈ Ar , ~E�σ = ~vr�σ = ρ(vr ).

According to Rule #21, Π(〈A0, . . . ,An−1〉) = 〈A′0, . . . ,A′π−1〉, where for each 0≤r <π,
A′r = ∅. Then, for each r , ∀E ∈ Ar = ∅′.~E�〈ρ′, µ′〉 = ρ′(vr ) trivially holds. �

6.4.8 Return and Side-Effects Arcs at Non-Exceptional Ends

In this subsection we show that our definite expression aliasing analysis satisfies Require-
ments 4.9 and 4.10. The following lemmas deal with the return values and side-effects of
the non-exceptional executions of methods. Namely, in the case of a non-void method, the
propagation rule of the return value arc enriches the resulting approximation of the definite
aliasing information immediately after the call to that method by adding all those aliasing
expressions that the returned value might correspond to. On the other hand, that method
might modify the initial memory from which the method has been executed. These mod-
ifications must be captured by the propagation rules of the side-effects arcs. The approxi-
mation of the property of interest after the call to the method is, therefore, determined as
the join (t) of the approximations obtained from the propagation rules of the return value
and the side-effects arcs, and it is sound, like Lemma 6.46 shows. Lemma 6.47 handles the
case of a void method, and therefore only the corresponding side-effects arc is considered
there.

Lemma 6.46. The propagation rules Rule #22 and Rule #23 introduced by Defini-
tions 6.32 and 6.33 satisfy Requirement 4.9. More precisely, the propagation rules for the
return value arcs and side-effects arcs are sound at a non-void method return. Namely, let
w ∈ [1..n] and consider a return value and a side-effect arc from nodes C = call m1 . . .mn

and E = exit@mw to a node Q = insq and their propagation rules Π#22 and Π#23, respec-
tively. We depict this situation in Fig. 6.7. Let τc , τq and τe be the static type information
at C, Q and E, respectively, and let d be the denotation of mw , i.e., a partial function from
a state at its beginning to the corresponding state at its end. Then, for every A ∈ Aliasτc
and R ∈ Aliasτe , we have:

d ((makescope mw )(γτc (A)) ∩ Ξτq ⊆ γτq (Π#22(A,R) t Π#23(A,R)).
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Proof. In the following we assume: dom(τh ) = Lh ∪Sh , where h can be C , E or N ;
dom(τh ) = {v0, . . . , v|τh |−1}, where vr = lr when 0 ≤ r < |Lh | and vr = sr−|Lh | when
|Lh |≤r < |τa |; π is the number of parameters of method m , |τC |−π≥|LC |, |τN |= |τC |−π+1,
LN =LC and SE = SN = {s0}.

Consider two abstract elements at C and E: A = 〈A0, . . . ,A|τC |−π, . . . ,A|τC |−1〉 ∈ AτC

and R = 〈R0, . . . ,R|τE |−1〉 ∈AτE , two concrete states corresponding to these abstract ele-
ments σC = 〈ρC , µC 〉 ∈ γτC (A) and σE = 〈ρE , µE 〉 ∈ γτE (R) and state σN = 〈ρN , µN 〉 =

d ((makescope mw )(σC ))∩ΞτN . These states have to satisfy the following conditions im-
posed by Definition 3.19:

1. for every 0≤r < |τC | − π, ρN (vr ) = ρC (vr );
2. ρN (v|τC |−π) = ρE (v|τE |−1);
3. µN = µE .

Moreover, since σC ∈ γτC (A), and σE ∈ γτE (A), by Definition 6.18, the following
condition holds:

∀0≤r < |τh |.∀E ∈ Ar .~E�σh = ρh (vr ), (6.20)

where h ∈ {C ,E }. Let us show that σN ∈ γτN (A′), where A′ = Π#22(A,R)tΠ#23(A,R),
i.e., that Equation 6.20 also holds for h = N . By Definitions 6.17 and 4.1, we have
Π#22(A,R) t Π#23(A,R) = 〈A′0, . . . ,A′|τC |−π〉, where A′r are defined as follows:

A′r =



{E ∈ Ar | safeExecution(E, insc)} if r < |τC | − π

{
X︷                                                                                                                   ︸︸                                                                                                                   ︷

E = R[E0, . . . ,Eπ−1/l0, . . . , lπ−1]|R∈R|τE |−1 ∧ safeReturn(R,mw ) ∧ safeAlias(E,A, insc)}
∪ {E = E0.m(E1, . . . ,Eπ−1) | safeAlias(E,A, insc)}︸                                                           ︷︷                                                           ︸

Y

if r = |τC | − π

where maps noParameters, safeExecution, safeAlias and safeReturn are introduced in
Definitions 6.28, 6.29, 6.30 and 6.31 respectively.

Let E ∈ Ar , for an arbitrary 0≤ r ≤ |τC | − π and let us show that ~E�σN = ρN (vr ).
We distinguish the following cases:

• if r , |τC | − π, then E ∈ Ar and safeExecution(E, insC ) hold. It entails:
1. E ∈ Ar , and therefore, by hypothesis (6.20),

~E�〈ρC , µC 〉 = ρC (vr );

2. noParameters(E) holds, and therefore variables(E)⊆{v0, . . . , v|τC |−π−1}⊆dom(τN ),
which entails

E ∈ EτN ;

3. ¬canBeAffected(E, insC ), i.e., execution of insC cannot affect evaluations of E,
and therefore

~E�〈ρN , µN 〉 = ~E�〈ρC , µC 〉.
Therefore,

~E�〈ρN , µN 〉 = ~E�〈ρC , µC 〉 = ρC (vr ).

• if r = |τC | − π, we distinguish two cases. In the first case, E ∈ X , and there-
fore it has the following form: E = R[E0, . . . ,Eπ−1/l0, . . . , lπ−1], where R ∈ R|τE |−1,
safeReturn(R,mw ) and safeAlias(E,A, insC ) hold. According to Definition 6.30, the
latter entails:
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1. for each 0≤k <π, noParameters(Ek ) holds, thus variables(Ek )⊆{v0, . . . , v|τC |−π−1}⊆
dom(τN ), which entails

Ek ∈ EτN ;

2. for each 0≤k <π, Ek ∈ A|τC |−π+k , and therefore, by hypothesis (6.20),

~Ek�〈ρC , µC 〉 = ρC (v|τC |−π+k );

3. for each 0≤k <π, ¬canBeAffected(Ek , insC ) holds, i.e., execution of insC cannot
affect evaluations of Ek , and therefore

~Ek�〈ρN , µN 〉 = ~Ek�〈ρC , µC 〉;

4.

no evaluation of E (hence of E0, . . . ,Eπ−1,R) might modify
any field that might be read by E (hence by E0, . . . ,Eπ−1,R)

or any element of an array of type t[ ] when E (hence E0, . . . ,Eπ−1,R)
might read an element of an array of type t′[ ] where t′ ∈ compatible(t).

(6.21)

In other words, any evaluation of one of these expressions does not affect the value
of any other of these expressions.

Since R ∈ R|τE |−1, by hypothesis (6.20) and by Definition 3.19,

~R�〈ρE , µE 〉 = ρE (v|τE |−1) = ρN (v|τC |−π).

Moreover, according to Definition 6.31, safeReturn(R,mw ) entails that variables(R) ⊆
{l0, . . . , lπ−1}, i.e., every variable occurring in R corresponds to a formal parameter of
mw , and for each lk ∈ variables(R), lk is not modified by mw , and therefore it has
the same value at the beginning and at the end of execution of mw . Since formal
parameter lk at E corresponds to the actual parameter v|τC |+k at C , we obtain that for
every lk ∈ variables(R),

ρE (lk ) = ρC (v|τC |+k ).

Evaluation of a variable lk occurring in R in 〈ρE , µE 〉 gives

~lk�∗〈ρE , µE 〉 = 〈ρE (lk ), µE 〉 = 〈ρE (lk ), µN 〉.

It is worth noting that the resulting memory does not change. On the other hand,
evaluation of an alias expression Ek ∈ A|τC |−π+k of v|τC |+k at C in 〈ρN , µN 〉 might
update the memory:

~Ek�∗〈ρN , µN 〉 = 〈~Ek�〈ρC , µC 〉, µ′N 〉 [since ¬canBeAffected(Ek , insC ) holds]
= 〈ρC (sp+k ), µ′N 〉 [by hypothesis (6.20)]
= 〈ρE (lk ), µ′N 〉 [since safeReturn(R,mw ) holds]

Therefore, Ek in 〈ρN , µN 〉 and lk in 〈ρE , µE 〉 have the same value, but the resulting
memory might be different. Nevertheless, (6.21) guarantees that of any E0, . . . ,Eπ−1,R
in 〈ρN , µ′N 〉 produces the same value which would be obtained if that expression were
evaluated in 〈ρN , µN 〉, since µ′N and µN might differ only on the fields and array ele-
ments that are not read by these expressions. Therefore, the results of these evaluations
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are ρE (l0), . . . , ρE (lπ−1) respectively and evaluation of E = R[E0, . . . ,Eπ−1/l0, . . . , lπ−1]
in 〈ρN , µN 〉 gives the same value as the evaluation of R in 〈ρE , µE 〉. That value is

ρE (v|τE |−1) = ρN (v|τC |−π).

In the second case, E ∈ Y , and has the following form E = E0.m(E1, . . . ,Eπ−1), where
safeAlias(E,A, insC ) holds. The latter entails:
1. for each 0≤k <π, noParameters(Ek ) holds, thus variables(Ek )⊆{v0, . . . , v|τC |−π−1}⊆

dom(τN ), which entails Ek ∈ EτN . Hence, E ∈ EτN ;
2. for each 0≤k <π, Ek ∈ A|τC |−π+k , and therefore, by hypothesis (6.20),

~Ek�〈ρC , µC 〉 = ρC (v|τC |−π+k );

3. for each 0≤k <π, ¬canBeAffected(Ek , insC ), i.e., execution of insC cannot affect
evaluations of Ek , and therefore

~Ek�〈ρN , µN 〉 = ~Ek�〈ρC , µC 〉;
4. Analogously to (6.21), any evaluation of one of these expressions does not affect

the value of any other of these expressions;
Statements 2, 3 and 4 above take us to the following conclusions:

~v|τC |−π�
∗〈ρC , µC 〉 = 〈ρC (v|τC |−π), µC 〉

~E0�∗〈ρC , µC 〉 = 〈ρC (v|τC |−π), µ
0
C 〉

~E0�∗〈ρN , µN 〉 = 〈ρC (v|τC |−π), µ
0
N 〉


µC , µ0

C and µ0
N agree on

all fields and all array elements
that might be read by E0, . . . ,Eπ−1,m

. . .
~v|τC |−1�∗〈ρC , µC 〉 = 〈ρC (v|τC |−1), µC 〉
~Eπ−1�∗〈ρC , µπ−2

C 〉 = 〈ρC (v|τC |−1), µπ−1
C 〉

~Eπ−1�∗〈ρN , µπ−2
N 〉 = 〈ρC (v|τC |−1), µπ−1

N 〉


µC , µπ−1

C and µπ−1
N agree on

all fields and all array elements
that might be read by E0, . . . ,Eπ−1,m

These facts imply that the evaluations of v|τC |−π.m(v|τC |−π+1, . . . , v|τC |−1) in 〈ρC , µC 〉
and of E = E0.m(E1, . . . ,Eπ−1) in 〈ρN , µN 〉 give the same value: namely, we ex-
ecute method m of the object µC (ρC (v|τC |−π)) = µπ−1

N (ρC (v|τC |−π)) with parame-
ters ρC (v|τC |−π+1), . . . , ρC (v|τC |−1) on memories µC and µπ−1

N which agree on all the
fields and all the array elements that might be read by m . Therefore, they will re-
turn the same value, and that value is, by Definition 3.19, memorized in ρE (v|τE |−1) =

ρN (v|τC |−π). Hence,

~E�〈ρN , µN 〉 = ~E�〈ρC , µC 〉 = ρN (v|τC |−π).

�

Lemma 6.47. The propagation rule Rule #23 introduced by Definition 6.33 satisfies Re-
quirement 4.10. More precisely, the propagation rule for the side-effects arcs is sound at
a void method return. Namely, let w ∈ [1..n] and consider a side-effect arc from nodes
C = call m1 . . .mn and E = exit@mw to a node Q = insq and its propagation rule Π#23. We
depict this situation in Fig. 6.7, where the return value arc with the propagation rule #22
is omitted. Let τc , τq and τe be the static type information at C, Q and E, respectively,
and let d be the denotation of mw , i.e., a partial function from a state at its beginning to
the corresponding state at its end. Then, for every A ∈ Aliasτc and R ∈ Aliasτe , we have:

d ((makescope mw )(γτc (A)) ∩ Ξτq ⊆ γτq (Π#23(A,R)).

The proof of this lemma is analogous to the case r , |τC |−π of the proof of Lemma 6.46.
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call m1 . . .mq

exit@mw : t
catch#23

#19C

E
N

〈A′0, . . . ,A′|τN |−1〉

〈A0, . . . ,A|τC |−1〉

〈R0, . . . ,R|τE |−1〉

Fig. 6.8. Arcs going into the node corresponding to catch.

6.4.9 Side-Effects and Exceptional Arcs at Exceptional Ends

In this section we show that our definite expression aliasing analysis satisfies also Require-
ment 4.11. The following lemma deals with the exceptional executions of the methods.
Namely, the approximation of the definite aliasing information at the catch which cap-
tures the exceptional states of the method we are interested in, has to be affected by all
possible modifications of the initial memory due to the side-effects of the method. This
is the task of the propagation rules of the side-effects arcs. On the other hand, the final
approximation of the definite expression aliasing property at the point of interest (catch)
has to be affected by the exceptions launched by the method when it is invoked on a null
object too. Like in the previous case, the approximation of the definite expression aliasing
information is determined as the join (t) of the two approximations mentioned above,
and Lemma 6.48 shows that it is correct.

Lemma 6.48. The propagation rules Rule #19 and Rule #23 introduced by Defini-
tions 6.25 and 6.33 satisfy Requirement 4.11. More precisely, the propagation rules for
the exceptional arcs of the call and side-effects arcs are sound when a method throws an
exception. Namely, given nodes Q = catch , C = call m1 . . .mn and E = exception@mw ,
for a suitable w ∈ [1..n], consider an exceptional arc from C to Q and a side-effect arc
from C and E to Q, with their propagation rules Π#19 and Π#23, respectively. We depict
this situation in Fig. 6.8. Let τc , τq and τe be the static type information at C, Q and
E, respectively, and let d be the denotation of mw , i.e., a partial function from a state
at its beginning to the corresponding state at its end. Then, for every A ∈ Aliasτc and
R ∈ Aliasτe , we have:

d ((makescope mw )(γτc (A)) ∩ Ξτq ⊆ γτq (Π#19(A) t Π#23(A,R)).

Proof. In the following we assume: dom(τh ) = Lh ∪Sh , where h can be C , E or N ;
dom(τh ) = {v0, . . . , v|τh |−1}, where vr = lr when 0 ≤ r < |Lh | and vr = sr−|Lh | when
|Lh |≤r < |τa |; π is the number of parameters of method m , |τC |−π≥|LC |, |τN |= |τC |−π+1,
LN =LC and SE = SN = {s0}.

Consider two abstract elements at C and E: A = 〈A0, . . . ,A|τC |−π, . . . ,A|τC |−1〉 ∈ AτC

and R = 〈R0, . . . ,R|τE |−1〉 ∈ AτE , two concrete states corresponding to these abstract
elements σC = 〈ρC , µC 〉 ∈ γτC (A) and σE = 〈ρE , µE 〉 ∈ γτE (R) and a state σN =

〈ρN , µN 〉 = d ((makescope mw )(σC )) ∩ ΞτN . These states have to satisfy the following
conditions imposed by Definition 3.19:

1. for every 0≤r < |τC | − π, ρN (vr ) = ρC (vr );
2. ρN (v|τC |−π) = ρE (v|τE |−1);
3. µN = µE .

Moreover, since σC ∈ γτC (A), and σE ∈ γτE (A), by Definition 6.18, the following
condition holds:
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∀0≤r < |τh |.∀E ∈ Ar .~E�σh = ρh (vr ), (6.22)

where h ∈ {C ,E }. Let us show that σN ∈ γτN (A′), where A′ = Π#19(A) t Π#23(A,R),
i.e., that Equation 6.22 also holds for h = N . By Definitions 6.17 and 4.1, we have
Π#19(A) t Π#23(A,R) = 〈A′0, . . . ,A′|τN |−π〉, where A′r are defined as follows:

A′r =

{E ∈ Ar | noStackElements(E) ∧ ¬canBeAffected(E, insC )} if r < |τC | − π
∅ if r = |τC | − π

where noStackElements(E) is true if and only if variables(E) ∩ SC = ∅, i.e., if E contains
no stack elements.

Let E∈Ar , for an arbitrary 0≤r ≤|τC | − π and let us show that ~E�σN = ρN (vr ). We
distinguish the following cases:

• if r < |τC | − π, then E satisfies the following conditions:
1. noStackElements(E) holds, and therefore variables(E) ⊆ LC = LN ⊆ dom(τN ),

which entails E ∈ EτN ;
2. E ∈ Ar , and therefore, by hypothesis (6.22),

~E�〈ρC , µC 〉 = ρC (vr );

3. ¬canBeAffected(E, insC ), i.e., execution of insC cannot affect evaluations of E,
and therefore

~E�〈ρN , µN 〉 = ~E�〈ρC , µC 〉.
Therefore,

~E�〈ρN , µN 〉 = ~E�〈ρC , µC 〉 = ρC (vr ).

• if r = |τC | − π, then A′r = ∅ and therefore ∀E ∈ A′N .~E�〈ρ′, µ′〉 = ρ′(vr ) trivially
holds.

�

6.4.10 Conclusion

In this section we have shown that all the requirements provided in Chapter 4 are satisfied
by the abstract domain Alias introduced in Section 6.3.1 and by the propagation rules
introduced in Section 6.3.2. This fact allows us to assert the following two results.

Theorem 6.49. There exists the least solution to the aliasing analysis introduced in this
chapter.

Proof. This proof directly follows from the results obtained in Section 4.5, where instead
of a generic abstract domain

Aτk = 〈Aτk ,v,t,u,>τk ,⊥τk 〉,
for a type environment τk corresponding to a node k , we use the abstract domain Aliasτk
defined in this chapter. Theorem 4.11 shows that when Requirements 4.1 and 4.3 are
satisfied, then there exists the least solution to the system of constraints constructed in
Section 4.5, representing the actual static analysis of interest. Lemmas 6.37 and 6.40
show that Requirements 4.1 and 4.3 are satisfied by the instantiation of the framework
concerning the definite expression aliasing analysis, hence hypotheses of Theorem 4.11
are satisfied and we can use its results. �
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Node n Solution of aliasing approximation
a 〈∅,∅, {v1.getFirst(), v3}, {v1.getFirst(), v2}, {15}〉
1 〈∅,∅〉
2 〈{v2},∅, {v0}〉
3 〈∅,∅, {v0.min}〉
4 〈∅, {v3}, {v0.min}{v1}〉
5 〈∅,∅, {v0.min + v1}〉
6 〈∅,∅, {v0.min + v1}, {60}〉
7 〈∅,∅, {(v0.min + v1)%60}〉
8 〈∅,∅, {(v0.min + v1)%60}〉
9

〈∅,∅,∅〉10
11
c 〈∅,∅, {v1.getFirst()},∅〉
b 〈∅,∅, {v1.getFirst()},

{
(v1.getFirst().min+15)%60, (v2.min+15)%60,

v1.getFirst().delayMinBy(15), v2.delayMinBy(15)

}
〉

Fig. 6.9. The solution of the constraint system from Fig. 6.6

Example 6.50. In Figure 6.9 we give the least solution to the system of constraints intro-
duced in Example 6.36 (Fig. 6.6) and concerning the ACG from Fig. 6.5. ut

Finally, we can state that our definite expression aliasing analysis is sound, i.e., at each
program point the set of aliasing expressions obtained by our analysis for each variable
represents an approximation of the actual aliasing expression information available at that
point for that variable.

Theorem 6.51. Let 〈bfirst(main) ‖ ξ〉 ⇒∗ 〈 ins
rest
→
→

b1
· · ·
bm
‖ σ〉 :: a be the execution of our op-

erational semantics, from the block bfirst(main) starting with the first bytecode instruction
of method main, ins0, and an initial state ξ ∈ Στ0 (containing no aliasing information),
to a bytecode instruction ins and assume that this execution leads to a state σ ∈ Στ,
where τ0 and τ are the static type information at ins0 and ins, respectively. Moreover, let
A0 = >τ0 ∈ Aliasτ0 , and let A ∈ Aliasτ be the aliasing approximation at ins, as computed
by our definite expression aliasing analysis starting from A0. Then, σ ∈ γτ(A) holds.

Proof. This proof directly follows from Theorem 4.14 and the fact that the requirements
provided in Chapter 4 are satisfied, which has been shown in this section (Lemmas 6.37-
6.48). �

Therefore, the definte expression aliasing analysis instantiated in the parameterized
general framework for constraint-based static analyses of Java bytecode programs is
sound and has the least solution.

6.5 Implementation and Experimental Evaluation

We have implemented our definite expression aliasing analysis inside the Julia analyzer
for Java bytecode (http://www.juliasoft.com) and we have analyzed some real-life

http://www.juliasoft.com
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benchmark programs. These benchmarks are reported in Figure 6.10. Some benchmarks
are Android applications, that we analyze after being exported in Java bytecode format
from the Eclipse IDE used for development. Hence we do not currently analyze their
Dalvik bytecode. The benchmarks are analyzed together with most of the libraries that
they use. In particular, in table 6.10 we report the libraries included in the analysis of
each benchmark. Of course, the standard Java library (java.*) and the Android library
(android.*, for Android benchmarks only) are always included and we do not report
it in the figure. The fact that a library is included does not mean that all its code is an-
alyzed: only the portion that is actually used by the benchmark is analyzed, and this is
extracted through a traditional class analysis for object-oriented code [67]. The Android
benchmarks are Mileage, OpenSudoku, Solitaire and TiltMazes1; ChimeTimer, Dazzle,
OnWatch and Tricorder2; TxWthr3; VoiceRecognition, CubeLiveWallpaper, Accelerome-
terPlayActivity, SkeletonApp, AbdTest, Snake, BackupRestore, SoftKeyboard, MultiRes-
olution, LunarLander, TestAppv2, TicTacToe, Spinner, TippyTipper, JetBoy, SampleSyn-
cAdapter, NotePad, HoneycombGallery, Real3D, GestureBuilder, BluetoothChat, Search-
ableDictionary, ContactManager, Home and Wiktionary, that are all sample programs
from the Android 3.1 distribution by Google4. The Java programs are JFlex, a lexical ana-
lyzers generator5; Plume, a library by Michael D. Ernst6; Nti, a non-termination analyzer
by Étienne Payet7; Lisimplex, a numerical simplex implementation by Ricardo Gobbo8;
avrora, an AVR simulation and analysis framework9; luindex, an indexer of documents,
h2, a database benchmark, and sunflow, a ray tracer, from the DaCapo benchmark suite10;
hadoop-common, a software for distributed computing11; and our julia analyzer itself12.

Experiments have been performed on a Linux quad-core Intel Xeon machine running
at 3.10GHz, with 12 gigabytes of RAM.

6.5.1 Results w.r.t. the expression aliasing analysis

By only considering the analysis introduced in this article, Fig. 6.10 shows that it is quite
fast and scales to large software with a cost in time that has never exploded in our ex-
periments. All analyses could be completed with less than one gigabyte of RAM. In the
same figure, the last column on the right reports the average size of the set of expression
aliases for each variable. We do not consider the tautological and trivial alias of a variable
with itself. That column shows that that size is small, which possibly accounts for the lack
of computational explosion during the analysis. This is important, since a formal study of
the worst-case complexity of our analysis leads to an exponential cost, in theory, as shown
below.

1 http://f-droid.org/repository/browse/
2 http://moonblink.googlecode.com/svn/trunk/
3 http://typoweather.googlecode.com/svn/trunk/
4 http://developer.android.com/tools/samples/index.html
5 http://jflex.de
6 http://code.google.com/p/plume-lib
7 http://personnel.univ-reunion.fr/epayet/Research/NTI/NTI.html
8 http://sourceforge.net/projects/lisimplex
9 http://compilers.cs.ucla.edu/avrora/

10 http://www.dacapobench.org
11 http://hadoop.apache.org
12 http://www.juliasoft.com

http://f-droid.org/repository/browse/
http://moonblink.googlecode.com/svn/trunk/
http://typoweather.googlecode.com/svn/trunk/
http://developer.android.com/tools/samples/index.html
http://jflex.de
http://code.google.com/p/plume-lib
http://personnel.univ-reunion.fr/epayet/Research/NTI/NTI.html
http://sourceforge.net/projects/lisimplex
http://compilers.cs.ucla.edu/avrora/
http://www.dacapobench.org
http://hadoop.apache.org
http://www.juliasoft.com
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id name libraries lines methods runtime size
1 nti 13915 1653 0.51 0.17
2 lisimplex 25564 2729 1.28 0.15
3 avrora 38165 5006 3.29 0.12
4 JFlex 41365 4286 1.96 0.28
5 plume 44028 4646 2.63 0.12
6 VoiceRecognition 44974 5094 2.40 0.03
7 CubeLiveWallpaper 45891 5197 2.22 0.27
8 AccelerometerPlayActivity 47913 5394 2.34 0.19
9 SkeletonApp 57399 6371 3.49 0.32
10 AbdTest 58020 6402 6.14 0.14
11 Snake 58606 6473 3.11 0.26
12 BackupRestore 58706 6471 3.23 0.24
13 SoftKeyboard 58819 6535 4.31 0.35
14 MultiResolution 58917 6542 3.03 0.86
15 LunarLander 59122 6519 3.15 0.2
16 TestAppv2 59889 6587 3.14 0.35
17 TicTacToe 59943 6657 3.13 0.37
18 Spinner 61912 6759 3.32 0.42
19 luindex lucene-core, lucene-demos 62050 6409 3.18 0.18
20 Solitaire 63507 6988 3.46 0.32
21 TippyTipper 65310 7322 3.36 0.89
22 JetBoy 65874 7189 3.73 0.22
23 SampleSyncAdapter 66646 7348 3.47 0.08
24 NotePad 67066 7372 3.56 0.28
25 sunflow janino 72061 9130 6.18 0.18
26 HoneycombGallery 72352 7879 5.31 0.32
27 Real3D 75001 8179 4.37 0.15
28 TxWthr 75434 8232 43.45 0.35
29 Dazzle hermitandroid 78344 8681 40.34 0.28
30 GestureBuilder 85213 9093 5.06 0.51
31 BluetoothChat 85290 9119 5.07 0.45
32 SearchableDictionary 88034 9392 5.24 0.24
33 ContactManager 88110 9465 5.35 0.48
34 Home 88256 9489 5.22 0.3
35 TiltMazes 90419 9641 5.35 0.39
36 ChimeTimer hermitandroid 90465 9743 6.09 0.26
37 Mileage 104647 11188 6.07 0.16
38 Tricorder hermitandroid 105475 11140 6.57 0.34
39 julia bcel 106117 12495 15.42 0.29
40 Wiktionary 109140 11762 7.54 0.27
41 OnWatch hermitandroid 114391 11928 7.01 0.26

42 hadoop-common
org.w3c.*, javax.security.*

118706 14812 5.91 0.21
guava, protobuf-java, jets3t

43 OpenSudoku 120164 13002 6.59 0.22
44 h2 junit3, derbyTesting, tpcc 183398 17276 14.99 0.17

1Fig. 6.10. The benchmarks that we have analyzed and the cost and precision of their expression
aliasing analysis. For each benchmark we report the name, the number of non-comment non-blank
source code lines that get analyzed, the number of methods that get analyzed, the time (in seconds)
required for our expression aliasing analysis and the average size of the approximation of each
variable (number of alias expressions per variables). The latter does not include the tautological
aliasing of a variable with itself, which is trivial and irrelevant.
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6.5.2 Theoretical Computational Complexity

A worst-case complexity for our definite aliasing analysis can be estimated as follows. The
number N of alias expressions (Definition 6.1) over a maximal number v of variables in
scope, the number n of constants (those used in the program text), the number f of field
names and the number m of method names are finite as soon as we fix a maximal height
k for the alias expressions themselves. More precisely, N is polynomial in v , n , f and
m and exponential in k . Note that we consider here the maximal number v of variables
in scope at each given program point, which is usually small, and not the total number
of program variables, that can be very large instead. The approximation of each program
variable is a set of alias expressions; hence there are 2N alternatives for each variables.
There are at most v such sets at each program point, one for each variable in scope there.
Hence, the possible approximations at a given program point are v · 2N . If l is the length
of the program, that is, the number of its program points, we end up with a set of possible
approximations bounded from above by l ·v ·2N . That is, our expression aliasing analysis
might require up to l · v · 2N iterations until stabilization and its computational cost is,
hence, exponential in v , n , f and m and double exponential in k . In our implementation,
we have fixed k = 4.

It is interesting to observe that this exponential blow-up does not arise in practice. First
of all, many alias expressions cannot be generated because they would not type-check.
Moreover, on average, each variable is approximated by very small alias sets (Fig. 6.10):
in most cases, those sets are empty or singletons. For this reason, the theoretically bad
computational result that we have just shown is not reflected in the actual cost of the
analysis.

6.5.3 Implementation Optimizations

An abstract Java class Alias is used to represent the alias expressions of Definition 6.1.
Constants and variables are concrete and non-recursive subclasses of Alias. Other alias
expressions are concrete and recursive subclasses of Alias; for instance, the alias expres-
sion E.f is represented by a subclass FieldOf of Alias that refers to the field f and to
another alias expression, that is E. The reduction of the memory footprint of this repre-
sentation for alias expressions is possible and important, since identical or at least similar
alias expressions are often used at different program points. Namely, our representation
of alias expressions is interned, that is, we never generate two Java objects that stand for
the same alias expression. This allows a maximal sharing of data structures and reduces
the memory cost of our representation. We achieve this internment through a map that
binds each alias expression e to the unique representative of all alias expressions equal to
e . Since Julia is a parallel analyzer, race conditions must be avoided in the access to that
map. To that purpose, we use a java.util.concurrent.ConcurrentHashMap and its
handy putIfAbsent() method for checking the presence and putting new alias expres-
sions in the table, atomically. Beyond the reduction of the memory cost, internment has
the advantage that equality of alias expressions can be tested by faster == tests rather than
equals() calls.

Sets of alias expressions are hence sets of unique objects. There are many such sets
during the analysis, for each variable in scope at each given program point. Also in this
case, a compact representation is needed. We have achieved this by using bitsets, rep-
resented through arrays of longs (each long contains 64 bits). A fixed enumeration of
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the alias expressions relates a given bit position to the expression that it represents. The
enumeration is built on demand as soon as new alias expressions are created by the anal-
ysis. For each bit set to 1, the alias expression in that enumeration position is assumed to
belong to the bitset.

6.5.4 Benefits for other analyses

Section 6.5.1 has shown that the aliasing expression analysis can be computed in a few
seconds also for large applications. It remains to show that its results are useful for other,
subsequent analyses, that exploit the availability of definite aliasing information. To that
purpose, we have used our analysis to support Julia’s nullness and termination analyses.
In particular, we use our analysis at the then branch of each comparison if (v!=null)
to infer that the definite aliases of v are non-null there, and at each assignment w.f=exp
to infer that expressions E.f are non-null when exp is non-null and when E is a definite
alias of w whose evaluation does not read nor write f. Moreover, we use it to infer sym-
bolic upper or lower bounds of variables whenever we have a comparison such as x<y: all
definite alias expressions of y (respectively x) are upper (respectively lower) bounds for
x (respectively y). This is important for the termination analysis of Julia.

Note that our nullness and termination analyses are sound, that is, there are no false
negatives (as long as reflection is not used or only used in a limited way: for instance,
inflation of XML views in Android is supported in Julia [70]); but there are false positives
of course. We have identified actual bugs in the benchmarks, among the places where Julia
signals a possible warning. However, we cannot check by hand hundreds of warnings, on
third-party code. Nevertheless, the nullness analysis of Julia is currently the most precise
available on the market [85] and scales to very large software, as our experiments here
show. The termination analysis of Julia scales almost in the same way, as shown below,
and we have never seen any other report of a termination analysis that scales to that
size of programs. Nevertheless, this article is not about nullness nor termination nor their
precision. We use those analyses only to support the thesis that definite aliasing analysis
is useful to support other analyses.

Figure 6.11 reports the times for nullness and termination analysis. These are total
times, that is, they include everything: from the parsing of the .jar files, to ours and other
supporting analyses, to the presentation of the warnings to the user. In that figure, we have
copied the times for the expression aliasing analysis alone, to highlight the fact that they
are only a small fraction of the total times for nullness and termination analysis. When the
expression aliasing analysis is turned off, times are in general smaller, also because there
is fewer information to exploit for nullness and termination proofs. For instance, when
that information is missing, it is sometimes the case that a symbolic upper bound for a
loop variable is missed, which results in the immediate failure of the termination proof
but in coarser results. The termination proof for h2 went into out of memory, so we do not
report times for it in the figure.

Figures 6.12 and 6.13 report the precision of the same nullness and termination analy-
ses. They show how fewer warnings are issued by Julia after those analyses, if our aliasing
expression analysis is turned on. Figure 6.12 shows that the number of warnings for null-
ness analysis is in general halved; sometimes, there are no more warnings, thanks to the
support of the expression aliasing analysis (as for benchmarks 6, 14 and 17); only in
three cases there are no benefits (benchmarks 9, 11 and 16). The situation is similar for
termination analysis 6.13, but the gain in precision is less evident here.
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id
exp nullness termination

aliasing with without with without
1 0.51 12.64 11.73 19.66 13.96
2 1.28 27.81 24.81 17.13 15.37
3 3.29 78.50 62.93 115.21 93.90
4 1.96 54.83 48.75 79.61 63.34
5 2.63 74.98 78.15 86.21 73.63
6 2.40 50.88 45.61 27.60 24.92
7 2.22 51.21 47.25 29.76 26.86
8 2.34 57.95 54.69 31.61 31.82
9 3.49 73.89 68.12 47.01 40.88
10 6.14 138.66 119.75 52.81 76.14
11 3.11 87.92 86.48 51.80 42.70
12 3.23 77.11 72.82 49.51 45.76
13 4.31 71.08 66.16 42.05 37.72
14 3.03 78.25 71.93 47.67 43.65
15 3.15 94.59 83.16 51.00 47.77
16 3.14 75.35 70.58 49.91 45.71
17 3.13 80.64 72.09 50.52 46.76
18 3.32 91.22 85.76 49.58 48.84
19 3.18 125.16 112.97 354.19 248.65
20 3.46 107.98 100.43 96.55 89.63
21 3.36 96.42 91.39 54.63 53.76
22 3.73 99.40 92.58 56.91 51.60
23 3.47 98.28 92.58 62.96 55.58
24 3.56 98.20 92.88 56.94 51.24
25 6.18 296.79 269.18 816.06 904.79
26 5.31 109.28 105.20 61.11 59.40
27 4.37 121.69 113.95 72.17 61.36
28 43.45 166.83 109.68 95.87 65.18
29 40.34 188.86 130.80 105.50 69.22
30 5.06 155.79 138.68 80.66 76.33
31 5.07 183.82 161.70 82.77 74.16
32 5.24 167.97 146.02 85.87 76.55
33 5.35 182.31 178.20 86.33 78.64
34 5.22 191.19 170.41 87.26 75.08
35 5.35 167.06 163.04 88.13 79.55
36 6.09 188.15 173.07 88.42 84.29
37 6.07 254.84 257.70 136.21 121.86
38 6.57 247.31 233.59 132.87 114.89
39 15.42 617.00 600.70 1090.51 1630.15
40 7.54 258.14 242.33 126.09 104.66
41 7.01 307.38 277.47 151.55 136.46
42 5.91 623.97 638.86 638.47 561.45
43 6.59 341.38 322.75 164.98 148.97
44 14.99 1017.42 1007.89 N.A. N.A.

1Fig. 6.11. Total time (in seconds) for the nullness and termination analysis of our benchmarks, each
computed in two versions: with our expression aliasing analysis and without our expression aliasing
analysis. We also report the cost of just the expression aliasing analysis, for comparison. The cost of
nullness and termination include everything: from the parsing of the jar files to the presentation of
the warnings to the user. Hence they also include the times of the expression aliasing analysis. The
termination analysis of benchmark 44 (h2) could not be completed because of an out of memory
during the termination proof (while our expression aliasing analysis could be completed in 14.99
seconds and less than one gigabyte of RAM).
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Fig. 6.12. The gain in precision due to our expression aliasing analysis, for the nullness analyses.
For each benchmark, it shows how much is gained by the use of the expression aliasing information.
For instance, the number of warnings for benchmark 1 (nti), using the aliasing information, is only
61% of the number of warnings for the same benchmark when no aliasing information is used.
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Fig. 6.13. The gain in precision due to our expression aliasing analysis, for the termination analyses.
For each benchmark, it shows how much is gained by the use of the expression aliasing information.
For instance, the number of warnings for benchmark 4 (JFlex), using the aliasing information, is
only 82% of the number of warnings for the same benchmark when no aliasing information is used.
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Related Work

The present thesis introduces a parameterized formal framework for static analyses of
Java bytecode programs. The framework allows one to statically capture memory-related
properties that the program under analysis has at run-time. Static analyses formalized in-
side the framework are constraint-based abstract interpretations of a concrete operational
semantics of the target Java bytecode-like language formally defined in this thesis. In
order to formalize a novel static analysis inside of this framework, the designer has to
instantiate the parameters of the framework which are:

1. an abstract domain representing a property of interest and
2. a set of propagation rules representing a simulation of each normal and exceptional

execution of each bytecode instruction of the target language.

When these parameters are instantiated, the framework automatically extracts from a pro-
gram text a large system of constraints, representing the actual definition of the novel
static analysis and introduces a set of requirements that the instantiation of the parameters
has to satisfy. When this is the case, the thesis formally proves that the novel static analy-
sis is sound and that there exists the least solution of the extracted system of constraints.
Therefore, the designer does not have to prove the soundness of the overall static analysis,
but only that the provided instantiation satisfies framework’s requirements. This process
is depicted in Fig. 1.3.

This thesis introduces the theoretical bases of the framework mentioned above, but
also introduces its implementation inside of the Julia static analyzer. Chapters 5 and 6
introduce two practical instantiations of framework’s parameters which give rise to two
novel static analyses of heap-related properties of Java bytecode programs, which have
also been implemented by Julia. Julia implements the framework like an abstract Java
class dealing with graph construction, system of constraints extraction and its solution.
On the other hand, data concerning the actual property of interest and propagation rules
are left undefined, and they depend on different extensions of the abstract Java class which
representing novel static analyses. Although the framework has been implemented inside
Julia, its implementation is not one of the contributions of this thesis. On the other hand,
implementations of the static analyses mentioned above are actual contributions of the
thesis and their experimental evaluation is shown in the corresponding chapters.

The idea of abstract interpretation-based static analysis is not new, and since the paper
introducing that technique [32] a lot of static analyses for both numerical and heap-related
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properties as well as a lot of static analysis tools based on abstract interpretation have
been presented. The goal of this thesis is not to provide another abstract interpretation-
based static analysis, but to introduce a general technique for automatic definition of new
heap-related static analysis of Java bytecode programs. The structure of the presented
framework allows to deal with side-effects of non pure methods as well as with excep-
tional program executions. Moreover, one of the main contributions of this thesis is the
soundness of the static analyses defined inside the framework, and this is a very important
result.

Constraint-based approaches have been widely used for different types of program
analyses. For instance, Gulwani et al. [44] introduce a constraint-based approach for dis-
covering invariants involving linear inequalities, and generate weakest preconditions and
strongest postconditons over the abstraction of linear arithmetic. Their constraints are
Boolean combinations of quadratic inequalities over integer variables, and therefore their
approach (although constraint-based) and goals are completely different from the ones of
this thesis. Some other constraint-based techniques, successfully applied to the problem
of discovering linear arithmetic invariants or inductive loop invariants for the verification
of assertions, are for example [25, 29, 81].

Another very frequent application of constraints is for the problem of type infer-
ence [15,19,67,89]. Usually, these techniques assume programs completely untyped, and
then extract the constraints from the program text, represent them in the form of a directed
graph, which is then solved by different algorithms similar to transitive closure. The ab-
stract constraint graphs introduced in this thesis are similar to the trace graphs introduced
by Palsberg and Schwartzbach in [67]. Recently, Pearce introduced a novel constraint-
based formulation of flow typing, which is capable of extracting recursive types from
constraints [71].

Nielson et al. [58, Chapter 3] presents a technique for constraint-based analysis of
a simple functional language. Namely, the authors define a control flow analysis by de-
veloping a syntax directed specification of the problem followed by its constraint-based
formulation and finally they show how these constraints can be solved. An overview of
constraint-based program analyses is provided by Aiken in [14]. He underlines that this
kind of analyses can be divided in two phases: constraint generation and constraint reso-
lution. The former extracts from the program text a set of constraints related to the rele-
vant information, while the latter solves these constraints. The author introduces set con-
straints, a widely used type of constraints, and shows how some classical problems such
as standard dataflow equations, simple type inference and monomorphic closure analysis
can be represented as particular instances of set constraint problems. Nevertheless, he does
not consider any particular programming language. Moreover, the main goal of [14] is to
propose different ways of solving the constraints. This thesis follows a similar direction,
since the process of designing novel static analyses is divided in two phases: construction
of the abstract constraint graph a nd its solution. On the other hand, this thesis provides a
general parameterized formal framework for interprocedural static analyses of Java byte-
code, and its analyses handle side-effects of methods as well as exceptional executions.
To the best of our knowledge, ours is the first framework of this type.

Chapter 5 introduces the possible reachability analysis of program variables. Namely,
a variable v of reference type reaches another variable w of reference type if there exists
a sequence of fields f1, . . . , fn such that v .f1. . . . .fn = w . Chapter 5 introduces a static
analysis which for each program point p of a program infers a set of ordered pairs of
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variables 〈v ,w〉 of reference type such that there exists a program execution in which
v might reach w at point p. This analysis belongs to the well-known group of pointer
analyses, that improve the overall precision of other static analyses of programs. Plenty
of works consider pointer analyses: in [46], more than 75 papers are surveyed. Different
properties of pointers can be considered, which gives rise to distinct pointer analyses:
alias, sharing, points-to, escape and shape analyses.

Possible (definitive) alias analysis discovers the pairs of variables that might (must)
point to the same memory location. This information reveals more details comparing to
the reachability analysis described in this thesis. Namely, if two variables are aliased,
they are also reachable one from the other, but the opposite is in general false. Sharing
analysis [82] determines whether two variables might ever be bound to overlapping data
structures, i.e., two variables share if they might reach the same location at run-time. In
this case, the reachability analysis gives a more detailed information about those variables.
In particular, if a variable is reachable from another one, they must also share, but the
opposite is in general false.

Points-to analysis computes the objects that a pointer variable my refer to at run-time.
Usually, points-to analysis performs a conservative approximation of the heap, which is
then used for calculating a points-to information for the whole program. Many works deal
with this analysis, either by providing a formal framework or by introducing an efficient
tool [45, 49–51, 75, 80, 83]. The jpaul tool [79] of [80] implements a pointer analysis
which constructs, at each program point, a points-to graph describing how local variables
and object fields point to objects. The authors explain how to use its results to perform
program optimization (stack-allocation of local objects) and identify pure methods (i.e.,
without side-effects). The points-to graphs are precise approximations of the run-time
heap memory and can be used to over-approximate the reachability information. They are
much more concrete than the reachability property itself.

The goal of shape analysis is to determine the shape invariants describing the pro-
gram’s data structures [24, 27, 37, 77, 78]. Shape analyses are quite concrete and hence
capture aliasing and points-to information, as well as some more accurate properties of
data structures such as cyclicity or acyclicity. These properties are often encoded as first-
order formulas and theorem proving is used to determine their validity. Shape analyses
also contain a very precise approximation of the run-time heap memory, from which
reachability can be extracted. For example, the list of instrumentation predicates intro-
duced in [78] can be enriched with

ϕrx (v )=∃s1, . . . , sk ∈Sel .∃v1, . . . , vk ∈Var .x (v1) ∧
k−1∧
i=1

si (vi , vi+1) ∧ vk = v ,

whose meaning is that a pointer variable x reaches a location bound to v along some
arbitrary fields. In order to verify whether a pointer variable x reaches a pointer variable
y , it is necessary to check the satisfiability of the formula: ∃v ∈ V .y(v ) ∧ ϕrx (v ). The
main disadvantage of these analyses is their high worst-time complexity, which may be
even exponential. One important difference among the papers mentioned above is the
way they represent abstract states (shape-graphs, logical structures, explicit reachability
predicates). Although these analyses are precise, they are consequently often expensive
and sometimes limited to some particular data structure, such as linked lists. Some papers
consider only a fragment of a real programming languages or their analyses are intra-
procedural and do not analyze real-life applications. On the other hand, the cost of the
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inter-procedural reachability analysis introduced in this thesis which is aware of side-
effects and which deal with exceptional execution is low, and can be applied to an arbitrary
data structure implemented in a real-life program, as its experimental evaluation shows
(Section 5.5). In the case of Java language, there exist some dynamic shape analyses
dealing with it, such as for instance [47, 72]. But dynamic analyses are only sound w.r.t.
the execution traces that are generated at run-time and analyzed. As a consequence, they
cannot be taken as basis for a sound static reachability analysis. There are two static shape
analyses for Java: there is an intraprocedural approach introduced in [30], as well as an
intreprocedural one [54]. Although the latter can analyze interprocedural Java programs,
the exceptional paths are not mentioned there. Experiments reported in that article show
that the analysis of a program of 3, 705 statements requires 35.11 seconds; libraries have
not been included in the analysis. The reachability analysis analyzes 112, 423 statements
in 32 seconds (Figures 5.8 and 5.10, see the case of OnWatch). Libraries are analyzed
along the application. If one considers that sharing is needed before reachability, the total
run-time of the reachability analysis amounts to 47 seconds, but the analyzed code base of
112, 423 statements is 30 times larger than their 3, 705 statements. There is no report on
the precision of the analysis in [54] w.r.t. reachability information, but the major difference
in the computational cost of the two analyses is apparent. It is true that experiments over
reachability have been performed on a multicore hardware, which is potentially faster than
the one used in [54], but sharing and reachability analyses are performed sequentially in
Julia, so that only one core is used for them.

There already exists a notion of reachability in literature, slightly different from
ours [57]. The meaning of the reachability predicate is to determine whether a mem-
ory location reaches another one, usually along one particular field of the structure of
interest. Our definition of reachable locations deals with arbitrary objects and examines
all possible fields these objects might have. Shape analysis has been also studied from the
predicate abstraction’s point of view [22,23]. For instance, [21,28,35] use the reachability
predicate during program’s abstraction.

The approach closest to the reachability analysis is introduced in [39]. The authors
consider a simple Java-like language and define a notion of reachability that coincides
with the one introduced in Chapter 5: the definition of the analysis and the propagation
rules are however completely different. This definition of reachability is actually inspired
by the representation of the memory introduced in [82]. The static analysis proposed
in [39] is based on abstract interpretation and uses the same abstract domain Reach pro-
posed in this thesis. Although these two approaches use two different target languages
(this thesis considers almost full Java bytecode with exceptions), it is still possible to
compare the static analyses these approaches introduce. Some advantages of the reacha-
bility analysis introduced in this thesis are:

• we explicitly handle methods’ side-effects without using shallow variables;
• our evaluation of expressions does not use any special variable;
• we provide a more detailed explanation of the propagation rules and formally prove

them correct;
• we deal with exceptions;
• the implementation of our analysis fully corresponds to its formalization;
• we provide an experimental evaluation of our analysis on real-life Java and Android

applications and hence show its usefulness.
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Chapter 6 introduces the definite expression aliasing analysis. Namely, for each pro-
gram point p and each variable v available at that point, this analysis infers a set of ex-
pression A such that each expression from A for every possible execution of the program
must have the same value of v when point p is reached. Alias analyses belong to the large
group of pointer analyses [46], and their task is to determine whether a memory location
can be accessed in more than one way. There exist two types of alias analyses: possible
(may) and definite (must). The former detects those pairs of variables that might point
to the same memory location. There are very few tools performing this analysis on Java
programs (e.g., WALA [12], soot [9], JAAT [66]). The latter under-approximates the actual
aliasing information and the analysis introduced in this thesis is the first of this type deal-
ing with Java bytecode programs and providing expressions aliased to variables. Similarly
to our approach, the authors of [38] deal with definite aliasing, but their must-aliasing in-
formation is used for other goals and they do not deal with aliasing expressions.

The definite expression aliasing analysis is also related to the well-known available
expression analysis [13] where, however, only variables of primitive type are considered,
hence it is much easier to deal with side-effects. Fields can be sometimes transformed into
local variables before a static analysis is performed [16], but this requires a preliminary
modification of the code, while this thesis deals with more general expressions than just
fields.

The analysis introduced in Chapter 6 can also be related to the well-known technique
of global value numbering [18, 42, 43, 48, 73, 76], which is a classic analysis for finding
must-equalities in programs, hardly used by compilers for a lot of optimizations. It deter-
mines equivalent computations inside a program and then eliminates repetitions. Check-
ing equivalence of program expressions is an undecidable problem, and the tools dealing
with this problem just try to under-approximate the actual sets of equivalent expressions
by considering equivalent operands connected by equal operations. This form of equiva-
lence, where the operators are treated as uninterpreted functions, is also called Herbrand
equivalence [55,56,76], and global value numbering helps discovering it. There exist two
main approaches in global value numbering. The first one discovers all possible Herbrand
equivalences [43, 48], while the second one discovers only those Herbrand equivalences
created from program sub-expressions [18]. We infer, for each program point p, and each
variable v available at p a set of expressions among all possible expressions available at p
whose value be equal to v , for any possible program execution. This is similar to the first
approach mentioned above. On the other hand, uur technique is applied to a real life pro-
gramming language, Java bytecode, and is an inter-procedural static analysis, while the
papers mentioned above deal with an imperative while language and are intra-procedural.
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Conclusion

Dynamic allocation of objects is heavily used in (complex and large) real-life programs.
When such objects are instantiated on demand, their number might not be statically
known. Moreover, objects in general contain references to other objects (i.e., fields in
object-oriented parlance) and those references are usually updated at run-time. The most
interesting properties of present software products are related to the objects that they dy-
namically allocate in memory, rather than to non-heap allocated, primitive values such
as integers. In this thesis we dealt with static analyses of Java bytecode programs that
are, in particular, related to memory-related properties. More precisely, we introduced a
general parameterized framework for constrainted-based static analyses of Java bytecode
programs, that allows us to formalize different static analyses dealing with both numerical
properties of program variables and memory-related properties. These analyses belong to
the group of constraint-based analyses. Moreover, the structure of the framework allows
us to define static analyses that deal with both side-effects of the methods, and with their
exceptional executions. Finally, we simplify the proofs of correctness of the static analy-
ses formalized inside the framework, by providing a general methodology of proof.

Our approach makes a clear difference between the work done by the designer of a
new static analysis and the general results that hold inside the framework. Namely, the de-
signer should provide a mathematical representation of the property of interest in terms of
an abstract domain whose elements abstract away some irrelevant pieces of information
from the concrete states, as well as the propagation rules for every possible arc appear-
ing in the ACG. Moreover, the designer should show that the requirements characterized
by the framework are satisfied. These requirements concern different properties about the
parameters instantiated by the designer: the abstract domain should satisfy the ACC con-
dition and should form a Galois connection with the concrete domain of states, while
the propagation rules should be monotonic and each rule should soundly mimic the se-
mantics of the corresponding bytecode instruction. On the other hand, the construction
of both the ACG from the program under analysis and a system of constraints from the
ACG annotated by the designer is automatically done by the framework. Moreover, when
the requirements characterized by the framework are satisfied by an instantiation of its
parameters, the results shown in this thesis guarantee that there exists the least solution of
the system of constraints and that this solution represents a sound approximation. There-
fore, the designer does not have to consider the operational semantics of the Java bytecode
language and prove that the abstract semantics of the full program under analysis actually
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mimics the operational semantics of that program, but only that each propagation rule
mimics the concrete semantics of the bytecode instruction approximated by that rule. Ob-
viously, this is not a simple task, but it is quite easier in comparison to the full proof of
soundness.

There is also another important benefit of using our framework. From an implemen-
tational point of view, we can provide an abstract (in terms of Java) class implementing
the generic engine for constraint generation and solving. Each new specific static analysis
is a concrete subclass of that abstract class, providing an implementation for a few meth-
ods, where the specific static analyses deviates from the general framework. This largely
simplifies the implementation of new static analyses. For instance, the developer need not
bother about the implementation of the constraints and the strategy for their solution and
inherits highly optimized and already debugged code.

Our framework has been used to define, formally prove sound and implement different
static analyses dealing with memory-related properties: the Possible Reachability Anal-
ysis of Program Variables and the Definite Expression Aliasing Analysis. Both analyses
represent a possible instantiation of our general parameterized constraint-based frame-
work for static analyses of Java bytecode programs.

Possible Reachability Analysis of Program Variables is an example of a possible anal-
ysis. Reachability from a program variable v to a program variable w states that starting
from v it is possible to follow a path of memory locations that leads to the object bound
to w . This useful piece of information is important for improving the precision of other
static analyses, such as side-effects, field initialization, cyclicity and path-length analysis,
as well as more complex analyses built upon them, such as nullness and termination anal-
ysis. It determines, for each program point p, a set of ordered pairs of variables 〈v ,w〉
such that v might reach w at p when the program is executed on an arbitrary input. On
the other hand, if a pair 〈v ,w〉 is not present in our over-approximation at p, it means that
v definitely does not reach w at p.

On the other hand, the Definite Expression Aliasing Analysis infers, for each variable v
at each program point p, a set of expressions whose value at p is equal to the value of v at
p, for every possible execution of the program. Namely, it determines which expressions
must be aliased to local variables and stack elements of the Java Virtual Machine. The
approximation produced by this analysis is another useful piece of information for an
inter-procedural static analyzer, since it can refine other static analyses at conditional
statements or assignments.

Both Possible Reachability Analysis of Program Variables and Definite Expression
Aliasing Analysis have been implemented in the Julia static analyzer for Java and An-
droid. A collection of real-life benchmarks has been analyzed by Julia in order to exper-
imentally evaluate these novel static analyses. The results of these evaluations show that
both analyses improve the precision of the principal Julia’s checkers, that are nullness and
termination. In the case of the reachability analysis, its presence actually reduces the total
run-time of both the nullness and termination checkers. This is because the reachability
improves their supporting analyses, in particular side-effects analysis, and prevents them
from generating too much spurious information. Moreover, the precision of both principal
tools has been improved. Similarly, in the case of the aliasing analysis, the precision of
Julia’s principal tools has been improve, in this case drastically, but the total run-times
of these tools increased a bit. Anyway, this is a good trade-off between run-times of our
tools and improved precision.
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Our novel analyses can be seen as abstractions of a more concrete, shape analysis, that
statically builds a conservative description of possible shapes that data structures might
have at run-time. The main issue with the shape analysis is that, although it is very precise,
its complexity is high. Moreover, to the best of our knowledge, there are very few static
shape analysis for Java programs, so we were not able to actually compare our novel and
more abstract static analyses with already existing and more concrete shape analysis. The
only thing we could notice is that the run-time of our reachability analysis when it is
applied to our largest benchmark is much lower than the run-time of the shape analysis of
the largest benchmark used for shape analysis.

There exist some other memory-related static analyses formalized in our framework
and implemented inside the Julia tool. We mention some of them: Possible Sharing Anal-
ysis, Field Initialization Analysis, Creation Points Analysis, Side-Effects Analysis, etc.
We are working on a formalization and implementation of many other constraint-based
static analyses, and the framework introduced in this thesis is of great help in doing that.
In particular, we are working on an information flow analysis which is being formalized
in the same framework and implemented inside Julia.

Julia is a semantical tool for static analysis of Java and Android. Currently, it can
analyze only monothreaded programs. Static analysis of multithreaded Java programs is
a big challenge that we would like to face in the future. It is clear that, in the case of
multithreaded programs, proof of soundness of their static analysis would be even more
difficult. Therefore, it would be interesting to extend our framework in such a way that it
is possible to formalize, prove correct and implement also constraint-based static analyses
of multithreaded Java bytecode programs. This goal requires further research.





References

1. Android SDK tools r12: - http://developer.android.com/tools/revisions/
platforms.html.

2. International Termination Ccompetition: http://termination-portal.org/wiki/
Termination_Competition.

3. Jflex: http://jflex.de/.
4. Julia - A Static Analyzer for Java and Android: - http://www.juliasoft.com.
5. Moonblink: http://moonblink.googlecode.com/svn/trunk/.
6. Non-termination Analyzer NTI: http://personnel.univ-reunion.fr/epayet/
Research/NTI/NTI.html.

7. Numerical Simplex Implementation: http://sourceforge.net/projects/lisimplex.
8. plume-lib: http://code.google.com/p/plume-lib/.
9. Soot: A Java Optimization Framework - http://www.sable.mcgill.ca/soot/.

10. Typoweather: http://code.google.com/p/typoweather/.
11. http://f-droid.org/repository/browse/.
12. WALA: T.J. Watson Libraries for Analysis - http://wala.sourceforge.net/.
13. A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques and Tools. Addison-

Wesley, 1986.
14. A. Aiken. Introduction to Set Constraint-Based Program Analysis. Science of Computer Pro-

gramming, 35(2):79–111, 1999.
15. A. Aiken and E. L. Wimmers. Type Inclusion Constraints and Type Inference. In Proceed-

ings of Conference on Functional Programming Languages and Computer Architecture (FPCA
1993), pages 31–41. ACM, 1993.

16. E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Ramírez. From Object Fields to Local
Variables: A Practical Approach to Field-Sensitive Analysis. In Proceedings of the 17th Static
Analysis Symposium (SAS 2010), volume 6337 of Lecture Notes in Computer Science, pages
100–116. Springer, 2010.

17. E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. Cost Analysis of Java Bytecode.
In Proceedings of the 16th European Symposium on Programming (ESOP 2007), pages 157–
172. Springer, 2007.

18. B. Alpern, M. N. Wegman, and F. K. Zadeck. Detecting Equality of Variables in Programs. In
Proceedings of the 15th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL 1988), pages 1–11. ACM, 1988.

19. C. Anderson, P. Giannini, and S. Drossopoulou. Towards Type Inference for JavaScript. In Pro-
ceedings of the 19th European Conference on Object-Oriented Programming (ECOOP 2005),
volume 3586 of Lecture Notes in Computer Science, pages 428–452. Springer, 2005.

20. K.R. Apt and G.D. Plotkin. Countable Non-determinism and Random Assignement. Journal
of the ACM., 33(4):724–767, 1986.

http://developer.android.com/tools/revisions/platforms.html
http://developer.android.com/tools/revisions/platforms.html
http://termination-portal.org/wiki/Termination_Competition
http://termination-portal.org/wiki/Termination_Competition
http://jflex.de/
http://www.juliasoft.com
http://moonblink.googlecode.com/svn/trunk/
http://personnel.univ-reunion.fr/epayet/Research/NTI/NTI.html
http://personnel.univ-reunion.fr/epayet/Research/NTI/NTI.html
http://sourceforge.net/projects/lisimplex
http://code.google.com/p/plume-lib/
http://www.sable.mcgill.ca/soot/
http://code.google.com/p/typoweather/
http://f-droid.org/repository/browse/
http://wala.sourceforge.net/


172 References

21. I. Balaban, A. Pnueli, and L. D. Zuck. Shape Analysis by Predicate Abstraction. In Proceed-
ings of the 6th International Conference on Verification, Model Checking and Abstract Inter-
pretation (VMCAI 2005), volume 3385 of Lecture Notes in Computer Science, pages 164–180.
Springer, 2005.

22. T. Ball, R. Majumdar, T. Millstein, and S. K. Rajamani. Automatic Predicate Abstraction of
C Programs. In Proceedings of the 22nd Conference on Programming Language Design and
Implementation (PLDI 2001), volume 36, pages 203–213. ACM, 2001.

23. T. Ball, T. Millstein, and S. K. Rajamani. Polymorphic Predicate Abstraction. ACM Transac-
tions on Programming Languages and Systems (TOPLAS), 27:314–343, 2005.

24. J. Berdine, C. Calcagno, B. Cook, D. Distefano, P.W. O’Hearn, T. Wies, and H. Yang. Shape
Analysis for Composite Data Structures. In Proceedings of the 19th International Conference
on Computer Aided Verification (CAV 2007), Lecture Notes in Computer Science, pages 178–
192. Springer, 2007.

25. A. R. Bradley and Z. Manna. Verification Constraint Problems with Strengthening. In Proceed-
ings of the 3th International Colloquium on Theoretical Aspects of Computing (ICTAC 2006),
volume 4281 of Lecture Notes in Computer Science, pages 35–49. Springer, 2006.

26. R. E. Bryant. Graph-Based Algorithms for Boolean Function Manipulation. IEEE Transactions
on Computers, 8(35):677–691, 1986.

27. C. Calcagno, D. Distefano, P. O’Hearn, and H. Yang. Compositional Shape Analysis by Means
of Bi-Abduction. In Proc. of the 36th Symposium on Principles of Programming Languages
(POPL 2009), pages 289–300. ACM, 2009.

28. S. Chatterjee, S.K. Lahiri, S. Qadeer, and Z. Rakamaric. A Low-Level Memory Model and an
Accompanying Reachability Predicate. International Journal on Software Tools for Technology
Transfer (STTT 2009), 11(2):105–116, 2009.

29. M. Colón, S. Sankaranarayanan, and H. Sipma. Linear Invariant Generation Using Non-linear
Constraint Solving. In Proceedings of the 15th International Conference on Computer Aided
Verification (CAV 2003), volume 2725 of Lecture Notes in Computer Science, pages 420–432.
Springer, 2003.

30. J. C. Corbett. Using Shape Analysis to Reduce Finite-State Models of Concurrent Java Pro-
grams. ACM Transactions on Software Engineering and Methodology, 9(1):51–93, 2000.

31. P. Cousot. Abstract interpretation. ACM Computing Surveys, 28(2):324–328, 1996.
32. P. Cousot and R. Cousot. Abstract Interpretation: A Unified Lattice Model for Static Anal-

ysis of Programs by Construction or Approximation of Fixpoints. In Proceedings of the 4th
Symposium on Principles of Programming Languages (POPL 1977), pages 238–252. ACM,
1977.

33. P. Cousot and R. Cousot. Constructive Versions of Tarski’s Fixed Point Theorems. Pacific
Journal of Mathematics, 82(1):43–57, 1979.

34. P. Cousot and R. Cousot. Systematic Design of Program Analysis Frameworks. In Proceedings
of the 6th Symposium on Principles of Programming Languages (POPL 1979), pages 269–282.
ACM, 1979.

35. D. Dams and K. S. Namjoshi. Shape Analysis through Predicate Abstraction and Model Check-
ing. In Proceedings of the 4th International Conference on Verification, Model Checking and
Abstract Interpretation (VMCAI 2003), pages 310–324. Springer, 2003.

36. B. A. Davey and H. A. Priestley. Introduction to Lattices and Order. Cambridge University
Press, 1990.

37. D. Distefano, P.W. O’Hearn, and H. Yang. A Local Shape Analysis Based on Separation Logic.
In Proceedings of the 2th International Conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems (TACAS 2006), volume 3920 of Lecture Notes in Computer Sci-
ence, pages 287–302. Springer, 2006.

38. S. Fink, E. Yahav, N. Dor, G. Ramalingam, and E. Geay. Effective Typestate Verification in
the Presence of Aliasing. In Proceedings of the International Symposium on Software Testing
and Analysis (ISSTA 2006), pages 133–144. ACM, 2006.



References 173

39. S. Genaim and D. Zanardini. The Acyclicity Inference of COSTA. In Proceedings of the
International Workshop on Termination (WST 2010), 2010.

40. G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. W. Mislove, and D. S. Scott. A Com-
pendium of Continuous Lattices. Springer, 1980.

41. G. A. Grätzer. General Lattice Theory. Birkhäuser Verlag, 1978.
42. S. Gulwani and G. C. Necula. Global Value Numbering Using Random Interpretation. In

Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL 2004), pages 342–352. ACM, 2004.

43. S. Gulwani and G. C. Necula. A Polynomial-Time Algorithm for Global Value Numbering.
Science of Computer Programming, 64(1):97–114, 2007.

44. S. Gulwani, S. Srivastava, and R. Venkatesan. Program Analysis as Constraint Solving. In
Proceedings of the ACM SIGPLAN 2008 Conference on Programming Language Design and
Implementation (PLDI 2008), pages 281–292. ACM, 2008.

45. B. C. Hardekopf. Pointer Analysis: Building a Foundation for Effective Program Analysis.
PhD thesis, 2009.

46. M. Hind. Pointer Analysis: Haven’t We Solved this Problem Yet? In Workshop on Program
Analysis for Software Tools and Engineering (PASTE 2001), pages 54–61. ACM, 2001.

47. M. Jump and K. S. McKinley. Dynamic Shape Analysis via Degree Metrics. In H. Kolod-
ner and G. L. Jr. Steele, editors, Proceedings of the 8th International Symposium on Memory
Management (ISMM), pages 119–128. ACM, 2009.

48. G. A. Kildall. A Unified Approach to Global Program Optimization. In Proceedings of the 1st
annual ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages (POPL
1973), pages 194–206. ACM, 1973.

49. O. Lhoták. Program Analysis Using Binary Decision Diagrams. PhD thesis, McGill University,
2006.

50. O. Lhoták and L. J. Hendren. Scaling Java Points-to Analysis Using SPARK. In Proceedings
of the 12th International Conference on Compiler Construction (CC 2003), pages 153 –169.
Springer, 2003.

51. O. Lhoták and A. C. Kwok-Chiang. Points-to Analysis with Efficient Strong Updates. In
Proceedings of the 38th Symposium on Principles of Programming Languages (POPL 2011),
pages 3–16. ACM, 2011.

52. T. Lindholm and F. Yellin. The JavaTM Virtual Machine Specification. Addison-Wesley, second
edition, 1999.

53. F. Logozzo and M. Fähndrich. On the Relative Completeness of Bytecode Analysis Versus
Source Code Analysis. In Proceedings of the 17th International Conference on Compiler Con-
struction (CC 2008), volume 4959 of Lecture Notes in Computer Science, pages 197–212.
Springer, 2008.

54. M. Marron, M. V. Hermenegildo, D. Kapur, and D. Stefanovic. Efficient Context-Sensitive
Shape Analysis with Graph Based Heap Models. In L. J. Hendren, editor, Proc. of the 17th
International Conference on Compiler Construction (CC 2008), volume 4959 of Lecture Notes
in Computer Science, pages 245–259. Springer, 2008.

55. M. Müller-Olm, O. Rüthing, and H. Seidl. Checking Herbrand Equalities and Beyond. In
Proceedings of the 6th international conference on Verification, Model Checking, and Abstract
Interpretation (VMCAI 2005), pages 79–96, Berlin, Heidelberg, 2005. Springer-Verlag.

56. M. Müller-Olm, H. Seidl, and B. Steffen. Interprocedural Herbrand Equalities. In Proceed-
ings of the 14th European Conference on Programming Languages and Systems (ESOP 2005),
pages 31–45, Berlin, Heidelberg, 2005. Springer-Verlag.

57. G. Nelson. Verifying Reachability Invariants of Linked Structures. In Proceedings of the 8th
Symposium on Principles of Programming Languages (POPL 1983), pages 38–47, 1983.

58. F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program Analysis. Springer, corrected
edition, 2004.



174 References
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