Reachability Analysis of Program Variables

Durica Nikoli¢"? and Fausto Spoto'

! Dipartimento di Informatica, University of Verona
2 Microsoft Research - University of Trento Centre for Computational and Systems Biology
{durica.nikolic, fausto.spoto}@univr.it

Abstract. A variable v reaches a variable w if there is a path from the memory
location bound to v to the one bound to w. This information is important for
improving the precision of other static analyses, such as side-eftects, field initial-
ization, cyclicity and path-length, as well as of more complex analyses built upon
them, such as nullness and termination. We present a provably correct constraint-
based reachability analysis for Java bytecode. Our constraint is a graph whose
nodes are program points and whose arcs propagate reachability information ac-
cording to the semantics of bytecodes. The analysis has been implemented in the
Julia static analyzer. Experiments that we performed on non-trivial Java and An-
droid programs show a gain in precision due to a reachability information, whose
presence also reduces the cost of nullness and termination analyses.

1 Introduction

Static analysis of computer programs allows us to statically gather information about
their run-time behavior, making it possible to prove that these programs do not perform
illegal operations (such as division by zero or dereference of null), do not give rise
to erroneous executions (such as infinite loops) or do not divulge information (such as
security authorizations or GPS position) in an incorrect way.

Dynamic allocation of objects is heavily used in real life programs. These objects
are instantiated on demand, their number is not statically known and they can reference
other objects (through fields). Such references can be updated at run-time. In this paper
we present, formalize and implement a provably correct abstraction of the run-time, dy-
namically allocated memory, that we call reachability. We say that a variable v reaches
a variable w if w holds an object reachable from v, by following (different objects’)
fields from the object held in the location bound to v. For instance, after an assignment
v.next.next = w, we can state that v reaches w. Reachability is distinct from shar-
ing i.e., being able to reach a shared object. For instance, after the statement v.next
= w.next, we can state that v and w share. If v reaches w then v and w share, but
the converse might not hold. Hence reachability is more precise, i.e., it induces a finer,
more concrete abstraction of the computational states than sharing analysis. Our anal-
ysis is constraint-based: constraints are built from the syntax of the program and their
solution is a correct approximation of reachability. A companion paper [14] includes
full definitions and proofs.

B. Gramlich, D. Miller, and U. Sattler (Eds.): IICAR 2012, LNAI 7364, pp. 423-§38] 2012.
© Springer-Verlag Berlin Heidelberg 2012

424 b. Nikoli¢ and F. Spoto

Reachability has been applied to several static analyses:

Side-Effects Analysis: Side-effects analysis tracks (among other things) which param-
eters p of a method might be affected by its execution in the sense that the method
might update a field of an object reachable from p. Namely, if the method performs
an assignment a . f=b, this affects p only if p reaches a. If we used sharing rather than
reachability information, that would lead to a loss of precision, since it might be the
case that p and a share but the assignment modifies an object unreachable from p.

Field Initialization Analysis: It is often the case that a field is initialized by all of the
constructors of its defining class before being read by these constructors. Spotting this
frequent situation is important for many analyses, including nullness [15/22]. Hence,
we want to know whether a field read operation a=expression. f inside a constructor
can actually read field f of the this object, being initialized by the constructor. This
happens only if this reaches expression. Again, sharing would be less precise here.

Cyclicity Analysis: An assignment a. f=b might make a cyclical (i.e., point to a cycli-
cal data structure), but only if b reaches a. Originally, this analysis was built upon
sharing information [[L6], but analysis of reachable variables helps here.

Path-Length Analysis: Path-length is a data structure measure used in termination
analysis [23]]. It is the maximum number of pointer dereferences that can be followed
from a program variable. An assignment a.f=b can only modify the path-length of
the program variables that share with a, according to the original definition of path-
length [23]. Reachability analysis improves this approximation, since the path-length
of a program variable v is actually modified only if v reaches a.

These analyses, among others, are implemented in our Julia tool
(http://www.juliasoft.com). They are building blocks of larger fools, such
as a nullness and a termination checker. The former spots where a program might
throw a null-pointer exception at run-time; the latter if method calls might diverge. A
tool performs its supporting analyses (the building blocks) in distinct threads, parallel
on multi-core hardware.

Our experiments show that reachability improves side-effects, field initialization and
nullness analysis of non-trivial Java and Android programs. However there is no im-
provement for cyclicity, path-length and termination analysis of the same programs, but
only of sample programs from the international termination competition. That is be-
cause termination often depends on loops over integer counters rather than on recursion
over data structures, as is the case in those samples (probably unusual and artificial).
An unexpected effect of reachability is, however, an increase in the speed of both tools.

Reachability analysis belongs to the group of pointer analyses, that support other
static analyses. Plenty of papers consider them: [9] surveys more than 75 papers. Dif-
ferent properties of pointers give rise to different kinds of pointer analyses: alias, shar-
ing, points-to and shape analyses. Possible (definitive) alias analysis discovers the pairs
of variables that might (must) point to the same memory location. If two variables are
alias, they are also reachable from each other, but the opposite might not hold. Shar-
ing analysis [21] determines whether two variables might ever reach the same object
at run-time. Reachability entails sharing, but the opposite, in general, does not hold.
Points-to analysis [20010/11117/8]] computes the objects that a pointer variable might

http://www.juliasoft.com

Reachability Analysis 425

refer to at run-time. Usually, points-to analysis performs a conservative approximation
of the heap, which is then used to compute points-to information for the whole program.
In [20], points-to graphs are precise approximations of the run-time heap memory and
can be used to over-approximate the reachability information. Points-to information is
much more concrete than our reachability information. Shape analysis determines heap
shape invariants [18I19/3\7]. These analyses are quite concrete and capture aliasing
and points-to information, as well as other properties such as cyclicity or acyclicity.
These are often encoded as first-order logic formulae and theorem provers are used to
determine their validity. Reachability can, of course, be abstracted from these very pre-
cise approximations of the memory, but we wanted here an analysis that uses the most
abstract (i.e., the simplest) domain able to express reachability between variables.

There is also another notion of reachability [13]], slightly different from ours. The
reachability predicate determines whether a memory location reaches another one, usu-
ally along one particular field of one particular data structure, while our definition of
reachable locations deals with arbitrary fields of arbitrary data structures. That pred-
icate is used in [6/1/4]] for abstraction of programs, as one particular case of predicate
abstraction [2]].

2 Operational Semantics

We present here a formal operational semantics of Java bytecode, inspired by the stan-
dard informal semantics [[12]. The same semantics is used in [22]], while [23]] uses its
denotational form. Java bytecode is the form of instructions executed by the Java Vir-
tual Machine (JVM). Our formalization is at bytecode level for several reasons: there
is a small number of bytecode instructions, compared to varieties of source statements;
bytecode lacks complexities such as inner classes; our implementation of reachability
analysis is at bytecode level, bringing formalism, implementation and proofs closer.
For simplicity, we assume that the only primitive type is int and that reference types
are classes containing instance fields and instant methods only. Our implementation
handles all Java types and bytecodes, as well as classes with static fields and methods.
We analyze bytecode preprocessed into a control flow graph, i.e., a directed graph of
ins —?

> ' denotes a block of code starting
rest —yp

m

basic blocks, with no jumps inside the blocks.

at instruction ins, possibly followed by more bytecodes rest and linked to m subsequent
blocks by, ..., b,,. Exception handlers start with a catch. A conditional, virtual method
call, or selection of an exception handler becomes a block with many subsequent blocks,
starting with a filtering bytecode such as exception_is K for exception handlers.

Example 1. Fig.2lshows the basic blocks of the constructor in Fig.[Il There is a branch
at the call to the constructor of java.lang.Object, that might throw an exception (like
every call). If this happens, the exception is first caught and then re-thrown to the caller
of the constructor. Otherwise, the execution continues with 2 blocks storing the formal
parameters (locals 1 and 2) into the fields of this (local 0) and then returns.]

Bytecodes operate on variables, which encompass both stack elements and local vari-
ables. A standard algorithm [[12] infers their static types.

426 b. Nikoli¢ and F. Spoto

load 0 ListStudent
call java.lang.Object. (init)() : void

public class ListStudent {
public Student head;

public ListStudent tail; load 0 ListStudent
) load 1 Student
public ListStudent (Student head, catch / putfield ListStudent.head: Student
ListStudent tail) { throw java.lang. Throwable I
this.head = head; load 0 ListStudent
this. tail = tail: load 2 ListStudent
} ! at atl; putfield ListStudent.tail: ListStudent|
}]
‘ return void ‘
Fig. 1. Our running example Fig. 2. Representation of the constructor from Fig. [1]
g g p

Definition 1 (Classes). The set of classes K of a program is partially ordered w.r.t. the
subclass relation <: t<t’ if't (respectively t') is a subclass (respectively superclass) of t
(respectively t). Every class has at most one direct superclass and an arbitrary number
of direct subclasses. A type is an element of T = {int} UK, ordered by the extension of
< withint < int. A class k€ K has fields «.f:t (field f of type t€ T defined in k), where
k and t are often omitted. We let F(k) = {«’.f:t | k < K’} be the fields defined in k or in
any of its superclasses. A class k has methods k.m(D): t (method m, defined in k, with
arguments of type t returning a value of type t € T U {void}), where «, t and t are often
omitted. Constructors are methods named init that return void.

Definition 2 (Type environment). Let V be the set of variables from L={l,..., l,}
(local variables) and S ={sy, . . ., s, } (stack variables). A type environment is a function
7: V—>T. Its domain is written as dom(t). The set of all type environments is T .

Definition 3 (State). A value is an element of Z U L U {null}, where L is an infinite
set of memory locations. A state over T €T is a pair (|| s),) where | is an array of
values for the local variables in dom(7), s is a stack of values for the stack variables
in dom(rt), which grows leftwards, and u is a memory, or heap, that binds locations
to objects. The empty stack is denoted by . We often use another representation for a
state: {p, u), where an environment p maps each l, € L to its value [[k] and each s, €S
to its value s[k]. An object o has class o0.x (is an instance of 0.x) and has an internal
environment o.¢ that maps every field £'.f : t € F(o0.x) into its value (0.9)(k'.f:). A
value v has type t in {p, u) if: veZ and t=int, or v=null and teK, or vel, teK and
u(v).x<t In a state {p, u) over T, we require that p(v) has type T(v) for any vedom(t)
and (0.¢)(K'.f : V) has type t for every o erng(u) (range) and every ' .f:t € F(0.x).
The set of states is 5. We write =, when we want to fix the type environment 7.

Example 2. Let T = [, — ListStudent; }, - int; ; = Student; Iy — ListStudent] € 7~ and
consider the state o-={p, u) € 2, shown in Fig.[3l The environment p maps variables /;,
b, I3 and [y to values ¢», 2, {3 and {4, respectively; the memory y maps locations ¢, and
{4 to objects 0, and o4 of class ListStudent and location €3 to object o3 of class Student.
Objects are shown as boxes with a class tag and an internal environment mapping fields
to values. For instance, fields head and tail of o4 contain €3 and ¢, respectively. |

Reachability Analysis 427

We assume that states are well-typed, i.e.,

, A—D L L] variables hold values consistent with their
! 2t 0, static types. Since the JVM supports excep-
J7 /O VA tions, we distinguish between normal states
g‘l) f)g ﬁ; X ﬁi E and exceptional states =, which arise im-
Student éistStudent Student Li§5tudent mediately after bytecode instructions throw-
\’?‘\ R \alwse‘\ I A ing an exception and have a stack of height
1 containing a location bound to the thrown

Fig.3. A JVM state o = (p, 1) exception. When we denote a state by o, we

do not specify if it is normal or exceptional.
If we want to stress that, we write ((I || sy, u) or {{ || s), u).
The semantics of an instruction ins is a partial map ins : 2 — 2 from initial to
final states. The number and type of local variables and stack elements at its start are
specified by 7. The formal semantics is given in [14]. We discuss it informally below.

Basic Instructions. const v pushes v € Z on the top of the stack. Like any other
bytecode except catch, it is defined only when the JVM is in a normal state. The latter
starts the exceptional handlers from an exceptional state and is, therefore, undefined on
anormal state. dupt duplicates the top of the stack, of type t. load &kt pushes on the stack
the value of local variable number k, [;;, which must exist and have type t. Conversely,
store k t pops the top of the stack of type t and writes it in local variable [j; it might
potentially enlarge the set of local variables. In our formalization, conditional bytecodes
are used in complementary pairs (such as ifne t and ifeq t), at a conditional branch. For
instance, ifeqt checks whether the top of the stack, of type t, is 0 when t=int or null
when te K. Otherwise, its semantics is undefined.

Object-Manipulating Instructions. These bytecode instructions create or access ob-
jects in memory. new k pushes on the stack a reference to a new object o of class «,
whose fields are initialized to a default value: null for reference fields, and O for inte-
ger fields [[12]. getfield .f: t reads the field «.f :t of a receiver object r popped from the
stack, of type k. putfield x.f:t writes the top of the stack, of type t, inside field «.f : t of
the object pointed to by the underlying value r, of type «.

Exception-Handling Instructions. throw « throws the top of the stack, of type « <
Throwable. catch starts an exception handler: it takes an exceptional state and transforms
it into a normal state at the beginning of the handler. After catch, exception_is K selects
an appropriate handler depending on the run-time class of the exception.

Method Call and Return. We use an activation stack of states. Methods can be rede-
fined in object-oriented code, so a call instruction has the form call m; ... my, enumer-
ating an over-approximation of the set of possible run-time targets [[14].

3 Reachability

In this section we formalize our notion of reachability between two program variables.

Definition 4 (Locations reachable from a variable). Let 7 € 7. The set of loca_tions
reachable from a variable a € dom(7) in a state o = {p, u) € 2+ is Ly(a) = U;s0 L4 (),

428 b. Nikoli¢ and F. Spoto

LY (1) = {£2} TO(Object) = T(Object)
LL(1) =Lo(lh) = {f1, 42} = {Object, Student, ListStudent}
LI()=Lo(l2) = @ T?(Student) = {Object, Student}
L2(I3) = Lo (I13) = {£3} T'(Student) = T(Student)
L2(12) = {04} = {int, Object, Student}
LL(1a) = {2, 03, L4} T?(ListStudent) = {ListStudent, Object}
L2(14) = Lo (la) = {£1, 02, 3,04} T!(ListStudent) = {ListStudent, Object, Student}
T?(ListStudent) = T(ListStudent)
= {int, ListStudent, Object, Student}

Fig. 4. Example of computation of reachable locations and types

where L (a) are the locations reachable from a in at most i steps: Lt (a) = {p(a)} N L
ifi=0,andL(a) =L (a) U UreLi-1 (ofr@(u(f).¢) N L) if i > 0.

Definition S (Reachability between variables). Let 7 € 7, o = (o, u) € 2; and vari-
ables a,b € dom(t). We say that b is reachable from a in o or, equivalently, that a
reaches b in o, denoted as a~~»7 b, iff p(b) € L,(a).

We also introduce a notion of static reachability between types.

Definition 6 (Reachability between types). Let t € T. The set of types compatible
with t is compatible(t) = {t' | t < t ort’ < t}. The set of types reachable from t
is T) = U;so T'(X), where T'(t) are the types reachable from t in at most i steps:
T'(t) = compatible(t) if i = 0, and T"(t) = T 1 (V) U Ueri-1 ik, o f v er COMPpatible(t’)
if i > 0. We say thatt' € T is reachable from t if ' € T(1), and we denote it as t~st'.

Example 3. Consider o € X; from Ex.[2l On the left of Fig. @] we give, for each [; €
dom(t) and j >0, the set of reachable locations from /; in o in at most j steps until the
fixpoint is reached. Hence, [j~71;, lj~»7 b, BT Iy, w7, T, v Iy, [Ty,
Assume that class Student contains only one field, of type int. ListStudent and Student
are subclasses of Object. Fig. Mlreports on the right the types reachable from these three
classes: ListStudent~» Student, Object~»Student, Student~»Object, Objectws Student, etc.

O

Reachability between types can be used to conservatively approximate possible pairs of
variables that might reach each other.

Lemma 1. Let t€7, o0€2; and a, bedom(t). If a~7 b, then T(a)~>1(b).

Example 4. Since 4~ 13 (Ex.[3), by Lemmalll also 7(l4)~7(k) holds. In fact, Ex.
shows that 7(ly) = ListStudent~ws Student = 7(3). O

4 Reachability Analysis

We define here an abstract interpretation of the concrete semantics of Section 2] w.r.t.
the property of reachability between variables (Definition [3). This will be an actual
algorithm for interprocedural, whole-program reachability analysis. We follow here the
abstract interpretation approach [J5]], that allows us to define a static analysis from the
formal specifications of the property of interest and the semantics of the language.

Reachability Analysis 429

The concrete semantics works over concrete states (Definition [3)), that our abstract
interpretation abstracts into ordered pairs of variables.

Definition 7 (Concrete and Abstract Domain). Given a type environment T €7, we
define the concrete domain over T as C. =(p(2;), C) and the abstract domain over 7 as
the powerset of the set of ordered pairs of variables A, ={p(dom(t) X dom(1)), C). For
every v, wedom(t), we write v~sw to denote the ordered pair (v, w).

An abstract element R € A; represents those concrete states whose reachability in-
formation is over-approximated by the pairs of variables in R (possible reachability).

Definition 8 (Concretization map). For every T€ T, we define the concretization map
v::Ar > Crasy,=AR{o € X | Ya, b € dom(r).aw’ b = a~b € R}.

Both C; and A; are complete lattices. Moreover, we proved y, co-additive, and therefore
it is the concretization map of a Galois connection [5] and A; is actually an abstract
domain, in the sense of abstract interpretation.

Our analysis is constraint-based: we build an abstract constraint graph from the
source code of a Java bytecode program. There is a node for each bytecode b in the
program, containing an element of A, where 7 is the static type information at the be-
ginning of 6. An arc linking the nodes corresponding to two bytecodes b; and b, propa-
gates the reachability information from b; to b,. Here, the exact meaning of propagates
depends on by, since each bytecode has different effects on reachability.

Definition 9 (ACG). Let P be the program under analysis (i.e., a control flow graph of
basic blocks for each method or constructor). The abstract constraint graph (ACG) of
P is a directed graph (V' , E) (nodes, arcs) where:

— V contains a node ins , for every bytecode instruction ins of P;

— V contains nodes ext@em and exception@em for each method or constructor m in
P, and these nodes correspond to the normal and exceptional end of m;

— FE contains directed (multi-)arcs with one or two sources and always one sink;

— for every arc in E, there is a propagation rule, i.e., a function over A, from the
reachability information at its source(s) to the reachability information at its sink.

The arcs in E are built from P as follows. We assume that T and T’ are the static
type information at and immediately after the execution of a bytecode ins, respectively.
Moreover, we assume that T contains j stack elements and i local variables. In the
following we discuss different types of arcs.

Sequential Arcs. If ins is a bytecode in P, distinct from call, immediately followed by a
bytecode ins’, distinct from catch, then a simple arc is built from ins to ins' , with one
of the propagation rules #1-#7 in Fig.[3

Final Arcs. For each return t and throw « occurring in a method or in a constructor
m of P, there are simple arcs from retunt to exitem and from throwx t0 exception@m
respectively, with one of the propagation rules #3-#10 in Fig.[3

430 b. Nikoli¢ and F. Spoto

#1 dupt AR.RU R[sj_; ¥ s;] U{sj_1ws;, sws-1 | 8j21msj_1 €RY
#2 new x AR.R U {s;~>s;})
#3 load k t AR.RU R[l;; & 8;]U (w8, 85000 | [l € R}
#4 store k t AR {(a~b)[sj-1 = k]| avsbeR A a, b # I}
#5 getfield f:t AR{awbeR] a,b # 51}V ‘sj—l“”’be [tvw1(b)} U .
{a~ss;_; | aedom(t) A T(a)~t A [a and s;_; might share at getfield f:t]}
] ARfawbeR | a,b ¢ {sj_1,s;2}} U
#6 tfield f:t ’ ;
putfield / {a~b | a,b ¢ {s;_1,5;2} A aws; ,ER A s;_1~mbeER)
#7 const v, catch, ifne t, ifeq t ARfa~beR | a,b € dom(7')}
#8 return void AR{a~beR | a,b & {sp,...,8-1}}
#9 return t AR {(avb)[s;—1 = sl | avwbeR A a,b ¢ {s),...,sj2}}
#10 throw « AR {(a~b)[s;_1 = 5] | avbER A a, bg{sy,...,s;2}} U {spwrso)
#11 throw « AR {(a~b)[s;_1 = 5] | avbeR A a, bg{sy,...,s;2}} U {spms0)
ARfa~beR | a,b & {s,...,8-1}} U {so~s0}
#12 call my ... my Ufawssg | a € {ly,...,l;i_1} A t(a)wThrowable}
U{sowa | a € {l,...,l;—1} A Throwable~s7(a)}
#13 | new «, getfield f:t, putfield f:t AR {a~b | avwbeR A a,b ¢ {s),...,s;_1}} U {spwrsp)
si—ply
#14 call my ... my H /lR.{(aWb)[’)] aWbER/\a,be{57’77(9'“,8],]}} ‘
Sj-1P -1 '

Fig. 5. Propagation rules of simple arcs

Exceptional Arcs. For each ins throwing an exception, immediately followed by a
catch, a arc is built from ins to catch , with one of the propagation rules #11 — #13
in Fig.[3

Parameter Passing Arcs. For each ins.=call m; ... my to a method with parameters

(including this), we build a simple arc from ins. to the node corresponding to the first
bytecode of m., with the propagation rule #14 in Fig.[3 for each 1 <w <k.

Return Value Arcs. For each ins. = call my ... my to a method with n parameters
(including this) returning a value of type t € K and each subsequent bytecode ins'
distinct from catch, we build a multi-arc from ins. and exit@em, (2 sources, in that
order) to ins'’ with the propagation rule #15 defined in Fig. |0 for each 1 <w<k.

Side-Effects Arcs. For each ins. = call my ... my to a method with n parameters (in-
cluding this) and each subsequent bytecode ins’ , we build a multi-arc from ins. and

exit@m,, (2 sources, in that order) to ins' , where ins’ is not a catch, or from ins. and
exception@m,, (2 sources, in that order) to catch , for each 1 < w < k. The propagation
rule #16 is given in Fig.l6| where max =j—m ifins’ is not a catch and max =0 otherwise.

The sequential arcs link an instruction to its immediate successors. For instance, the
arc #1, starting from a node corresponding to a dup t, states that the reachability ap-
proximation at that node can be found at its successor’s node as well (AR.R). On the
other hand, since s;, the new topmost stack element (new top), is an alias of s;_;, the
former topmost stack element (old top), it is clear that every variable reaching s;_; (or,
respectively, that is reachable from s;_;) also reaches s; (respectively, is reachable from
5j): AR.R UR[s;_; +— s;]. For the same reason, we must assume that, if s;_; reaches
itself (i.e., if the old top was not null) then, immediately after the dupt, s; might reach

Reachability Analysis 431

/lR] -AR2<{3_7—71'V\’>5_7—71 I So™M>So ERZ}

.a €dom(t) \ {sj_} A

2.7 (a)wt A

Ujaws; .| 3.dj —n < p <j s.t. a might share with s, atcall m; ... m; A

4. if a is definitely alias of s, at call m, ... my and no store [,_;..

occurs in my,, then I,_j sy € R,

. bedom(T)\ {5} A

vt (b) A

Aj-m<p<jsts,wbeR A

.if b is definitely alias of s, at call m, ... my, and no store [,_;..
occurs in m,,, then sy~ l,_j. € Ry

—_

#15

C
K
i
B
¢
A W=

/lR]./le.
[avbe R A a,bel{ly,..., Li1, 805+ e s Smax—1}] V
l.a,belly,.... lic1, 80,5 Smax—1} A
2. 7'(a)»7'(b) A
3.3j — 7 < p, <j s.t. a might share with s,,, atcall m; ... my A
4.3 —n<py, <jst pywbeR A
5.if dj — 7 < q, < j s.t. a is definitely alias of s,, at call m, ... my and
if 3j — 7w < @ < j s.t. b is definitely alias of s,, at call m; ... m; and
no store I, ;.. nor store I, _;., occurs in m;, then lg, _jir~ly, _jin € Ro

#16 a~b

da

Fig. 6. Propagation rules of mulit-arcs

sj—1 and vice versa, which leads to rule #1. Rule #5 is more interesting: getfield f: t
replaces the old top of the stack, s;_i, with the value of its field f. Hence all reachabil-
ity pairs that do not consider s;_; are still valid after the execution of the getfield f: t:
AR{a~b € R| a,b # s;_1}. But we have to consider which variable b might be reached
from the field (s;-1~b) and which variable a might reach the field (a~»s;_). For b,
we observe that if the field reaches b, then also its containing object (i.e., the old top of
the stack) had to reach b before the geftfield f:t (i.e., s;_1~»b € R); for better precision
we consider only those pairs of variables that satisfy type reachability requirement, i.e.,
t~>7(b). For a, we rely on a pessimistic (but conservative) assumption: every variable a
might reach the field after the getfieldf:t, as long as the field has a reference type such
that 7(a)~»t and as long as a shares with the top of the stack before the instruction.
Rule #6 states that a reachability pair at a putfield f:t instruction remains valid just after
that instruction, provided that it did not deal with the topmost two values of the stack
sj-1 and s;_, that disappear. Moreover, since this instruction writes s;_; in a field of
sj_2, it might introduce reachability from a to b, when a reaches the receiver s;_, and
the value s;_; reaches b before the putfield f:t.

The final arcs feed nodes ext@m and excepton@m for each method or constructor
m. The former contains all states at the end of a normal execution of m; the latter
contains those at the end of an exceptional execution of m. Hence exitem is the sink
of an arc from every returnt in m. The propagation rule states that the stack is emptied
at the end of execution of m (#8) or only one element survives, the return value (#9).
Similarly, excepton@m is the sink node of every throwx instruction that has no exception
handler in m (i.e., it has no successors in m). Rule #10 states that all stack elements,
but the topmost one s;_i, disappear. The latter is renamed into the exception object g,
and is always non-null (thus, sy~m>sg). We observe that only a throw « is allowed to
throw an exception to the caller since, in our representation of the code as basic blocks,

432 b. Nikoli¢ and F. Spoto

all other instructions that might throw an exception are always linked to an exception
handler, possibly minimal (as the two putfield in Fig.[2).

The exceptional arcs link every instruction that might throw an exception to the
catch at the beginning of their exception handler(s). Rules #10 and #11 are identical,
but the latter is applied when throw « has a successor. Rule #12 states a pessimistic
assumption about the exceptional states after a method call: the reachability pairs before
the call can survive as long as they do not deal with stack elements. The thrown object
So is non-null (thus, sy sp) and conservatively assumed to reach and be reached from
every local variable a, as long as the static types allow it.

The parameter passing arcs connect each method call to the beginning of a method
my, that it might call. Rule #14 renames the actual parameters of m,,, i.€., Sj_x, ..., §j-1,
into its formal parameters, i.e., ly, . . ., b—1.

There exists a return value multi-arc for each target m,, of a call. Rule #15 con-
siders R; and R,, approximations at the node corresponding to the call and at node

exit@m,, . It builds the reachability pairs related to the returned value s;_, in the caller.
Namely, s;_, reaches itself if the return value in the callee (held in the only stack ele-
ment ; at its end) reaches itself. Moreover, a variable a of the caller might reach that
returned value (a~>s;_1) if it exists after the call and it is not s;_ itself (condition 1); if
the static types allow it (condition 2); if @ shares with at least one actual parameter s,
(condition 3); moreover, if a is a definite alias of the actual parameter s, whose corre-
sponding formal parameter ,_;. . is never re-assigned inside the callee m,,, then it must
also be the case that [,_;.. reaches the returned value s (condition 4). Variables b that
might be reachable from the returned value s;_, are determined in a symmetrical way.
It is worth noting that the result of the call can reach a variable b only if b is reachable
from at least one actual parameter s, of the call at call-time (s,~b € R)).

The side-effects multi-arcs enrich the reachability information already known at
call-time with some additional pairs of variables whose presence is due to the side-
effects of the call. Rule #16 adds a new pair a~» b if it satisfies the following conditions:
a and b must exist after the call and must not be the returned value nor the exception
thrown by m,, (condition 1); the static types of a and b must allow their reachability
(condition 2); moreover, a must share with at least one actual parameter of the call and
b must be reachable from at least one actual parameter of the call (conditions 3 and 4,
respectively); finally, if a and b are definite aliases of two actual parameters g, and q; of
the call whose corresponding formal parameters I, ;. and [y, ;.. are not re-assigned
inside m,,, then l;,_;., must reach I, _;,, at the end of m,, (condition 5).

Propagation rules #15 and #16 use possible sharing and definite aliasing between
program variables. If these data are missing, one can always assume the worst, least
precise hypothesis. In our experiments (Section [3) reachability analysis is performed
inside the nullness and termination tools of Julia, that already perform definite aliasing
and possible sharing analyses, so they have no additional cost. The precision of the
analysis would benefit from a possible inlining of frequently used methods, so that their
calling contexts are not merged into one. However, this is not implemented in Julia.

Reachability Analysis 433

£12

NODE B
store 4 Student

NODE C NODE A
catch call ListStudent. (init)(Student, ListStudent): void
t14y
#16 NODE 1 %16
load 0 ListStudent

B3y

NODE 2 @
call java.lang.Object. (init)() : void i
16 NODE 10

NODE 3 exit@(init)
load 0 ListStudent

NODE 13

exception@(init)

NODE 5
putfield ListStudent.head: Student|

6

NODE 6 o
load 0 ListStudent t

13
NODE 7
#13 load 2 ListStudent

410

NODE 11
catch
17
NODE 12
throw java.lang. Throwable

putfield ListStudent.tail: ListStudent|
16

NODE 9
return void

Fig.7. The ACG for the constructor in Fig.

An ACG is solved by finding a reachability approximation at each node, consistent
with the propagation rules of the arcs. Since these propagation rules are monotonic,
a minimal solution exists and can be computed through a fixpoint calculation. This
solution is the reachability analysis of the program, and has been proven sound [[14].

Theorem 1 (Soundness). Let ins and o € X, be a bytecode instruction and a state
reached by an execution of the main method of a program, and let Ri,s € A; be the
reachability approximation computed by our analysis at ins . Then, o € y;(Rins).

Example 5. Fig.[llshows the ACG built for the constructor in Fig. 2l It also shows, in
grey, three nodes of a caller of this constructor (nodes A, B and C) and two nodes of
the callee of call java.lang.Object.(init)(): void, to exemplify the arcs related to
method call and return. Arcs are decorated with the number of their associated propa-
gation rule. Note that the graph for the whole program includes other nodes and arcs.
Suppose that at node A, which invokes the constructor, there are four stack elements
and four local variables and that we know, from previous static analyses, that a correct
possible sharing information is share s = {{so, 1), (&3, $2), {1, s3)} (only these pairs
of variables might share), while a correct definite aliasing information is aliasy =
{(s0, s1), (3, $2)} (those pairs of variables must be alias, but there might be others).
Moreover, suppose that this call occurs in a context with reachability information S, =
{liva 1y, B B3, [53, Bws 5, 9 I3, 59w Sp, So 81, 51w Sp, S1W> ST, $H > 5, 53~ 83},

The constructor stores the locations held in its parameters s, and s; into the fields head
and tail of the newly created object, whose location is, in turn, held in sy and s;.
Moreover, s, and /5 are definite aliases at node A, hence we expect that, after any non-
exceptional execution of the call (node B), /3 is reachable from sy. Node A is linked

434 b. Nikoli¢ and F. Spoto

to node 1 through an arc with propagation rule #14, whose application on S4 gives an
approximation of the reachability information at node 1, S| = {ly~>ly, [~ 1}, b~ b},
Similarly, we determine the approximations of the reachability information of the other
nodes. For instance, S, = {lpm by, i~ 1), v b, [89, sov by, som s}, S3= 5], ete. In
particular, Sio={ly~>ly, ly~ 1y, o b, w1y, b~ b} and there is a side-effect arc from
nodes A and 10 to node B, whose propagation rule #16 applied to S4 and Sjo gives
Sp={li» 1, 1~ sy, [b3, Bw s, sov iz, sovw sp). As expected, sl ESE. O

5 Experiments

We have implemented our reachability analysis inside the Julia analyzer for Java and
Android (http://www. juliasoft.com). Our first aim was to evaluate the cost of the
reachability analysis itself and verify whether it actually improves the precision of side-
effects, field initialization and cyclicity, as hinted in Section [l The second aim was
to verify if the extra reachability information improves the precision of the nullness
and termination checking tools available in Julia, that use side-effects, field initializa-
tion, cyclicity and path-length as (some of their) supporting analyses. We do not have
any measure of precision for path-length analysis, so we do not evaluate its improve-
ments directly but only as a component of the termination checking tool. To reach these
goals, we have analyzed some Java and Android programs, with reachability analy-
sis turned off and then on. Most of these samples are Android applications: Mileage,
OpenSudoku, Solitaire and TiltMazeﬂ; ChimeTimer, Dazzle, OnWatch and Tricordelﬁ;
TxWthf. There are also some Java programs: JFlex is a lexical analyzers generatmﬂ;
Plume is a library by Michael D. Ernsf); Nti is a non-termination analyzer by Etienne
Payetﬁ; Lisimplex is a numerical simplex implementation by Ricardo Gobbd]. The oth-
ers are sample programs taken from the Android 3.1 distribution by Google.

Fig.[8 reports time and precision of reachability analysis on a Linux quad-core Intel
Xeon machine running at 2.66GHz, with 8 gigabytes of RAM. Times are always below
41 seconds. Average precision is 45.07% which means that, given two variables v and
w of reference type at a given program point, in more than half of the cases the analysis
proves that v does not reach w. A smaller percentage, here, means better precision.
Fig.[Blshows that reachability analysis improves the precision of the side-effects analysis
and has positive effects on field initialization as well. Instead, cyclicity analysis seems
unaffected. Sharing analysis is always used in these experiments, both when we use
reachability information and when we do not compute it. Thus, this figure shows the
importance of having also reachability information instead of just sharing information.

Fig. 9] presents our experiments with the nullness and termination tools of Julia
and reports their runtime, including reachability analysis. In 8 cases over 24, the ex-
tra reachability information improves the precision of the nullness checking tool. But

'http://f-droid.org/repository/browse/
2lhttp://moonblink.googlecode. com/svn/trunk/
3http://typoweather.googlecode.com/svn/trunk/

‘http://jflex.de

Shhttp://code.google.com/p/plume-1ib
®http://personnel.univ-reunion. fr/epayet/Research/NTI/NTI.html
"lhttp://sourceforge.net/projects/lisimplex

http://www.juliasoft.com
http://f-droid.org/repository/browse/
http://moonblink.googlecode.com/svn/trunk/
http://typoweather.googlecode.com/svn/trunk/
http://jflex.de
http://code.google.com/p/plume-lib
http://personnel.univ-reunion.fr/epayet/Research/NTI/NTI.html
http://sourceforge.net/projects/lisimplex

435

Reachability Analysis

uors1oald oy 193399 Ay} ‘sioquinu Ay} Joy3Iy
9y ‘armonns eep [ed1o£o-uou e pioy 0} uoaoid ad£) 90uaI9JaI JO SI[GRLIBA JO JoqUInu 95eIOAR A ST uolsioald ‘sisA[eue A310110£0 10 ‘uoIstoard ay) 19139q
Q) ‘sToquunu Ay} JoYSIY YY) :SSB[O SUIUYSP JI3Y) JO SI0JONISUOD [[B UL ‘peal JUraq 910J9q pazijeniul skemye 9q 0} uaroid ad£) 90ua1sjal Jo Spay jo Joqunu
oy st uorstoard ‘sisATeue uonezIfeniul ploy 1o uoisioald Yy 10319 Y ‘sIoquunu Y} JOMO[) :I0JONISUOD IO poylowl B AQ peal 10 PayIpow Sp[ay Jo
Ioquunu 25eIoA® o) ST UoIsToaId ‘SIsATeue $)00-opIs 10, "(AIIqeyoral urejuod sweidold ofI[-Tear a0urs “0onoeld Ur 9,() SOYIBAI JOASU OT)BaI 9Y)) UoIsToaId
) 19yS1y oY ‘Onyer Ay} MO oY} :9dK) 20ua19jaI JO se[qelIeA JO sited JO IoqUINU [810) AU} JOAO ‘M YOeal JYSIW @ Jey) SOpNouod sIsA[eue) 1's (m ‘a)
so[qerea jo sired jo oryer ay) st uoistoaid ‘sisA[eue AI[IqeYORI IO “SPUOJS UL I SOWIL], *9SBGOPOD PIzAeue AU} JO 9Inseall [njyjre] a1ow e st pue weisoxd
[oed M pazA[eue SoLIBIqI[.. *PTOJIpUEe pue . xeael ‘. -eael jo uoniod oy) sepnyour sau1] pazdjpuy SIpod JO SAUI JUB[Q-UOU JUSUWIWOI-UOU SJUNOD
sau1] 224108 *sIsAeur ANOI[OAD pue UOTJBZI[RNIUL P[OY ‘SI0Q[J-9PIS JO UoIsIoald) uo $109y9 Sit pue ‘sisA[eue Ajiqeyoeal jo uoisioald pue 150D *§ 311

(%00°0+) (%9p'e+) . (%LY'€T) . .

Mﬂw.MN PbY8IT MNm.MmMN £€€°080T Mwﬂw,w 18°CLy P LO'SY worspoad a3eaone
%6E°S1 %6EST 86¢CC 0cce 6L'6CC Y260 bEEBY L691 LESYL ¥TOT PIOIPUY TPMXL
%16'ce %b16'ce (4514 908¢ £2°€99 6S°€8L %6E9Y 699C 68¢86 LIES PlOIpUY I9pIOdLY,
%BLS'TL BLS'TL YSve €1eT LS'T9S S'0S9 %99°ST vI'IT €5968 €581 Pploipuy SOZBRINMLL
%EL0T %EL'0T £v6l 6161 SEPSI LT'8TC %9S°8S OVl 09165 LO9 PlOIpUY SOLOBLOLL
%90°0S %90°0S 861 LS61 LS991 61°€vC %ETTE L9B] S90C9 S06E PlOIpUY aIrerjog
BITTI BITTI 1€1T [48¢4 96911 10'PLT %06'1S 9601 88085 €0L Pproipuy preoqkayyijos
bLLTY BLLTY (444 111e 89°6¢C 08'8C¢ BOSTE 8781 1L6S9 8L6 Pproipuy Iaidepydukgajdues
%EY'9E %EY'9L 681C £60T €L°00% ¥6'L6Y PSS EY 18°LT 0SEYL 8TCI PloIpuy acread
BIT'LS BIT'LS seel 91¢l 1L°921 1€°981 BLUYT SL'LT LE9EY 9868 eA®[aumid
%LSTT %LSTT 099¢ (44314 6 9¢' 0¥y b18YY 89°0v 01806 LL8S PlOIPUY nyopnguadQ
%6S°CE %6S°CE 66¢£€ (4349 68°96L 16°66C1 %00°1¥ 6S°6C €TYCIT S6C9 PlOIPUY LRINCTe)
%6S°CE %6S'TE L9Y Sor IS¢l 11'vC BO6'LY ¥V'T 98VET TLET ®AB[ON
%0S°LE %0S°LE 6¢€1C 801¢ L1'81C LS'€6T %65°9¢ 96°'L1 TPLEL SOL PlOIpUY PedION
%SY'ST %SY'ST Y6LT 9¢9¢ 86'708 0€°656 BEL'EY TI'CE 600V01 LLBS PlOIPUY a5eaI
%BIT8L BIT8L 1161 0881 LO'T6T L8'0LT BO¥'99 TO'YT SLOLS 8¢S PproIpuy Jlopuerreuny
%BETYL BELYI 3941 9¢s¢el 96'LYE 69°LE9 %86'LY 9T91 €0t6y 89L eAgf xo[dwisry
%6L'T1 %6L'T1 e €LIT 1L'861 8¥'18¢ BYSY9 LE9T PLISO9 6€8 PloIpuy Kogor
%L EE %LYEE Bid8! 601 68°¢rC 6S°LSE %6S°6E 61'L 6LLOV 189L ®AB[XLl
%hEEEE %bEEEE SLIT [€1T e sreee BYY'ET 1L91 8SSIL 8¥6 Ploipuy A1d[[eHquiodkouo
%6801 %6801 SIvT YLTT 10785 08°€69 %8L'SS vS81 €IvL8 OL8 PloIpuUy QWOH
%LS 91 %LS 9T 8¢C wIc CS'LSS 0L°L99 DITYY 06°€C 9PEY8 CTOS PlOIPUY Iop[IngaInsany
%61°CC %61°CC Ly¥T LI¥T 96'STC 68°60¢ %669 €TYC 8T8LL 16L1 PlOIpUY dlzzed
%YSEl BYSEl 98¥C 8¥€T 80'819 89°0¢L BYO’LY 6€°€C S9568 0601 PlOIpUY oWy
%S8CL %S8CI §eee S81¢T £C0vs 66'SY9 %1096 9TIT SIyy8 919 ploipuy Jeypuyoolenig

YOBAT IIM (ORI INOYIIM (OB YIIM (OB JNOYIIM (OBAI YIIM "OBaI JNOYIIM oaxd Qun saur| sour|

sisk[eue £1101[9£5 Jo *ooxd sis[eue ‘[eniur ppoy jo -0oxd SIsA[eue $100150-opis Jo *0o1d sisA[eue ‘yoear POZATEUE 20INOS aBen3ue| weizoxd

b. Nikoli¢ and F. Spoto

436

1003 9y} Jo uorstoaid oy seaoxdurr K)[IqeyoraI dI9yM
sased oy} syS1yS1y soejprog ‘sweidoxd oy} ur s§nq [enjoe I0J puels sYSMRISY ‘(Uorsroard [ewirxew ay) St 9,00]) 2AISIN0AI 10 sdoo] Sururejuod spoyoul
IO SIOONIISUOD JO IIqUINU [BI0} Y} JOAO 9JBUIULIY) 0} paA0Id SPOYIoU IO SI0JONISUOD Y} JO oner 3y se ‘uorsioaxd syt syrodar vatd pue (Surdroarp A[qrssod
SPOYIoW IO SIOJONIISUOD) BIN[AQ PINSSI STUTLIRM Y} SIUNOD SM ‘SISK[RUR UOTIRUTULI) IO, "(UOTSIoaId [ewiIxew ay) ST 95()()]) JOqUINU [B10} 19y} I9A0 dJes
paaoid saouaIS)aIop YY) Jo onel oy} se ‘uorsioald sy syodar sasd pue (poyowr Areiqif e o3 [nu Surssed A[qissod ‘[nu jo 9ouarsjerop 9[qissod) eing Aq
pansst sSururem 9y} SjUNOd sM ‘SISA[EUER SSQU[NU IO "SPUOIAS UI I SOWI], “BI[Nf JO S[OO0} UOTIRUINLIY) pUB SSAU[[NU oY) YIm sjuowradxe mQ ¢ “SLI

(%00°0+) LOE L0E (%8€°€-) 708 0€8 sSurures Y} Jo wmns
(%79°1-) T6'8ETIY 1902y (%LLL") YTISHS e's1e6s sauin ayj} jo wns
%00°0L 9 80°SOL %000L 9 9L'601 %S8L6 8y 88161 %S8L6 87 91°00C TPMXL
%EE08 Tl 9E°LST %EC08 CI STTST BIv'86 TS ISLOV %6086 ¥S LISIY 19pIOOLL],
%6888 1 €9VLL %6888 1 9S881 %e886 VI PSOLC %0C86 8T ¢£¥'18C SIZEBIADILL
%BILS8 1 TO8L HIL'S8 1 696L %0000 0 LT8IT %0000I O 8CCII 9028 LT
%8098 11 C6€0C %8098 11 60°'L0T %6ST6 €9 VS'LYI %65T6 €9 157¢S1 aIreios

%0000 0 96'L9 %00°00T O SY'OL %Y6'S6 €I €8€0l %8L'S6 PI 1THOI preogAasjos
%0009 T 1968 %0009 T 0616 %IS66 € SHTsl %IS66 € 1€951 1adepyoukgodueg

%0009 T TTTIL %0009 T Tv9ll %¥I'86 .61 9L'S61 %¥1'86 61 TIE0T aciesy
%0009 98 T6'L8T %0009 98 18°80C %886 85 SLOII %C886 65 L9901 aumnid
%TE06 9 YELOY %TE06 9 10°8SYy %E6°S6 VTl TL'O8T %E6'S6 .¥CI 0€8T nyopnguadQ
%9698 9 TEILE %9698 9 00°S8c %8186 S9 SSBIS %I6°L6 ¥PL 9¢868 Yaemuo
%Y6'9¢ OL €S°ev %Y6'9¢ 0L 0Lty %e6'86 <CI SI91 %E6'86 <CI 90¥I ON
%0000T 0 6¥'101 %00°00T 0 ¥9°€0I %0596 LI 61661 %0596 8T TSV6I PEJQION
%ETO9 Tl 66'18C %ET69 CI 89'L8E %LI'L6 S6 CTO'10S %0¥'L6 TOT 06°€0S EELE LA
%000 £ 1¥'89 %000 £ 6VTL %066 ¥ STICI %066 ¥ SLBIL IopuerLreuncy
%BL6OL 6 9E°EST BL6OL 6 LO09T %¥6'96 0T 9L°COT %¥6'96 0T 60°1SCT xoduisry
BYULS € 8€C8 BYI'LS € 1668 %HIY'L6 0T YOOVl %i¥'L6 0T 668El Kogier
%TS'ES 99 €0'1TE %TS'ES 99 ¥8°00€ %E0'L6 1L O1'98 %E0'L6 1L 90°L8 XA
%00°001 0 L¥'TOT %00°001 0 96'SOL %6L'L6 TI 06'6L1 %6LL6 TI CTELLI Km[eDquoofouoy
%9Y'8E 8 6€°E9L BOY'8E 8 86991 BLTY6 LT SSTIE %LTY6 LT 99VIE SWwoH
%00°001 0 €8°'1ST %00°001 0 €€'€ST %LET6 91 1S88C %LETO6 91 STI9C Iep[ngaimsan
%00°00T 0 L0'9C1 %00°00T O ¥€0TI %66°'L6 9T 8LOTT %66'L6 9T 9I'E€CT dlzzeq
%EE'E8 1 18°€¢81 %EC'E8 1 L8BLL %9¢'86 ¥ 8T09¢ %9¢86 ¥ 10°ehe oUWy

%ECEE T BLIVL %ECEE T 96'8ST %ETVO w6l 1€10E€ %SIE6 +.TT €7'89E Feypyoolen[g
sord sm owm oord sm owmn oord sm owm sord sm owm
"YOBOI Y)IM “WLIO) YOBAI JNOYIIM "WLR) Yordl YIIM ‘[[nU "[o’aI JNOYIIM ‘[[NU

weisoxd

Reachability Analysis 437

this never happens for termination, consistently with the fact that cyclicity is not im-
proved (Fig. B). This is because the methods of the programs that we have analyzed
terminate since they perform loops over numerical counters or iterators. There is no
complex case of recursion over data structures dynamically allocated in memory (lists
or trees) where cyclicity would help. To investigate further the case of termination anal-
ysis, we have applied Julia to the set of (very tiny) programs used in the international
termination competition that is performed every year. Those programs, although small
and often unrealistic, are nevertheless interesting since the proof of their termination
often requires non-trivial arguments, also related to objects dynamically allocated in
memory. Over a total of 164 test programs, the reachability information allows Julia to
prove the termination of six more tests: LinkedList, List, ListDuplicate, PartitionList,
Test5 and Test6, by supporting a more precise cyclicity and path-length analysis.

For both nullness and termination checking, the presence of reachability analysis
actually reduces the total runtime of the tools. This is because reachability helps sub-
sequent analyses, in particular side-effects analysis, and prevents them from generat-
ing too much spurious information. For instance, side-effects analysis computes much
smaller sets of affected fields per method (Fig.[8 compare the 7th and the 8th columns).

6 Conclusion

We have introduced, formalized and implemented a provably sound (see [14] for proofs)
constraint-based reachability analysis for Java bytecode. Its implementation inside the
Julia static analyzer is able to scale to programs containing 100k lines of code. Our
experiments show that the reachability analysis improves the precision and efficiency
of the side-effects, field initialization and nullness analyses, already performed by Julia.
Our constraint-based approach has been used to develop aliasing and sharing anal-
yses of our tool (never published and with completely different propagation rules). We
plan to use it in the future to formalize and prove correct other static analyses as well.

References

1. Balaban, 1., Pnueli, A., Zuck, L.D.: Shape Analysis by Predicate Abstraction. In: Cousot, R.
(ed.) VMCALI 2005. LNCS, vol. 3385, pp. 164-180. Springer, Heidelberg (2005)

2. Ball, T., Millstein, T., Rajamani, S.K.: Polymorphic Predicate Abstraction. ACM Trans. on
Programming Languages and Systems 27, 314-343 (2005)

3. Calcagno, C., Distefano, D., O’Hearn, P., Yang, H.: Compositional Shape Analysis by Means
of Bi-Abduction. In: Proc. of the 36th POPL, pp. 289-300. ACM, New York (2009)

4. Chatterjee, S., Lahiri, S., Qadeer, S., Rakamaric, Z.: A Low-Level Memory Model and an
Accompanying Reachability Predicate. STTT 11(2), 105-116 (2009)

5. Cousot, P, Cousot, R.: Abstract Interpretation: A Unified Lattice Model for Static Analysis of
Programs by Construction or Approximation of Fixpoints. In: Proceedings of the 4th POPL,
pp- 238-252. ACM (1977)

6. Dams, D.R., Namjoshi, K.S.: Shape Analysis through Predicate Abstraction and Model
Checking. In: Zuck, L.D., Attie, P.C., Cortesi, A., Mukhopadhyay, S. (eds.) VMCAI 2003.
LNCS, vol. 2575, pp. 310-323. Springer, Heidelberg (2002)

438

7.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

b. Nikoli¢ and F. Spoto

Distefano, D., O’Hearn, P.W., Yang, H.: A Local Shape Analysis Based on Separation Logic.
In: Hermanns, H. (ed.) TACAS 2006. LNCS, vol. 3920, pp. 287-302. Springer, Heidelberg
(2006)

. Hardekopf, B.C.: Pointer Analysis: Building a Foundation for Effective Program Analysis.

Ph.D. thesis, University of Texas at Austin, Austin, TX, USA (2009)

. Hind, M.: Pointer Analysis: Haven’t We Solved This Problem Yet? In: Proceedings of PASTE

2001, pp. 54-61. ACM, New York (2001)

Lhotdk, O.: Program Analysis Using Binary Decision Diagrams. Ph.D. thesis, McGill Uni-
versity (2006)

Lhotdk, O., Chung, K.C.A.: Points-to Analysis with Efficient Strong Updates. In: Proceed-
ings of the 38th POPL, pp. 3-16. ACM (2011)

Lindholm, T., Yellin, F.: The Java™ Virtual Machine Specification, 2nd edn. Addison-
Wesley (1999)

Nelson, G.: Verifying Reachability Invariants of Linked Structures. In: Proc. of the 10th
POPL, pp. 38-47 (1983)

Nikolié, D., Spoto, E.: Reachability Analysis of Program Variables,
http://profs.sci.univr.it/~nikolic/download/IJCAR2012/I]JCAR2012Ext.pdf
Papi, M.M., Ali, M., Correa, T.L., Perkins, J.H., Ernst, M.D.: Practical Pluggable Types for
Java. In: Proceedings of the ISSTA 2008, pp. 201-212. ACM, Seattle (2008)

Rossignoli, S., Spoto, F.: Detecting Non-cyclicity by Abstract Compilation into Boolean
Functions. In: Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp.
95-110. Springer, Heidelberg (2005)

Rountev, A., Milanova, A., Ryder, B.G.: Points-to Analysis for Java Using Annotated Con-
straints. In: Proceedings of the 16th OOPSLA, pp. 43-55. ACM (2001)

Sagiv, M., Reps, T., Wilhelm, R.: Solving Shape-Analysis Problems in Languages with De-
structive Updating. ACM Trans. on Programming Languages and Systems 20, 1-50 (1998)
Sagiv, M., Reps, T., Wilhelm, R.: Parametric Shape Analysis via 3-Valued Logic. ACM
Trans. Program. Lang. Syst. 24, 217-298 (2002)

Salcianu, A.D.: Pointer Analysis for Java Programs: Novel Techniques and Applications.
Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA, USA (2006)

Secci, S., Spoto, FE.: Pair-Sharing Analysis of Object-Oriented Programs. In: Hankin, C.,
Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672, pp. 320-335. Springer, Heidelberg (2005)
Spoto, F., Ernst, M.D.: Inference of Field Initialization. In: Proceedings of the 33rd ICSE,
pp. 231-240. ACM, Waikiki (2011)

Spoto, F., Mesnard, F., Payet, E.: A Termination Analyzer for Java Bytecode Based on Path-
Length. ACM Trans. on Programming Languages and Systems 32(3), 1-70 (2010)

http://profs.sci.univr.it/~nikolic/download/IJCAR2012/IJCAR2012Ext.pdf

	Reachability Analysis of Program Variables
	Introduction
	Operational Semantics
	Reachability
	Reachability Analysis
	Experiments
	Conclusion
	References

