
Chair of Software Engineering

Software Verification

Bertrand Meyer
Carlo A. Furia

Sebastian Nanz

ETH Zürich, Fall 2013

Chair of Software Engineering

2

Today

Aims of the course

Introduction to issues of software quality

Course organization

Lecturers: Bertrand Meyer, Carlo Furia, Sebastian Nanz
Assistant: Chris Poskitt

Webpage: http://se.inf.ethz.ch/courses/2013b_fall/sv/

Monday lectures

 10-12, RZ F21, except on 18.11 when in IFW C 42
 Classical lecture

Wednesday lecture (15-16, RZ F21):

 Variable slot: seminar by guest, or extra lecture

Exercise session: Wednesday, 16-18, RZ F21

3

4

Purpose of this course

To present available techniques for ensuring better
software quality

Topics (see Web page for details)

Axiomatic semantics
Separation logic
Assertion inference
Graphical program specifications

Static analysis
Abstract interpretation

Model checking
Real-time systems

Testing

5

Program proofs

Program analysis

Model checking

Testing

Guest lecturers

Julian Tschannen (AutoProof)

Chris Poskitt (separation logic; graphical program specs)

Nadia Polikarpova (Boogie and Boogaloo)

Đurica Nikolić (static analysis / JULIA)

Yu Pei (AutoTest)

Kaue Soares da Silveira, Google (Testing at Google)

6

Grading

Project: 30%
Written exam (16 December): 70%

All material considered during regular lecture slots and
exercise classes is examinable

7

8

9

Overview of
software

verification

10

The more general notion: software quality assurance

A set of policies and activities to:

Ø Define quality objectives

Ø Help ensure that software products and processes
meet these objectives

Ø Assess to what extent they do

Ø Improve them over time

Verification

The Quality Assurance activity devoted to enforcing
quality, in particular:
Ø  Detecting deviations from quality
Ø  Correcting them

Common distinction (“V & V”):
Ø Validation: assessment of any product relative to its

specification (“checking that it is doing the right things”)
Ø Verification: assessment of internal quality (“checking

that it is doing things right”)

In this course, “Verification” covers both 11

12

The product side

Quality is the absence of “deficiencies” (or “bugs”).

More precise terminology (IEEE):

Mistakes

Faults

Failures

result from

caused by

13

What is a failure?

For this discussion, a failure is any event of system
execution that violates a stated quality objective

Verification techniques

A priori techniques
Ø  Build system for quality; e.g.: process approaches,

proof-guided construction, Design by Contract

A posteriori techniques

Ø Static: from software text only
§ Program proofs
§ Program analysis / abstract interpretation
§ Model checking

Ø Dynamic: execute software
§ Testing

14

15

Software quality: external vs internal

 External factors: visible to customers

 (not just end users but e.g. purchasers)

§ Examples :

 Internal factors: perceptible only to developers

§ Examples :

Only external factors count in the end, but the internal
factors make it possible to obtain them.

ease of use, extendibility, timeliness

good programming style, information
hiding, documentation

16

Software quality: product vs process

 Product: properties of the resulting software

 For example: correctness, efficiency

 Process: properties of the procedures used to produce
and “maintain” the software

Some external factors

Product quality (immediate):
Ø Reliability
Ø Efficiency
Ø Ease of use
Ø Ease of learning

Process quality:
Ø  Production speed

(timeliness)
Ø  Cost-effectiveness
Ø  Predictability
Ø  Reproducibility
Ø  Self-improvement

Product quality (long term):

Ø  Extendibility
Ø  Reusability
Ø  Portability

17

Reliability

Correctness:
The systems’ ability to
perform according to
specification, in cases
covered by the specification

Robustness:
The systems’ ability to
perform reasonably in cases
not covered by the
specification

Security:
The systems’ ability to
protect itself against hostile
use

Correctness
Robustness

Security

HOSTILE USE ERRORS SPECIFICATION

18

19

NIST report on testing (May 2002)

Financial consequences, on
developers and users, of
“insufficient testing
infrastructure”
 $ 59.5 B.

Software projects according to Standish

2000 1998 1996 1994 2006

16

27

28 35

26

10%

20%

30%

40%

50%

53

33

46

49

46

31

40

28

23 19

Successful

Failed

Challenged

21

Some famous failures

Ariane 5
Therac
Patriot
London Ambulance System
Mars Orbiter Vehicle
Buffer overflows

...

Mars Climate Orbiter Vehicle

23

Mars Polar Lander

24

The problem

25

Ariane-5 maiden launch, 1996

37 seconds into flight, exception in Ada program not processed;
order given to abort mission. Loss estimated to $10 billion.
Exception was caused by an incorrect conversion: a 64-bit real
value was incorrectly translated into a 16-bit integer.
Systematic analysis had “proved” that the exception could not
occur – the 64-bit value (“horizontal bias” of the flight) was
proved to be always representable as a 16-bit integer !
It was a REUSE error:

Ø The analysis was correct – for Ariane 4 !
Ø The assumption was documented – in a design document !

See Jean-Marc Jézéquel & Bertrand Meyer, “Design by
Contract: The Lessons of Ariane, IEEE Computer, January 1997,
available at se.ethz.ch/~meyer/publications/computer/ariane.pdf

26

Security example: the buffer overflow

System expects some input from an external user:

First name:

Last name:

Address:

27

Getting the input

from i := 1 until
 i > input_size

loop
 buffer [i] := input [i]
 i := i + 1

end

Overflowing
a buffer!

Data
“The stack”

0

Programs

Max

Routine 1

Routine 2 … Return
address,

arguments,
locals

Routine n

My nasty code

Main

Return address My return address

Code of routine n-1

 The buffer
(overflowing)

 The buffer array

(activation records)

Memory

29

Getting the input

from i := 1 until
 i > input_size

loop
 buffer [i] := input [i]
 i := i + 1

end

or i > buffer_size

- 1 –

Overview of the
requirements task

Verification in the
software lifecycle

30

31

Quality assurance techniques

Manual Tool-supported
Process Product

Informal Mathematical
Complete Partial

Technology-generic Technology-specific

Static Dynamic

vs

Phase-generic Phase-specific
 (analysis, design, implementation…)

Product-generic Product-specific
 (code, documentation…)

Build (a priori) Assess (a posteriori)

32

Quality assurance throughout the process

“Software” is not just code!

Quality affects code, documentation, design, analysis,
management, the software process, and the software
quality policy itself.

Most of the techniques presented will, however, be for
code.

33

Process-based approaches to quality assurance

Ø Lifecycle models

Ø Process models: CMMI, ISO 9001:2000

Ø Inspections

Ø Open-source process

Ø eXtreme Programming (XP)

