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Program Verification: the very idea 

max (a, b: INTEGER): INTEGER 

 do 

  if a > b then 

   Result := a 

  else 

   Result := b 

  end 

 end 

 

 require 

  true 

 

 ensure 

  Result >= a 

  Result >= b 

 

P: a program S: a specification 

Does            P ⊧ S               hold? 

The Program Verification problem: 

 Given: a program P and a specification S 

 Determine: if every execution of P, for every value of input parameters, 
satisfies S 



What is a theory? 

(Think of any mathematical example, e.g. elementary arithmetic) 
 
A theory is a mathematical framework for proving 
properties about a certain object domain 
 
Such properties are called theorems 
 
Components of a theory: 

 Grammar (e.g. BNF), defines well-formed formulae 
      (WFF) 

 Axioms: formulae asserted to be theorems 
 Inference rules: ways to derive new theorems from 

previously obtained theorems, which can be applied 
mechanically 



Soundness and completeness 

How do we know that an axiomatic semantics (or logic) is 
“right”? 

 

 Sound: every theorem (i.e., deduced property) is a 
true formula 

 

 Complete: every true formula can be established as 
a theorem (i.e., by applying the inference rules). 

 

 Decidable: there exists an effective (terminating) 
process to establish whether an arbitrary formula 
is a theorem. 



Notation 

Let f be a well-formed formula 

 

Then 

 

 ⊢  f 

 

expresses that f is a theorem 



Inference rule 

An inference rule is written 

 

 f1,    f2, …,  fn  
 ___________ 

         f0 

 

It expresses that if f1,    f2, …  fn are theorems, we may 
infer f0 as another theorem 



Example inference rule 

“Modus Ponens” (common to many theories): 

 

 p,    p   q  
 ________ 

         q 

 

 



How to obtain theorems 

Theorems are obtained from the axioms by zero or more* 
applications of the inference rules. 

 

 

 

*Finite of course 



Example: a simple theory of integers 

Grammar: Well-Formed Formulae are boolean expressions 
 i1 = i2 
 i1 < i2 
 ¬ b1 
 b1 ⇒ b2 

where b1 and b2 are boolean expressions, i1 and i2 
integer expressions 
 
An integer expression is one of 

 0 
 A variable n 
 f’ where f is an integer expression 

   (represents “successor”) 



An axiom and axiom schema 

⊢ 0 < 0’ 

 

⊢ f < g ⇒ f’ < g’ 



An inference rule 

 

 

 P (0),    P (f)  P (f’)  
 ________________ 

         P (f) 

 

 

 



Axiomatic semantics 

Floyd (1967), Hoare (1969), Dijkstra (1978) 

 

Purpose: 

 Describe the effect of programs through a theory of 
the underlying programming language, allowing proofs 



The theories of interest 

Grammar: a well-formed formula is a “Hoare triple” 

 

 

 

   

  {P}    A    {Q} 

Assertions 

Instructions 

Informal meaning: A, 
started in any state 
satisfying P, will satisfy Q 
on termination 



Software correctness (a quiz) 

Consider  
 

{P }   A    {Q }     
 

Take this as a job ad in the classifieds 
 

Should a lazy employment candidate hope for a weak or 
strong P ? What about Q ?  
 

Two “special offers”: 

  
 1.      {False} A    {...} 

 2.      {...} A    {True} 



Axiomatic semantics  

“Hoare semantics” or “Hoare logic”: a theory describing 
the partial correctness of programs, plus termination 
rules 



What is an assertion? 

Predicate (boolean-valued function) on the set of 
computation states 

 

True: Function that yields True for all states 

False: Function that yields False for all states 

 

P implies Q:  means  s : State, P (s )  Q (s ) 

and so on for other boolean operators 

State 

True 

False 

s 



Another view of assertions 

We may equivalently view an assertion P as a subset of the 
set of states (the subset where the assertion yields True): 

 

True: Full State set  

False: Empty subset 

implies: subset (inclusion) relation 

and: intersection         or: union 

State 

True 

P 



Application to a programming language: Eiffel 

 extend (new : G ; key : H )  

   -- Assuming there is no item of key key, 
   -- insert new with key ; set inserted. 

  require 

   key_not_present: not has (key) 

  ensure 

   insertion_done: item (key) = new 

   key_present: has (key) 

   inserted: inserted 

   one_more: count = old count + 1 



The case of postconditions 

Postconditions are often predicates on two states 

 

Example (Eiffel, in  a class COUNTER): 

 

 increment 
  require 

   count >= 0 

  … 

  ensure 

   count   =   old count + 1 



Partial vs total correctness 

    {P}    A    {Q} 
 

Total correctness: 

  A, started in any state satisfying P, will terminate 
in a state satisfying Q 

 

Partial correctness: 

  A, started in any state satisfying P, will, if it 
terminates, yield a state satisfying Q 



Elementary mathematics 

Assume we want to prove, on integers 

 

 {x > 0}  A  {y  0}   [1] 

 

but have actually proved 

 

 {x > 0}  A  {y = z ^ 2}  [2] 

 

We need properties from other theories, e.g. arithmetic 

 



“EM”: Elementary Mathematics 

The mark [EM] will denote results from other theories, 
taken (in this discussion) without proof 

 

Example: 

 

  y = z ^ 2    implies    y  0  [EM] 

 

  



Rule of consequence 

 

 {P} A {Q},    P’ implies P,    Q implies Q’  
 _____________________________ 

           {P’}   A   {Q’} 

 

 

 Example:    {x > 0} y := x + 2 {y > 0} 



Rule of conjunction 

 

 

 {P} A {Q},    {P} A {R}  
 ________________ 

    {P}   A   {Q and R} 

 

 

 Example:    {True} x := 3  {x > 1 and x > 2} 

 



Axiomatic semantics for a programming language 

Example language: Graal (from Introduction to the theory 
of Programming Languages) 

 

 

Scheme: give an axiom or inference rule for every 
language construct 



Skip 

 

 

 

   {P}   skip   {P} 



Abort 

 

 

 

   {False}   abort   {P} 



Sequential composition 

 

{P} A {Q},     {Q} B {R} 
__________________ 

 
{P}   A ; B  {R} 

 

 

Example:  

     {x > 0} x := x + 3 ; x := x + 1 {x > 4} 

 

 



Assignment axiom (schema) 

 

{P [e / x]}       x := e     {P} 
 

 

P [e/x] is the expression obtained from P by replacing 
(substituting) every occurrence of x by e. 



Substitution 

x [x/x]  = 

x [y/x]  = 

x [x/y]  = 

x [z/y]  = 

3  x + 1 [y/x] = 

 

 



Applying the assignment axiom 

 {y > z – 2} x := x + 1 {y > z – 2} 

 

{2 + 2 = 5} x := x + 1 {2 + 2 = 5} 

 

{y > 0} x := y {x > 0} 

 

{x + 1 > 0} x := x + 1 {x > 0} 



Limits to the assignment axiom 

No side effects in expressions! 

 asking_for_trouble (x: in out INTEGER): INTEGER 

  do 

   x := x + 1; 

   global := global + 1; 

   Result := 0 

  end 

Do the following hold? 

 

 {global = 0}  u := asking_for_trouble (a)      {global = 0} 

 {a = 0}          u := asking_for_trouble (a)      {a = 0} 



The rule of constancy 

 

{P} A {Q},  FV(R)  modifies(A) =   
__________________ 

 
{P and R}   A  {Q and R} 

 

FV(F) = variables free in formula F 

modifies(A) = variables assigned to in code A 

 

“Whatever A doesn’t modify  
stays the same” 



The rule of constancy: examples 

{ y = 3 } x := x + 1 { y = 3 } 

 

{ y  0: y2 > 0 } y := y + 1 { y  0: y2 > 0 } 

 

{ y = 3 } x := sqrt(y) { y = 3 } 

 

{ a[3] = 0 } a[i] := 2 { a[3] = 0 } 

 

{ bob.age = 65 } tony.age := 78 { bob.age = 65 } 

 



The frame rule: examples and caveats 

{ y = 3 } x := x + 1 { y = 3 } 

 

{ y  0: y2 > 0 } y := y + 1 { y  0: y2 > 0 } 

 

{ y = 3 } x := sqrt(y) { y = 3 } 

 Only if sqrt doesn’t have side effects on y! 

 

{ a[3] = 0 } a[i] := 2 { a[3] = 0 } 

 Only if i  3! 

 

{ bob.age = 65 } tony.age := 78 { bob.age = 65 } 

 Only if bob  tony, i.e., they are not aliases! 

 

 



The assignment axiom for arrays 

   { P [ if k = i then e else a[k] / a[k] ] }       a[i] := e     { P } 

 

 

Example:  

 { 3 = i or (3  i and a[3] = 2) } 

  a[i] := 2  

 { a[3] = 2 } 



Conditional rule 

{P and c} A {Q},     {P and not c} B {Q} 
______________________________ 

 
{P}   if c then A else  B  end {Q} 

 
 
 
 
 

Example:     
{y > 0}  

 if x > 0 then y := y + x else y := y - x   

{y > 0} 
 



Conditional rule: example proof 

Prove: 

 

 { m, n, x, y > 0 and x ≠ y and gcd (x, y ) = gcd (m, n ) } 

 

 if x > y then 

  x := x – y 

 else 

  y := y – x 

 end 

 

 { m, n, x, y > 0 and gcd (x, y ) = gcd (m, n ) } 



Loop rule (partial correctness) 

{P} A {I}      {I and not c} B {I}      
______________________________ 

 
 

{P}   from A until c loop B  end {I and c} 
 
 
 
 

{P} A {I} proves initiation: the invariant 
holds initially 
 

{I and not c} B {I} proves consecution (or 
inductiveness): the invariant is preserved 
by an arbitrary iteration of the loop 
 



Loop rule (partial correctness, variant) 

{P} A {I},  {I and not c} B {I},   {(I and c) implies Q} 
_____________________________________ 

 
{P}   from A until c loop B  end   {Q} 

 

Example:     
{y > 3 and n > 0}  

 from i := 0 until i = n loop 

  i := i + 1 

  y := y + 1 

 end 

{y > 3 + n} 

 



Loop termination 

Must show there is a variant: 

 

Expression v of type INTEGER such that 
(for a loop from A until c loop B  end with precondition P): 

 

 1. {P}  A  {v ≥ 0} 

 

 2.   v0 > 0: 

  {v = v0  and not c}  B   {v < v0  and  v ≥ 0} 

 

You can reuse an invariant to prove 1 and 2. 



Loop termination: example 

{y > 3 and n > 0}  

 from i := 0 until i = n loop 

  i := i + 1 

  y := y + 1 

 variant 

  ?? 

 end 

{y > 3 + n} 
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from 
  i := 0 ; Result  := a [1] 

until 

  i = a.upper  

loop 

  i := i  + 1 

  Result := max (Result , a [i ])  

end 

Computing the maximum of an array 
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Loop as approximation strategy 

a 1 a 2 a i a n 

Result = a 1 

Result = Max (a 1 .. a 2) 

Result = Max (a 1 .. a i ) 

Result = Max (a 1 .. a n ) 

= Max (a 1 .. a 1) i := i  + 1 

 Result := max (Result , a [i ])  

The loop 
invariant 

Loop body: 


