
Software Verification

Bertrand Meyer

Carlo A. Furia

Chair of Software Engineering

Lecture 2: Axiomatic semantics

2

Program Verification: the very idea

max (a, b: INTEGER): INTEGER

 do

 if a > b then

 Result := a

 else

 Result := b

 end

 end

 require

 true

 ensure

 Result >= a

 Result >= b

P: a program S: a specification

Does P ⊧ S hold?

The Program Verification problem:

 Given: a program P and a specification S

 Determine: if every execution of P, for every value of input parameters,
satisfies S

What is a theory?

(Think of any mathematical example, e.g. elementary arithmetic)

A theory is a mathematical framework for proving
properties about a certain object domain

Such properties are called theorems

Components of a theory:

 Grammar (e.g. BNF), defines well-formed formulae
 (WFF)

 Axioms: formulae asserted to be theorems
 Inference rules: ways to derive new theorems from

previously obtained theorems, which can be applied
mechanically

Soundness and completeness

How do we know that an axiomatic semantics (or logic) is
“right”?

 Sound: every theorem (i.e., deduced property) is a
true formula

 Complete: every true formula can be established as
a theorem (i.e., by applying the inference rules).

 Decidable: there exists an effective (terminating)
process to establish whether an arbitrary formula
is a theorem.

Notation

Let f be a well-formed formula

Then

 ⊢ f

expresses that f is a theorem

Inference rule

An inference rule is written

 f1, f2, …, fn

 f0

It expresses that if f1, f2, … fn are theorems, we may
infer f0 as another theorem

Example inference rule

“Modus Ponens” (common to many theories):

 p, p q

 q

How to obtain theorems

Theorems are obtained from the axioms by zero or more*
applications of the inference rules.

*Finite of course

Example: a simple theory of integers

Grammar: Well-Formed Formulae are boolean expressions
 i1 = i2
 i1 < i2
 ¬ b1
 b1 ⇒ b2

where b1 and b2 are boolean expressions, i1 and i2
integer expressions

An integer expression is one of

 0
 A variable n
 f’ where f is an integer expression

 (represents “successor”)

An axiom and axiom schema

⊢ 0 < 0’

⊢ f < g ⇒ f’ < g’

An inference rule

 P (0), P (f) P (f’)

 P (f)

Axiomatic semantics

Floyd (1967), Hoare (1969), Dijkstra (1978)

Purpose:

 Describe the effect of programs through a theory of
the underlying programming language, allowing proofs

The theories of interest

Grammar: a well-formed formula is a “Hoare triple”

 {P} A {Q}

Assertions

Instructions

Informal meaning: A,
started in any state
satisfying P, will satisfy Q
on termination

Software correctness (a quiz)

Consider

{P } A {Q }

Take this as a job ad in the classifieds

Should a lazy employment candidate hope for a weak or
strong P ? What about Q ?

Two “special offers”:

 1. {False} A {...}

 2. {...} A {True}

Axiomatic semantics

“Hoare semantics” or “Hoare logic”: a theory describing
the partial correctness of programs, plus termination
rules

What is an assertion?

Predicate (boolean-valued function) on the set of
computation states

True: Function that yields True for all states

False: Function that yields False for all states

P implies Q: means s : State, P (s) Q (s)

and so on for other boolean operators

State

True

False

s

Another view of assertions

We may equivalently view an assertion P as a subset of the
set of states (the subset where the assertion yields True):

True: Full State set

False: Empty subset

implies: subset (inclusion) relation

and: intersection or: union

State

True

P

Application to a programming language: Eiffel

 extend (new : G ; key : H)

 -- Assuming there is no item of key key,
 -- insert new with key ; set inserted.

 require

 key_not_present: not has (key)

 ensure

 insertion_done: item (key) = new

 key_present: has (key)

 inserted: inserted

 one_more: count = old count + 1

The case of postconditions

Postconditions are often predicates on two states

Example (Eiffel, in a class COUNTER):

 increment
 require

 count >= 0

 …

 ensure

 count = old count + 1

Partial vs total correctness

 {P} A {Q}

Total correctness:

 A, started in any state satisfying P, will terminate
in a state satisfying Q

Partial correctness:

 A, started in any state satisfying P, will, if it
terminates, yield a state satisfying Q

Elementary mathematics

Assume we want to prove, on integers

 {x > 0} A {y 0} [1]

but have actually proved

 {x > 0} A {y = z ^ 2} [2]

We need properties from other theories, e.g. arithmetic

“EM”: Elementary Mathematics

The mark [EM] will denote results from other theories,
taken (in this discussion) without proof

Example:

 y = z ^ 2 implies y 0 [EM]

Rule of consequence

 {P} A {Q}, P’ implies P, Q implies Q’

 {P’} A {Q’}

 Example: {x > 0} y := x + 2 {y > 0}

Rule of conjunction

 {P} A {Q}, {P} A {R}

 {P} A {Q and R}

 Example: {True} x := 3 {x > 1 and x > 2}

Axiomatic semantics for a programming language

Example language: Graal (from Introduction to the theory
of Programming Languages)

Scheme: give an axiom or inference rule for every
language construct

Skip

 {P} skip {P}

Abort

 {False} abort {P}

Sequential composition

{P} A {Q}, {Q} B {R}

{P} A ; B {R}

Example:

 {x > 0} x := x + 3 ; x := x + 1 {x > 4}

Assignment axiom (schema)

{P [e / x]} x := e {P}

P [e/x] is the expression obtained from P by replacing
(substituting) every occurrence of x by e.

Substitution

x [x/x] =

x [y/x] =

x [x/y] =

x [z/y] =

3 x + 1 [y/x] =

Applying the assignment axiom

 {y > z – 2} x := x + 1 {y > z – 2}

{2 + 2 = 5} x := x + 1 {2 + 2 = 5}

{y > 0} x := y {x > 0}

{x + 1 > 0} x := x + 1 {x > 0}

Limits to the assignment axiom

No side effects in expressions!

 asking_for_trouble (x: in out INTEGER): INTEGER

 do

 x := x + 1;

 global := global + 1;

 Result := 0

 end

Do the following hold?

 {global = 0} u := asking_for_trouble (a) {global = 0}

 {a = 0} u := asking_for_trouble (a) {a = 0}

The rule of constancy

{P} A {Q}, FV(R) modifies(A) =

{P and R} A {Q and R}

FV(F) = variables free in formula F

modifies(A) = variables assigned to in code A

“Whatever A doesn’t modify
stays the same”

The rule of constancy: examples

{ y = 3 } x := x + 1 { y = 3 }

{ y 0: y2 > 0 } y := y + 1 { y 0: y2 > 0 }

{ y = 3 } x := sqrt(y) { y = 3 }

{ a[3] = 0 } a[i] := 2 { a[3] = 0 }

{ bob.age = 65 } tony.age := 78 { bob.age = 65 }

The frame rule: examples and caveats

{ y = 3 } x := x + 1 { y = 3 }

{ y 0: y2 > 0 } y := y + 1 { y 0: y2 > 0 }

{ y = 3 } x := sqrt(y) { y = 3 }

 Only if sqrt doesn’t have side effects on y!

{ a[3] = 0 } a[i] := 2 { a[3] = 0 }

 Only if i 3!

{ bob.age = 65 } tony.age := 78 { bob.age = 65 }

 Only if bob tony, i.e., they are not aliases!

The assignment axiom for arrays

 { P [if k = i then e else a[k] / a[k]] } a[i] := e { P }

Example:

 { 3 = i or (3 i and a[3] = 2) }

 a[i] := 2

 { a[3] = 2 }

Conditional rule

{P and c} A {Q}, {P and not c} B {Q}

{P} if c then A else B end {Q}

Example:
{y > 0}

 if x > 0 then y := y + x else y := y - x

{y > 0}

Conditional rule: example proof

Prove:

 { m, n, x, y > 0 and x ≠ y and gcd (x, y) = gcd (m, n) }

 if x > y then

 x := x – y

 else

 y := y – x

 end

 { m, n, x, y > 0 and gcd (x, y) = gcd (m, n) }

Loop rule (partial correctness)

{P} A {I} {I and not c} B {I}

{P} from A until c loop B end {I and c}

{P} A {I} proves initiation: the invariant
holds initially

{I and not c} B {I} proves consecution (or
inductiveness): the invariant is preserved
by an arbitrary iteration of the loop

Loop rule (partial correctness, variant)

{P} A {I}, {I and not c} B {I}, {(I and c) implies Q}

{P} from A until c loop B end {Q}

Example:
{y > 3 and n > 0}

 from i := 0 until i = n loop

 i := i + 1

 y := y + 1

 end

{y > 3 + n}

Loop termination

Must show there is a variant:

Expression v of type INTEGER such that
(for a loop from A until c loop B end with precondition P):

 1. {P} A {v ≥ 0}

 2. v0 > 0:

 {v = v0 and not c} B {v < v0 and v ≥ 0}

You can reuse an invariant to prove 1 and 2.

Loop termination: example

{y > 3 and n > 0}

 from i := 0 until i = n loop

 i := i + 1

 y := y + 1

 variant

 ??

 end

{y > 3 + n}

43

from
 i := 0 ; Result := a [1]

until

 i = a.upper

loop

 i := i + 1

 Result := max (Result , a [i])

end

Computing the maximum of an array

44

Loop as approximation strategy

a 1 a 2 a i a n

Result = a 1

Result = Max (a 1 .. a 2)

Result = Max (a 1 .. a i)

Result = Max (a 1 .. a n)

= Max (a 1 .. a 1) i := i + 1

 Result := max (Result , a [i])

The loop
invariant

Loop body:

