Software Verification

Bertrand Meyer

The alias calculus

Note

These slides describe the alias calculus as of 2010. The core concepts remain but a better mathematical model is currently used. See recent publications on the topic.

Hoare-style reasoning

Assignment rule:
$\{P(e)\} x:=e\{P(x)\}$

Why alias analysis is important

1. Without it, cannot apply standard proof techniques to programs involving pointers

2. Concurrent program analysis, in particular deadlock
3. Program optimization

The question under study

Given expressions e and f (of reference types) and a program location p :

At p, can e and f ever be attached to the same object?
(If so, we say that e and f are aliased to each other, meaning potentially aliased.)

An example of alias analysis
Consider two linked list structures known through x and y :

Computing the alias relation shows that:
$>$ If $x \neq y$, then no cell reachable from x (\square or \square) can be reached from y (\square or \square), and conversely
$>$ Without this assumption, such aliasing is possible

What the calculus is about

Relation of interest:

"In the computation, e might become aliased to f " Definition:

A binary relation is an alias relation if it is symmetric and irreflexive

Not necessarily transitive:
if c then

else \begin{tabular}{ll}

$x:=y$ \& | Can alias x to y |
| :--- |
| end |

\&

and y to z

but not x to z
\end{tabular}

What the calculus is about

The calculus defines, for any instruction P and any alias relation a, the value of

$$
a \gg p
$$

which denotes:
The aliasing relation resulting from executing
P from an initial state in which the aliasing
relation is a
For an entire program: compute $\varnothing » p$

Obtaining an alias relation

Set of binary relations on E ; formally: $P(\mathrm{E} \times \mathrm{E})$
If r is a relation in $E \leftrightarrow E$, the following is an alias relation: $\bar{r} \triangleq\left(r \cup r^{-1}\right)-I d[E] \longrightarrow$ Identity on E Set difference

Example: $\overline{\{[x, x],[x, y],[y, z]\}}=\{[x, y],[y, x],[y, z],[z, y]\}$
Generalized to sets:

$$
\begin{gathered}
\{x, y, z\}=\{[x, y],[y, x],[x, z],[z, x],[y, z],[z, y]\} \\
\text { "Complete" alias relation }
\end{gathered}
$$

Canonical form \& alias diagrams

Canonical form of an alias relation: union of complete alias relations, e.g.
$\overline{x, y}, \overline{y, z}, \overline{x, u, v}$, meaning $\overline{\{x, y\}} \cup \overline{\{y, z\}} \cup \overline{\{x, u, v}\}$

None of the sets of expressions is a subset of another

An alias diagram:
(not canonical)
Make it canonical:

The forget rule

$a \gg($ forget $x)=a \backslash-\{x\}$
a deprived of all
pairs involving x

Operations on alias relations

For an alias relation a in $E \leftrightarrow E$, an expression x, and a set of expressions $A \subseteq E$, the following are alias relations:

Assignment example 2

Bleftere

The cut instruction

cut x, y
Semantics: remove aliasing, if any, between x and y

Cut rule

$a \gg$ cut $x, y \quad=a-\overline{x, y}$

Set difference

The role of cut

cut x, y informs the alias calculus with non-alias properties coming from other sources

Alias relation: \varnothing
Example:

$$
\text { if } m<n \text { then } x:=u \text { else } x:=y \text { end }
$$

$$
\overline{x, u}, \overline{x, y}
$$

$m:=m+1$
if $m<n$ then $z:=x$ end
$\overline{x, u, z}, \overline{x, y, z}$
But here ox cannot be aliased to y (only to u). The alias theory does not know this property!
To take advantage of it, add the instruction cut x, y;
This expression represents check $x /=y$ end (Eiffel) assert x ! $=y$;
(JML, Spec\#)

Introducing repetitions

Loop constructs:
$>p^{n}$ (for integer n): n executions of p (auxiliary notion)
> loop p end: any sequence (incl. empty) of executions of p

Aliasing from loop constructs

-- Also equal to (a » p) » p^{n}
$a \gg($ loop p end $)=\bigcup_{n \in N}\left(a \gg p^{n}\right)$

Loop aliasing theorem

a » (loop p end) is the fixpoint of the sequence

$$
\begin{aligned}
& t_{0}=a \\
& t_{n+1}=t_{n} \cup\left(t_{n} \gg p\right)
\end{aligned}
$$

Gives a practical way to compute a» (loop p end)

Proof: by induction. If s_{n} is original sequence $\cup\left(a \gg p^{n}\right)$, prove separately $s_{n} \subseteq t_{n}$ and $t_{n} \subseteq s_{n}$

Introducing procedures

A program is now sequence of procedure definitions (one designated as main):

$$
r_{i}(f) \quad \text { do } p_{i} \text { end }
$$

Alias calculus notations:
$>\underline{r}$ denotes body of r (i.e. $\underline{r}_{i}=p_{i}$) r^{\bullet} denotes formals of r (here f)

Instructions: as before, plus

```
call ri (v)
```

-- Procedure call

Handling arguments

The calculus will treat

$$
\text { call } r(v)
$$

as

$$
r^{\bullet}:=\widehat{v ; ~ c a l l ~} r
$$

(With recursion, possible loss of precision)
Generalize notation $a[x: y]$ to lists: use
a [u: v]
as abbreviation for

$$
\left(\ldots\left(\left(a\left[u_{1}: v_{1}\right]\right)\left[u_{2}: v_{2}\right]\right) \ldots\left[u_{n}: v_{n}\right]\right.
$$

For example: a [$r^{\circ}: v$]

Call rule

Using the call rule

```
a> call r(v) =a[r*:v]>>
```

Because of recursion, no longer just definition but equation

For entire set of procedures P, this gives a vector equation
$a » P$
$=A L(a>P)$

Interpret as fixpoint equation and solve iteratively (Fixpoint exists: increasing sequence on finite set)

Object-oriented mechanisms

Add O-O constructs:
> 1. Qualified expressions: $x \cdot y$
Can be used as source (not target!) of assignments

$$
x:=y \cdot z
$$

2. Qualified calls:

$$
\text { call } x \cdot r(v)
$$

3. Current

Assignment rule revisited

Example:
$x:=y \cdot z$

Non-O-O Alias diagrams
Source node
(represents stack)
Links: only from source to
value

O-O Alias diagrams

Links may now exist between value nodes (now called object nodes)
Cycles possible (see next)

New form of call: qualified

call x.r (a, b, \ldots)

Distribution operator (reminder):

For a list $v=\langle u, v, w, \ldots\rangle$:

$$
x \in v=\langle X \cdot u, x \cdot v, X \cdot v, \ldots\rangle
$$

For a relation r in $E \leftrightarrow E$:

$$
x \in r=\{[x \cdot a, x \cdot b] \mid[a, b] \in r\}
$$

Example:

$$
x=(\overline{u, v, w}, \overline{u, y})=\overline{x \cdot u, x \cdot v, x \cdot w}, \overline{x \cdot u, x \cdot y}
$$

Termination?

The original termination argument does not hold any more

Consider
from y := x loop
$y:=y \cdot a$
end
y may become aliased to:
$x, x \cdot a, x \cdot a \cdot a, x \cdot a \cdot a \cdot a$ etc.
(infinite set of expressions!)

Termination: the question under study

Given expressions e and f (of reference types) and a program location p :

At p, can e and f ever be attached to the same object?

The alias calculus			
a > skip	$=a$		
$a »($ then p else q end $)=(a \gg) \cup(a>q)$			
$a \gg(p ; q)$	$=(a>p) » q$		
$a \gg($ forget x)	$\begin{aligned} & =a \backslash-\{x\} \quad a[x: y]=\text { given } b=a \backslash-\{x\} \text { then } \\ & =a \backslash-\{x\} \quad b \cup(\{x\} \times(b / y)) \end{aligned}$		
$a »($ create x)			
$a \gg(x:=y)$	$=a[x: y]$		
a > cut x, y	$=a-x, y$	Plus:	
$a \gg p^{0}$	$=\mathrm{a}$	x. Current	$=x$
$a \gg p^{n+1}$	$=\left(a \gg p^{n}\right) » p$	Current $\cdot x$	$=x$ $=$ Current
$a \gg$ (loop p end)	$=\bigcup_{n \in N}\left(a \gg p^{n}\right)$	$x \cdot x^{\prime}$	= Current
$a \gg$ call r (v)	$=\left(a\left[x \cdot r^{\circ}: v\right]\right)$)		
$a \gg$ call $x \cdot r(v)$	$=x \cdot\left(\left(x^{\prime} \cdot a\right) »\right.$	$r\left(x^{\prime}-v\right)$)	

Approaches for comparison

Separation logic

Shape analysis

Ownership

Dynamic frames

Achievements

Theory of aliasing
Simple (about a dozen rules)
New concepts: inverse variables, modeling Current
Graphical formalism (alias diagrams), canonical form
Implemented
Almost entirely automatic (except for occasional cut)
Small loss of precision, i.e. not too conservative
Abstract: does not mention stack and heap
Covers object-oriented programming
Faithful to $\mathrm{O}-\mathrm{O}$ spirit; see qualified call rule

$$
a \gg \text { call } x \cdot f \quad=x=\left(\left(x^{\prime}-a\right) » \text { call } f\right)
$$

Can cover full modern O-O language
Potential solution to "frame problem"

Limitations and future work

Extend for polymorphism and dynamic binding

Use a more modular approach

Apply to solving frame problem

Integrate with standard axiomatic reasoning

Integrate implementation with compiler

