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Bertrand Meyer
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The alias calculus

Note

These slides describe the alias calculus as of 2010. The 
core concepts remain but a better mathematical model is 
currently used. See recent publications on the topic.
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Hoare-style reasoning

Assignment rule:

{P (e)}  x := e  {P (x)}

4

Hoare-style reasoning
require

do

:= whatever + 10000 

y := y + 1
ensure

end
y < 3

-- y + 1 < 3-- y + 1 < 3
xx

y + 1 < 3

y + 1 < 3-- y + 1 < 3

Assignment rule:

{P (e)}  x := e  {P (x)}

require

ensure
y < 3
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With references (pointers)

5

-- y.a = b
x.set_a (c)

? a

x

y

set_a (c)

b

c
-- x.a = c-- x.a = c

-- True

Understand as
x.a := c-- y.a = b

Why alias analysis is important

1. Without it, cannot apply standard proof techniques to 
programs involving pointers

2. Concurrent program analysis, in particular deadlock
3. Program optimization

6

-- y.a = b
x.set_a (c)

? a

x

y

set_a (c)

b

c
-- x.a = c-- x.a = c

-- True

-- y.a = b
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The question under study

Given  expressions e and f (of reference types) and a 
program location p :

At p , can e and f ever be attached to the same object?

7

(If so, we say that e and f are aliased to each 
other, meaning potentially aliased.)

An example of alias analysis

y

x 

Consider two linked list structures known through x and y:

rightitem

Computing the alias relation shows that:

 If x ≠ y, then no cell reachable from x (        or       ) 
can be reached from y (        or       ), and conversely

Without this assumption, such aliasing is possible 
8
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What the calculus is about
Relation of interest:

“In the computation, e might become aliased to f”
Definition:

Not necessarily transitive:
if c then

x := y
else

y := z
end

9

A binary relation is an alias relation
if it is symmetric and irreflexive

Can alias x to y

and y to z

but not x to z

What the calculus is about

The calculus defines, for any instruction p and any alias 
relation a,the value of

a  » p

which denotes:
The aliasing relation resulting from executing

p from an initial state in which the aliasing

relation is a
For an entire program: compute  » p

10



6

Obtaining an alias relation

If r is a relation in E  E,  the following is an alias relation:
r (r  r-1) ― Id [E]

Example: {[x, x], [x, y], [y, z]} =

Generalized to sets:

{x, y, z}  =

=

11

Set difference
Identity  on E

Set  of binary relations on E; formally: P (E x E)

{[x, y], [y, x], [y, z], [z, y]}

{[x, y], [y, x], [x, z], [z, x], [y, z], [z, y]}

“Complete” alias relation

Canonical form & alias diagrams

Canonical form of an alias relation: union of complete alias 
relations, e.g. 

, meaning

None of the sets of expressions
is a subset of another

12

x, y,   y, z,   x, u, v

x

u, v

y

x

y, z

Make it canonical: x, x

, y
y

{x, y}   { y, z}   {x, u, v}

(not canonical)
An alias diagram:

yy



7

The alias calculus

a » skip = a
a » (then p else q end) = (a » p)  (a » q)
a » (p ; q) = (a » p) » q
a » (forget x) = a \- {x}
a » (create x) = a \- {x}
a » (x := y)     = a [x: y]
a » cut x, y =  a ― x, y
a » p0 =  a
a » pn+1 =  (a » pn) » p
a » (loop p end) =   (a » pn)

a » call r (v) =  (a [x  r : v]) » r
a » call x r (v)  =   x  (x’  (call r (v))

13

nN

Plus:
x Current = x
Current x = x
x’ old x = Current
x x’ = Current
Current’ = Current

a [x: y] = given b = a\- {x} then
b  ({x} x (b/y))

end

The forget rule

a » (forget x) = a \- {x}

14

y

x, 

y, z

x,

u, v

x,

x,

y
a deprived of all
pairs involving x
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Operations on alias relations

For an alias relation a in E  E, an expression x, and a set of 
expressions A  E, the following are alias relations:

r \– A   = r — E x A

a / x = {y: E | (y = x)  [x, y]  a} 

15



“Quotient”, similar to equivalence 
class in equivalence relation



“Minus”
Set of all expressions

The assignment rule (non O-O)

All u aliased to y 
in b, plus y itself

a [x: y]     = given
b  =  a  \- {x}

then
b     ({x}   ( b / y ))

end

16


Symmetrize
and de-reflect

a deprived of all pairs involving x

All pairs [x, u] where u is either 
aliased to y in b or y itself

Value of a » (x := y)
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z := x

Assignment example 1

17

x

u, vx,

, y

Before

, z

, z

After

Assignment example 2

18

x

u, vx,

, yx, y

x := u

BeforeAfter
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Assignment example 3 

19

x

u, vx,

, yx, y

x, z

x,

x := z

BeforeAfter

The cut instruction

cut x, y

Semantics: remove aliasing, if any, between x and y

20
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Cut example 1

21

x

u, vx,

, yx, y

cut x, y

BeforeAfter

Cut example 2

22

x, y

u, vx,x,

x, v

cut x, u

BeforeAfter
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Cut rule

a » cut x, y =  a ― x, y

23

Set difference

The role of cut

cut x, y  informs the alias calculus with non-alias properties 
coming from other sources
Example:

if m < n then x := u else x := y end
m := m + 1
if m < n then z := x end

But here   x cannot be aliased to y (only to u). The alias 
theory does not know this property!
To take advantage of it, add the instruction

This expression represents
check x /= y end (Eiffel)
assert x != y ; (JML, Spec#)

24

Alias relation: 

x, u, z,   x, y, z

x, u,  x, y

cut x, y;
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Introducing repetitions

Loop constructs:

 pn (for integer n): n executions of p
(auxiliary notion)

 loop p end : any sequence (incl. empty) of executions of p

25

Aliasing from loop constructs

a » p0 =  a

a » pn+1 =  (a » pn) » p -- For n  0

-- Also equal to (a » p) » pn

a » (loop p end) =   (a » pn)

26

nN
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Loop aliasing theorem

a » (loop p end) is the fixpoint of the sequence
t0 =   a
tn+1 =  tn  (tn » p)

Gives a practical way to compute a » (loop p end)

Proof: by induction. If sn is original sequence    (a » pn), 
prove separately  sn  tn and tn  sn 

27

k: 0  n

Introducing procedures

A program is now sequence of procedure definitions (one 
designated as main):

ri (f) do pi end

Instructions: as before, plus
call ri (v)

-- Procedure call

28

Alias calculus notations:
 r denotes body of r (i.e.  ri = pi)
 r denotes formals of r (here f)  
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Handling arguments

The calculus will treat
call r (v) 

as
r := v ;   call r

(With recursion, possible loss of precision)

29

Generalize notation a [x: y] to lists: use
a [u: v]

as abbreviation for
(…((a [u1: v1])[u2: v2]) …[un: vn]

For example: a [r : v]

i.e. formal1 := actual1;… ; formaln := actualn

Call rule

a » call r (v)  =   a [r: v] » r

30

Formal arguments of r Body of r
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Using the call rule

31

a » call r (v)  =   a [r: v]  » r

Because of recursion,  no longer just definition but equation

For entire set of procedures P, this gives a vector equation

a » P =  AL (a » P)

Interpret as fixpoint equation and solve iteratively
(Fixpoint exists: increasing sequence on finite set) 

Object-oriented mechanisms

Add O-O constructs:

 1. Qualified expressions:  x y

Can be used as source (not target!) of assignments

x := y z

 2. Qualified calls: 

call x r (v)

 3. Current

32
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Assignment (original rule)

a [x: y] = given
b  =  a  \- {x}

then

b     ({x}   (b / y) )
end

33



a deprived of all pairs involving x

This includes [x, y] ! 
All pairs [x, u] where u is either 
aliased to y in b or y itself

All u aliased to y 
in b, plus y itselfExample:

x := y z

Value of a » (x := y)

Assigning a qualified expression

:= x y

34

x yx

x

z

x does not get aliased to x y!

(only to any z that was aliased to x y)

x := x y
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Assignment rule revisited

a [x: y]     = given
b  =  a  \- {x}

then
b     ({x}   (b / y))

end

35



a deprived of all pairs involving x
or an expression starting with  x

Example:

x := y z

Value of a » (x := y)

Non-O-O Alias diagrams

36

x

u, v

y, z

x,

, y

Source node Value nodesValue nodesValue nodes
Single source node
(represents stack)

Each value node represents a 
set of possible run-time 
values

Links: only from source to
value nodes (will become
more interesting with E4!)

Edge label: set of
variables; indicates they
can all be aliased to each 
other
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O-O Alias diagrams

:= x y

37

x yx

x

z

Links may now exist between value nodes
(now called object nodes)

Cycles possible (see next)

Source node

Value nodesValue nodesObject nodes

Negative variables (reminder)

x Current = x

Current x = x

x’old x = Current

x x’ = Current

Current’ = Current

38
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New form of call: qualified

call x r  (a, b, …)

39

Distribution operator (reminder): 

For a list v = <u, v, w, …>: 

x  v = <x u, x v, x v, …>

For a relation r in E  E : 

x  r = {[x a, x b]   |   [a, b]  r}

Example:

x  ( u, v, w,   u, y )      =   x u, x v, x w,   x u, x y 

40
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The qualified call rule

a » call x r (v)  = x  (x’  (call r (v))

Treat
call x r (v) 

as
x formals := v  ;   call x r

41

x x’

Current

target

Processing a qualified call

a » call x r =    x  ((x’  a) » r)

42

Alias relation:

c, d

x’ c, x’d
Prefix with x’  :

u, x’c, x’d

d := c
call

with
r
do 

v := u
end

u := x’ c

x  r

v,  u, x’  c, x’d
Prefix with x  :

x  v, x  u,     c,    d

xx’

c

u,

x’ c,
x’d

v,
x

x

x

x

c,
d

Current

c

x’ c,x c,x’ c,
x’dx d

u,
v,

x

x

, d, d

target

Current

x’
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Seen from the remote side

a » call x r =    x  ((x’  a) » r)

43

Alias relation:

c, d

x’ c, x’d
Prefix with x’  :

u, x’c, x’d

E4 version:
d := c
call

with
r
do 

v := u
end

u := x’ c

x  r

v,  u, x’  c, x’d
Prefix with x  :

x  v, x  u,     c,    d

xx’

c

u,

,

x’ c,
x’d

v,
x

x

x

x

c,
d

x’ c,x c,x’ c,
x’dx d

u,
v,

x

x

, d

target

Current

x’

xu, xv

Termination?

The original termination argument does not hold any more

Consider
from y := x loop

y := y a
end

y may become aliased to:
x, x a, x a a, x a a a etc.

(infinite set of expressions!)

44

x

a

a

a

a
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Termination: the question under study

Given  expressions e and f (of reference types) and a 
program location p :

At p , can e and f ever be attached to the same object?

45

The alias calculus

a » skip = a
a » (then p else q end) = (a » p)  (a » q)
a » (p ; q) = (a » p) » q
a » (forget x) = a \- {x}
a » (create x) = a \- {x}
a » (x := y)     = a [x: y]
a » cut x, y =  a ― x, y
a » p0 =  a
a » pn+1 =  (a » pn) » p
a » (loop p end) =   (a » pn)

a » call r (v) =  (a [x  r : v]) » r
a » call x r (v)  =   x  ((x’  a) » (call r (x’  v))

46

nN

Plus:
x Current = x
Current x = x
x’ old x = Current
x x’ = Current
Current’ = Current

a [x: y] = given b = a\- {x} then
b  ({x} x (b/y))

end
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Approaches for comparison

Separation logic

Shape analysis

Ownership

Dynamic frames

47

Achievements

Theory of aliasing
Simple (about a dozen rules)
New concepts: inverse variables, modeling Current
Graphical formalism (alias diagrams), canonical form
Implemented
Almost entirely automatic (except for occasional cut)
Small loss of precision, i.e. not too conservative
Abstract: does not mention stack and heap
Covers object-oriented programming
Faithful to O-O spirit; see qualified call rule

Can cover full modern O-O language
Potential solution to “frame problem”

48

a » call x f =    x  ((x’  a) » call f)
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Limitations and future work

Extend for polymorphism and dynamic binding

Use a more modular approach

Apply to solving frame problem

Integrate with standard axiomatic reasoning

Integrate implementation with compiler

49


