Software Verification (Fall 201 3)

Lecture 7: Graph-Based Reasoning
and Verification

Chris Poskitt

Chair of e
@ Software Engineering mzurICh

Programs we’ve reasoned about so far:
(1) store-manipulating programs

‘Store

5]
b[10
5

n o o
]
& U
%wo
!\)

C

Programs we’ve reasoned about so far:
(2) storetheap-manipulating programs

‘Store | (H eap

X := cons(3,3);

X > 3

y := cons(4,4);
[x+1]:=y;
[y+1]1:=x; _TES

\4

G

Programs we’ll reason about today:
graph-manipulating programs (!)

o
P—a
Bz

Programs we’ll reason about today:
graph-manipulating programs (!)

.
* What is a “graph manipulation™?

* Why reason about graphs?
e How do we reason about them?

-

~

J

Manipulating graphs!?

® creating a new graph out of another algorithmically
- relabelling (including “marking” nodes/edges)
- creation/deletion of structure

Manipulating graphs!?

® creating a new graph out of another algorithmically
- relabelling (including “marking” nodes/edges)
- creation/deletion of structure

AN >
\ | (how?] |)
7

One way to manipulate a graph

graph as an abstract data type:

adjacent (G, v, w)

addEdge (G, v, w)

deleteEdge (G, v, w)
etc.

with the graph data structure represented as
e.g.an adjacency matrix or adjacency list

implement graph algorithms
e.g. Dijkstra’s shortest path

A308 Northumberland Avenue

reason about and verify them using separation logic

S0, that’s all ... ?
(not entirely!)

can use separation logic in reasoning, but:
- significant sharing possible in graphs
=> proofs can become complicated

the beauty of graphs is in their simplicity
- lose some of this when worrying about representation

efficiently implementing graph algorithms is not our only aim
- abstraction facilitates high-level reasoning about
conceptually difficult problems

Raise the abstraction!

we will use graph transformation as a computational
abstraction

program states are graphs (in the mathematical sense)

computational steps are applications of rules

- akin to Chomsky string-rewriting rules, but for graphs

linkNodes:

-

I 2

_

3

J

Example

where not edge(1,3)

linkNodes:

-

I 2

_

3

J

Example

where not edge(1,3)

linkNNodes:
4 N
*—>0—>0
I 2 3
_ J

Example

where not edge(1,3)

=>

linkNodes

Example

linkNodes: .
4) : :
o—>0—>0 =>
I 2 3 I
\§ J \§

where not edge(1,3)

=>

linkNodes

__ J
nondeterministic!

| 4

Example

linkNodes: .
4)
*——o—e => @
I 2 3 I 2
\ J g
where not edge(1,3)
) 4)
=> =>
® linkNodes ® linkNodes
J \§ J

nondeterministic!

|5

Example

linkNodes: .
4)
*——o—e => @
I 2 3 I 2
\ J g
where not edge(1,3)
D e N
=> =>
® linkNodes ® linkNodes
J N y

nondeterministic!

|6

A few of the application areas of graph
transformation in CS:

® graph reduction in functional programming languages
® model-driven software development; semantics of UML
® checking shape safety of pointer manipulations

® visual modelling of structure/attribute-changing systems
- e.g.a rule in a “mobile” system (Pennemann 09)

A few of the application areas of graph
transformation in CS:

® graph reduction in functional programming languages
® model-driven software development; semantics of UML
® checking shape safety of pointer manipulations

® visual modelling of structure/attribute-changing systems
- e.g.a rule in a “mobile” system (Pennemann 09)

-0~ ® =
1 2 3

Modelling is only half the story

® modelling problems as graphs and graph transformation
rules is only “half the story”

® such visualisations aid in our understanding
- intuitively express the relations between entities

but the use of such techniques alone does not guarantee
! correctness

Modelling is only half the story

® modelling problems as graphs and graph transformation
rules is only “half the story”

® such visualisations aid in our understanding
- intuitively express the relations between entities

but the use of such techniques alone does not guarantee
! correctness

{ pre 7 } => { post ? }

20

Verifying graph transformations

® a comprehensive theory for graph transformation
has been developed since the 1970s
- based on notions from category theory
- (only an informal presentation today)

Ehrig et al.

® 3 basis for sound formal reasoning and verification

® but verification research in the community only gained
momentum in the last decade

- model checking approaches (Rensink,Varro, Konig, ...)

- weakest preconditions (Habel & Pennemann)
- Hoare logic and attributes (Poskitt & Plump)

21

Verifying graph transformations

® a comprehensive theory for graph transformation
has been developed since the 1970s
- based on notions from category theory
- (only an informal presentation today)

Ehrig et al.

® 3 basis for sound formal reasoning and verification

® but verification research in the community only gained
momentum in the last decade

- model checking approaches (Rensink,Varro, Konig, ...)

- weakest preconditions (Habel & Pennemann)
- Hoare logic and attributes (Poskitt & Plump)

22

Next on the agenda

(1) a programming language for graphs
(2) an assertion language for graphs
(3) Hoare-style reasoning about graph transformation

(4) program proofs

23

A program state is a graph
(and only a graph)

not a store, not a heap, not any kind of mapping from
variables to data

just a graph

label alphabet: (sequences of) integers and strings

parallel edges and loops allowed

24

A program state is a graph
(and only a graph)

® not a store, not a heap, not any kind of mapping from
variables to data

® justa graph

® J|abel alphabet: (sequences of) integers and strings

® parallel edges and loops allowed

" what about variables,
e \ counters,..?

25

A programming language based on graph
transformation

® we will follow the syntax and semantics of GP 2
- for “Graph Programs”
- other languages: AGG, Fujaba, and GrGen

® graph programs comprise two components: Plump
(1) a set of graph transformation rules

(2) a command sequence informing their application

26

Graph transformation rules

® rules comprise two graphs:
(1) a left-hand side L, describing what is to be matched

(2) a right-hand side R, describing what to replace the

match with
4) 4)
L => | R
\§ J \§ J
condition

® both L and R are labelled over expressions

® rule can be equipped with a textual condition
- expressing relations between labels, nodes

27

Example

bridge(a,b,x,y,z: list)

4 p
() a () b ()
1 2 3
N J

where not edge(1, 3)

28

4)
X .2
1 2 3
- J

Example

rule name

brige(a,b,x,y,z: 1list)

where not edge(1, 3)

29

4 p
a b
05008
1 2 3
N J

4)
X .2
1 2 3
- J

Example

~ “variables”, instantiated during graph matching
/1 (tybe list = sequences of ints and strings)

bridge(a,b,x,y,z: list) 2

where not edge(1, 3)

30

Example

~ “variables”, instantiated during graph matching
/1 (type list = sequences of ints and strings)

bridge(a,b, X,y,z: list) 4 . N
(~
oo oo o
1 2 3 n > -
_) \)

where not edge(1, 3)

brogram states (graphs) do not have variables
..but rules do!
Here they are placeholders, not references to a store

31

Example

bridge(a,b,x,y,z: list) g - A
1 2 3
y

where not edge(1, 3)

new edge takes the label x’: z’
where x |-> x’and z |-> Z°

32

Example

bridge(a,b,x,y,z: list) -

! 2

where not edge(1, 3)

numbers indicate that &
the nodes are the same

33

Example

bridge(a,b,x,y,z: list)

where not edge(1, 3)

a condition: rule cannot be
applied if there is an edge
from matched node | to

matched node 3
34

Example rule application

bridge(a,b,x,y,z: list)

where not edge(1, 3)

35

. let us apply bridge to this graph

Example rule application

bridge(a,b,x,y,z: list) 4 < - > A
N
1 2 3 1 2 3
y N y

where not edge(1, 3)

. let us apply bridge to this graph

find mapping &: Vars -> Data such that:

(1) there is a “match” for L* in the graph
(2) the condition holds

36

Example rule application

bridge(a,b,x,y,z: list) g <)
1 2 3
N y
-> blank

-> blank

37

LO(

Example rule application

bridge(a,b,x,y,z: list)

@@@

where not edge(1, 3)

EN0,0

~

N

38

N
X . Z
: : 55 - @
1 2 3
- Y,

> 0:1:2 i a |-> blank

> 3 b |-> blank

LO(

Example rule application

bridge(a,b,x,y,z: list)

@@@

~
X .2
1 2 3
- J

where not edge(1, 3)

LO(

Example rule application

bridge(a,b,x,y,z: list)

@@@

where not edge(1, 3)

40

~
X .2
1 2 3
- J

LO(

Example rule application

bridge(a,b,x,y,z: list)

@@@

where not edge(1, 3)

~
X .2
1 2 3
- J

-

~

0:1:2:4

@

LO(

Example rule application

bridge(a,b,x,y,z: list)

@@@ :

where not edge(1, 3)

~
X .2
1 2 3
- J

-

~

0:1:2:4

(o206 0)

0:1:2:4

r@ﬁ

Example rule application

bridge(a,b,x,y,z: list)

@@@

where not edge(1, 3)

4)
X . Z
:: :: : Ef SE - <::::::>
1 2 3
- J

0:1:2:4

ENSp O p

bmdge

43

Rule application is hondeterministic

bridge(a,b,x,y,z: list)

G0 - |0

where not edge(1, 3)
. : : rule application is nondeterministic
! - what other graph could result?

44

Deleting nodes

® we can create nodes/edges and relabel without issue
® we can even delete edges without issue

® can we arbitrarily delete nodes!?

45

Deleting nodes
clip (x,y: int)

0= [

I I
. Y \. J

46

Deleting nodes
clip (x,y: int)

) 4)
OnOIO
I I
\ J N y
=>clip

47

Deleting nodes
clip (x,y: int)

48

Deleting nodes: a solution

only allow rule applications that do not leave edges
dangling

satisfy the “dangling condition”

called the double-pushout approach (DPO) to graph
transformation

- key property: rule applications are side-effect free

49

Deleting nodes: notation alert!

trickyRule (x: int)

~

o=@

- J - J

\

50

Deleting nodes: notation alert!

trickyRule (x: int)

/'\ no number implies nodes are not the same
o

i.e. match of L% is deleted, then recreated with the same label

~

51

No matches => failure

trickyRule (x: int)
4) 4)
()| =
- J - J
=>trickyRuIe

52

No matches => failure

trickyRule (x: int)
4) 4)
OO
- J - J
=>trickyRuIe M

53

No matches => failure

trickyRule (x: int)

~N

o=@

- J - J

[no match since an edge would be left danglingj

~

- program fails and terminates

O al

= >trickyRuIe

54

Graph programs: control constructs

® simple core of control constructs

lf {TO, coey rn} ﬂ

v

{ro, ..., n}
P; Q

{1’0, very Tn}.’

nen P else O

try {ro, ..., tu} t

nen P else O

55

single rule application
nondeterministic rule choice
sequential composition
as-long-as-possible iteration

Graph programs: control constructs

® simple core of control constructs

r single rule application
{ro, ..., 7l nondeterministic rule choice
P;Q sequential composition
{ro, ..., 7o}l as-long-as-possible iteration
{70, oy T t:nen Prelse Qé)mnch decided on whether guard fails or no?
try (ro, ..., tn/ then P else Q - in “if ”, the effects of guard not retained

- in “try”, the effects of guard are retained)

56

Example graph program: compute a

colouring

[colouring = init!; inc! J

init(x: atom)

®

;1/

—

1

inc(i: int; k: 1list; x,y: atom)

=

-

e
1

0 2

~

J

NB: type “atom”™ denotes an int or string; type “list” denotes an
arbitrary sequence of ints/strings

57

[colouring = init!; inc! J

init(x: atom)

—)

—

inc(i: int; k: list; x,y: atom)

4)
. k
. ! 2 J

58

=

[colouring = init!; inc! J

init(x: atom) inc(i: int; k: list; x,y: atom)
e 2
N) " D .
= g =
1) \ 1) _ 1 2 J L 1 2 P

59

[colouring = init!; inc! J

init(x: atom)

—)

O

1

—

M —)

inc(i: int; k: list; x,y: atom)

4)
:‘

-

)

\

J

@é&\@ .4

04@@

Next on the agenda

(1) a programming language for graphs J

(2) an assertion language for graphs
(3) Hoare-style reasoning about graph transformation

(4) program proofs

61

An assertion language for graphs

we could use some first-order logic interpreted over
graphs

[Hv. node(v) A l(v) = ”party”}

but program states are graphs, and computational steps
are graph transformation rules
- both at a high-level of abstraction

define an assertion language at the same level of
abstraction
- facilitate visual specifications
- integrate the theory of graph transformation into
assertional reasoning

62

E-conditions: graphical assertions about
the program state

® [-conditions - a logical assertion language embedding
pictures of graphs

® jdea: express the existence of some subgraph with
particular structural features and particular relations
between labels

® combine with Boolean negation and connectives for a
visual logic equivalent to first-order logic over graphs

® historical note: a generalisation of nested conditions (Habel
& Pennemann)

63

E-conditions: graphical assertions about
the program state

true 3(C | .c)

64

E-conditions: graphical assertions about
the program state

3(C |y,)]

a constant symbol

65

E-conditions: graphical assertions about
the program state

[true} [E 7, C/)J

C is a graph labelled over expressions

66

E-conditions: graphical assertions about
the program state

[true} [E(C’ |, C/)J

Y is a constraint over the labels of C

67

E-conditions: graphical assertions about
the program state

[true} [E (C'| ’Y/)J

c’is an E-condition, i.e. true or 3(C" | v/, ")

68

Semantics by example

ED

satisfied by all graphs

69

Semantics by example

LI
N
N—"

“there exists a node incident to
a loop™

70

Semantics by example

variables are untyped

(and here, unconstrained)
J

LI
N
N—"

“there exists a node incident to
a loop™

71

Semantics by example

3(C |y,)]
y A .

[) ©)
) we don’t write Y or ¢

if they are just true
J

L1
~—~

“there exists a node incident to
a loop™

72

Boolean expressions over E-conditions
are also E-conditions

“there does not exist a node
incident to a loop™

73

Expressions as labels are important, too!

EO=Y0)

74

Expressions as labels are important, too!

EO=Y0)

“there does not exist a pair of

adjacent nodes with the same
label”

75

Expressions as labels are important, too!

E(O<60)
Twhat is k all about?j

“there does not exist a pair of

adjacent nodes with the same
label”

76

Expressions as labels are important, too!

i
1]

(@—k>@ 'k = X*X)

Tnow k is constrainedj

77

Expressions as labels are important, too!

i
1]

(@—k>® 'k = X*X)

Tnow k is constrainedj

“there does not exist a pair of adjacent
nodes such that:

(1) the nodes have the same label; and

(2) the edge is the square of that label”

78

Constraints enforce relations between
labels

jan
¥
©
M
V
g

79

Constraints enforce relations between
labels

(O—~® |x > y)
A= _(@|Z<O)

“there is a pair of adjacent nodes with source
label greater than target label
AND no node is labelled with a negative
number”

80

Nesting allows assertions about specific
contexts

WO, A0,

J

81

Nesting allows assertions about specific
contexts

these nodes and the k-labelled edge are
the same
- nesting allows us to express
broperties about particular contexts
i.e. express something about the
universally quantified graph

82

Nesting allows assertions about specific
contexts

k
(O OE(O==8)

J

“if there is an edge from v to w, then there is
also an edge from w to v (graph is
undirected)”

83

View as a “tree” that is building up
structural and relational information

k
(@, A=) A @)

84

View as a “tree” that is building up
structural and relational information

k
(@, A=) A @)

I

7|
_ @1
/N
O+ @O0

85

View as a “tree” that is building up
structural and relational information

One®

k
(@, A=) A @)

P
@ for every node,
Vl (1) there exists an outgoing edge
to another node; and
@1 (2) there does not exist a pair of

J

7 \ outgoing edges to another node
_ | .
A\

=0

86

Satisfaction of E-conditions
(an incomplete definition)

® 2 graph G satisfies an E-condition ¢, written G = ¢, if:

(1) c = true; or

87

Satisfaction of E-conditions
(an incomplete definition)

® 2 graph G satisfies an E-condition ¢, written G = ¢, if:
(1) c = true; or
2)c=3(C | ~,c)
and there is a mapping &:Vars -> Data such that

(@) [ly[Joe = true;
(b) C%is a subgraph of G;
(c) the context of C%in G “satisfies” ¢’

88

Satisfaction of E-conditions
(an incomplete definition)

® 2 graph G satisfies an E-condition ¢, written G = ¢, if:

(1) c = true; or
2)c=3(C [7,c)

and there is a mapping &:Vars -> Data such that

(@) [ly[Joe = true;
(b) C%is a subgraph of G;

(c) the context of C%in G “satisfies” ¢’

/\
4)

the complete formal definition needs the
notion of “morphism” for the inductive part (c)
J

_

Satisfaction by example

@1\% = 3 ginux)) @

90

Satisfaction by example

@1\82 5 gim(x» V4

by assignment x |-> 6, k |-> 2

91

What can E-conditions not specify?

E-conditions are expressively equivalent to a first-order logic
interpreted over graphs

for relations between labels, this is great...

...but for graphs, first-order logic is quite weak for expressing
structure

- only “local” properties
- need more than FO for path properties, connectedness...

what prevents us from simply adding
predicates for these properties?

92

Next on the agenda

(1) a programming language for graphs J
(2) an assertion language for graphs J

(3) Hoare-style reasoning about graph transformation

(4) program proofs

93

Partial correctness specifications

/ graph program

= {pre} P {post}

N

E-conditions

® partial correctness:if program P is executed on a graph G
such that G |= pre, then if a graph H results, H |= post

e differs to the partial correctness definition in lecture 2:
- nondeterminism: many graphs H could result, but all
guaranteed to satisfy post

- P might fail on G

94

Proof rules

{c} r{d} foreachr € R

|[ruleset]

¢y R d;

where: R =A{rg,...,rn}

95

Proof rules

¢y Pie; 1ep Qdj}

[comp]

{c} P; Q{d}

96

Proof rules

{inv} R {inv}
{inv} Rl {inv A =App(R)}

\

(where App(R) constructs an E-condition A

_expressing that R will not fail on the graph

']

97

Proof rules

] {cNApp(R)} P{d} {cA-App(R)} Q {d}
{c} if R then P else) {d}

[try) {cNApp(R)} R; P{d} {cAN—-App(R)} Q {d}

{c} try R then P else Q) {d}

98

Proof rules

c=c {d}P{d} d=4d
/\ 1ct P {d;

4)

how to show the validity of an E-condition?
N Y

|[cons]

99

Axioms

nonaPPl R pp({r])) r {alse]

100

Axioms

[ruleapp] {Pre(r,c)} r {c}

A

" where Pre(r,c) constructs an E-condition expressing\
the weakest precondition that must hold for r to
\establish C

101

What does App(R) look like?

(see Poskitt |3 for the construction)

reduce(a,b,c: int)

@+® = @,

a<bandb<c

an E-condition equivalent to the following is
constructed by App(reduce):

102

What does App(R) look like?

(see Poskitt |3 for the construction)

reduce(a,b,c: int)

@+® = @,

a<bandb<c

an E-condition equivalent to the following is
constructed by App(reduce):

3(@—C>@ \a<bandb<c

@ﬁl‘@ ’\@> A @@)
A=3(@ =®F®) A3 @—j@%

103

What does App(R) look like?

(see Poskitt |3 for the construction)

reduce(a,b,c: int)

O—~0® = G

a<bandb<c

an E-condition equivalent to the following is
constructed by App(reduce): (there is a potential matchj

. — satisfying the condition
3 @—, \a<bandb<c S

@ﬁ‘@ ’\@> A @@)
/\Aﬂ(@~®®) A3 @—j@%

Ccontext satisfies dangling condition!)

What does Pre(r,c) look like?
(see Poskitt |3 for the construction)

1n1t X atom

@ ‘ \ake init as r)

V(®,,3(@, | atom(a))V I((@, |a=Db:cand atom (b) and c >=0))

wﬁake as postcondition ¢
“every node is either labelled by (1) an atom; or
\(2) a sequence b:c with b an atom, ¢ a natural

~

J

105

What does Pre(r,c) look like?
(see Poskitt |3 for the construction)

- - B
take home point:
embeds the left-hand graph of r and the

_ postcondition ¢ together in a precondition

V(®, | atom (x), |
V(®, @, ® @, atom(a))

VI ®, @, |a=b:candatom(b) and c >=0))

AV(®,,3(®, | atom (x:0))
VI(®, | x:0=>b:candatom(b) and c >=0)))

106

Instance of [ruleapp] axiom for init, ¢

4)

V(®, | atom (%),
V(®, @, ®, @,|aton(a))
VI ®, @,|a=b:candatom(b) and c >=0))

AV(®,3(®, | atom (x:0))

VI(®, | x:0=Db:cand atom(b) and c >=0)))

_ J

NIt

((@ (@, | atom(a)) VI((@, | a=D:c and atom (b) andc>=0)3

|07

Classic Hoare logic vs. graph program
Hoare logic

® for the most part, classic and graph-based Hoare logic are
very similar

® but interestingly, in “raising the abstraction” of programs
and assertions, we make the core axiom of the Hoare
/'\Iogic very technical / complicated
®

- compare to the simplicity of the assignment axiom

® motivates tool support, especially for generating App(R),

Pre(r,c), and for deciding implications that have them as
consequences

108

Next on the agenda

(1) a programming language for graphs J

(2) an assertion language for graphs J
(3) Hoare-style reasoning about graph transformation /

(4) program proofs

109

Partial correctness of colouring

[colouring = init!; inc!]

init(x: atom)

)

&)

;1/

—

L

inc(i: int; k: 1list; x,y: atom)

|10

—

-

_

S
1

2

~

J

Partial correctness of colouring

[colouring = init!; inc!]

init(x: atom)

)

&)

;1/

1

—

L

—

inc(i: int; k: 1list; x,y: atom)

-

_

S
1

2

~

J

{V(®,3(®, | atom (a))) }

init!; inc!
V(®,,3(@, |a=b:c and atom (b) and c >=0))

/\ﬂEl(| atom (x,y) and int (i))

J

[ruleapp]

[cons]

']

{Pre(init,e)} init {e}

{e} init {e}

[ruleapp] {Pre(inc,d)} inc {d}

fe} init! {e A ~App({init})} [cons] {d} inc {d)

[cons]

(e} tmit! {d) " {dy incl {4 ~App({inc})]

[comp] par {¢} init!; inc! {d A -App({inc})}

112

[ruleapp]

{Pre(init,e)} init {e}

|cons]

']

{e} init {e}

[ruleapp] {Pre(inc,d)} inc {d}

{e} init! {e A “App({init})}

[cons] (d} inc {d)

[cons]

fc} init! {d}

[!] {d} inc! {d A =App({inc})}

[comp]

—App({inc})

Fpar ¢} init!; inc! {d A =App({inc})}

atom (a)))

a="b:c and atom (b) and c >=0))

ﬂfl(@—li | atom (x,y) and int (i))

113

[ruleapp]

{Pre(init,e)} init {e}

1
[[‘:;’“S] {e} init {e} i [ec f; Z 1 {Pre(inc,d)} inc {d}
[Cons'] {e} init! {e A =App({init})} - {d} inc {d}
[comp] {c} init! {d} ~ {d} inc! {d A =App({inc})}
Fpar ¢} init!; inc! {d A =App({inc})}
c = Y @1, 3(@1 atom (a)))
d = VY @1,3(@1 a=Db:c and atom (b) and c >=0))
e = VY @1, 3(@1 atom (a))
vV 3(@1 |a=Db:candatom(b) and ¢ >=0))
-App({init}) = -3I(® |atom(x))
-App({inc}) = ﬂEI(@—IL | atom (x,y) and int (i))

| 14

Next on the agenda

(1) a programming language for graphs J

(2) an assertion language for graphs J
(3) Hoare-style reasoning about graph transformation /

(4) program proofs J

15

The full picture

® many technical details hidden “under the carpet”

- impossible to cover everything in the assigned time

® the full picture is quite interesting (I think!)

- references will be added to the course webpage

- but these are of course optional readings

- the exercises on VWednesday will make clear the
level of understanding | aimed for

16

Summary

motivated the study of graph-manipulating
programs and discussed some applications

introduced the notion of graph transformation:
program states as graphs; steps as rules

considered a programming language for modelling
problems as graph transformations

presented an overview of an assertion language
and Hoare logic for proving properties about
graph structure and relations between labels

117

Ongoing work

® reasoning about arbitrary-length path properties

® graph-based semantics for concurrency models

|18

Thank you! Questions?

Next lecture:

® data flow analysis (with Sebastian Nanz)

119

