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Programs we’ve reasoned about so far:
(1) store-manipulating programs
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Store

a
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b
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a := 5;
b := a*2;
c := a;
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x := cons(3,3);
y := cons(4,4);
[x+1] := y;
[y+1] := x;

Store Heap
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Programs we’ve reasoned about so far:
(2) store+heap-manipulating programs



Programs we’ll reason about today:
graph-manipulating programs (!)
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• What is a “graph manipulation”?
• Why reason about graphs?
• How do we reason about them?

Programs we’ll reason about today:
graph-manipulating programs (!)



Manipulating graphs?
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• creating a new graph out of another algorithmically
   - relabelling (including “marking” nodes/edges)
   - creation/deletion of structure
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One way to manipulate a graph
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• graph as an abstract data type:

   adjacent(G,v,w)
   addEdge(G,v,w)
   deleteEdge(G,v,w)
         etc.

with the graph data structure represented as 
  e.g. an adjacency matrix or adjacency list

• implement graph algorithms
   e.g. Dijkstra’s shortest path

• reason about and verify them using separation logic



So, that’s all ... ?
(not entirely!)
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• can use separation logic in reasoning, but:
   - significant sharing possible in graphs
        => proofs can become complicated

• the beauty of graphs is in their simplicity
   - lose some of this when worrying about representation

• efficiently implementing graph algorithms is not our only aim
   - abstraction facilitates high-level reasoning about
      conceptually difficult problems



Raise the abstraction!
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• we will use graph transformation as a computational 
abstraction

• program states are graphs (in the mathematical sense)

• computational steps are applications of rules

   - akin to Chomsky string-rewriting rules, but for graphs



Example
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where not edge(1,3)
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A few of the application areas of graph 
transformation in CS:
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• graph reduction in functional programming languages

• model-driven software development; semantics of UML

• checking shape safety of pointer manipulations

• visual modelling of structure/attribute-changing systems
   - e.g. a rule in a “mobile” system (Pennemann 09)
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1. Introduction

Graph transformation has many application areas in computer science, such
as software engineering or the design of concurrent and distributed sys-
tems. Especially the operational behavior of structure changing systems
such as “mobile” systems (in the sense of dynamically changing communi-
cation topologies) is suited to be modeled by graph transformation rules
[EHKP91].

In the context of increasingly larger and more complex systems that hard-
ware and software engineers have to construct, visual modeling techniques
such as graph transformation can be expected to play a key role in the future.
However, the use of visual modeling techniques alone does not guarantee the
correctness of a design. The complexity of the problem to consider all possi-
ble outcomes of a given behavior specification remains the same whether such
a specification is visual or not. In context of rising standards for trustworthy
systems, there is a growing need for the verification of graph transformation
systems and programs. The research of appropriate methods for this pur-
pose is the topic of this thesis. More precisely, a major goal is the ability
to determine the correctness of graph program specifications consisting of a
graph precondition, a graph program and a graph postcondition such as the
one presented in Figure 1.1. As usual, such a specification is correct, if all

∀

(

1 2 3
, ∃

1 2 3

) precondition: Every user
logged into a system has the
appropriate access right.

〈

1 2 3
↪⇀

1 2 3

〉 program: If a user with the
appropriate access right pro-
poses a session, it is accepted.

∀

(

1 2 3
, ∃

1 2 3

) postcondition: Every user
logged into a system has the
appropriate access right.

Figure 1.1: Example specification of an access control system
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Modelling is only half the story

19

• modelling problems as graphs and graph transformation 
rules is only “half the story”

• such visualisations aid in our understanding
   - intuitively express the relations between entities

• but the use of such techniques alone does not guarantee
  correctness!
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Verifying graph transformations

21

• a comprehensive theory for graph transformation
has been developed since the 1970s
   - based on notions from category theory
   - (only an informal presentation today)

• a basis for sound formal reasoning and verification

• but verification research in the community only gained 
momentum in the last decade

   - model checking approaches (Rensink, Varró, König, ... )
   - weakest preconditions (Habel & Pennemann)
   - Hoare logic and attributes (Poskitt & Plump)

Ehrig et al.
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Next on the agenda

(1) a programming language for graphs

(2) an assertion language for graphs

(3) Hoare-style reasoning about graph transformation

(4) program proofs

23



A program state is a graph
(and only a graph)
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Chapter 2. Computing by Graph Transformation

2.2.4 Example Programs

In this subsection, we present some example programs in order to give
some intuition into graph programming, before later introducing a formal
operational semantics. The first program manipulates the labels of nodes
to compute a graph colouring; the second marks nodes in order to check
connectedness; and the third reduces an input graph to check whether it
was a tree or not.

Example 2.43 (Computing a graph colouring). The program colouring in
Figure 2.19 produces a colouring (an assignment of integers to nodes such
that adjacent nodes have different colours) for every input graph that is
unmarked and atom-labelled, recording colours as the second elements in
the list components of nodes.

main = init!; inc!

init(x : atom) inc(i : int; k : list; x, y : atom)

1

x ⇒
1

x :0 x :i y :i

1 2

k ⇒ x :i y :i+1

1
2

k

3

3

33

3 3

33 ⇒+ 3:0

3:1

3:03:1

3 3

33

⇒+

3:0

3:1

3:23:1

3 3

33

Figure 2.19: The program colouring and two of its executions

The program initially colours each node with 0 by applying the rule
schema init as long as possible, using the iteration operator ’!’. It then
iterates inc for as long as possible, which matches adjacent nodes with the
same colour, and increments the colour of the target node by 1. Observe
that the iteration of inc will only end once the graph is correctly coloured,
otherwise inc would be applied again and the iteration would continue.
(Note that for simplicity the program only operates on unmarked nodes
and edges, but could easily be extended for marked ones were it necessary.)

30

• not a store, not a heap, not any kind of mapping from 
variables to data

• just a graph

• label alphabet: (sequences of) integers and strings

• parallel edges and loops allowed
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!
what about variables, 
counters, ... ?



A programming language based on graph 
transformation
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• we will follow the syntax and semantics of GP 2
   - for “Graph Programs”
   - other languages: AGG, Fujaba, and GrGen

• graph programs comprise two components:

   (1) a set of graph transformation rules

   (2) a command sequence informing their application

Plump



Graph transformation rules
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• rules comprise two graphs:

   (1) a left-hand side L, describing what is to be matched

   (2) a right-hand side R, describing what to replace the
        match with

• both L and R are labelled over expressions

• rule can be equipped with a textual condition
   - expressing relations between labels, nodes

=>L R

condition



Example
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2.2. Graph Programs

bridge(a, b, x, y, z : list)

x

1

y

2

z

3

a b ⇒ x

1

y

2 3

z

3

x : z

a b

where not edge(1, 3)

Figure 2.16: A conditional rule schema

2.2.2 Semantics of Rule Schema Application

In this subsection we define the semantics of (conditional) rule schema ap-
plication which proceeds roughly as follows. For a rule schema r with con-
dition Γ applied to a graph G ∈ G(L):

1. match the left-hand graph L of r with a subgraph of G, ignoring la-
bels;

2. check whether there is an assignment α mapping variables to values
in L such that after evaluating expressions in L, the match is label
preserving;

3. check whether the condition Γ evaluates to true under the assign-
ment;

4. apply to G the rule obtained from r by evaluating all expressions in
the left and right graph.

We formalise these steps in what follows. First we define premorphisms,
which are graph morphisms that disregard labels. Then, we define assign-
ments for the evaluation of expressions, showing how to obtain a graph
in G(L) from a graph in G(RS). Finally, we define the evaluation of rule
schema conditions before putting everything together and defining (condi-
tional) rule schema application.

Since premorphisms are only required in this thesis for graph matching,
we tailor our definition to the particular label alphabets, and require the
functions to be injective.

Definition 2.35 (Premorphism). Given graphs L ∈ G(RS) and G ∈ G(L), a
premorphism g : L ↪→ G consists of two injective functions gV : VL ↪→ VG and
gE : EL ↪→ EG that preserve sources and targets, i.e. sG ◦ gE = gV ◦ sL and
tG ◦ gE = gV ◦ tL.

Each graph in G(RS) represents a possibly infinite set of graphs in G(L).
The latter are obtained by mapping values from L to variables and evalu-
ating expressions.

25
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“variables”, instantiated during graph matching
  (type list = sequences of ints and strings)
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“variables”, instantiated during graph matching
  (type list = sequences of ints and strings)

!
program states (graphs) do not have variables
...but rules do!
Here they are placeholders, not references to a store
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new edge takes the label x’ : z’
where x |-> x’ and z |-> z’
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numbers indicate that
the nodes are the same
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in L such that after evaluating expressions in L, the match is label
preserving;

3. check whether the condition Γ evaluates to true under the assign-
ment;

4. apply to G the rule obtained from r by evaluating all expressions in
the left and right graph.

We formalise these steps in what follows. First we define premorphisms,
which are graph morphisms that disregard labels. Then, we define assign-
ments for the evaluation of expressions, showing how to obtain a graph
in G(L) from a graph in G(RS). Finally, we define the evaluation of rule
schema conditions before putting everything together and defining (condi-
tional) rule schema application.

Since premorphisms are only required in this thesis for graph matching,
we tailor our definition to the particular label alphabets, and require the
functions to be injective.

Definition 2.35 (Premorphism). Given graphs L ∈ G(RS) and G ∈ G(L), a
premorphism g : L ↪→ G consists of two injective functions gV : VL ↪→ VG and
gE : EL ↪→ EG that preserve sources and targets, i.e. sG ◦ gE = gV ◦ sL and
tG ◦ gE = gV ◦ tL.

Each graph in G(RS) represents a possibly infinite set of graphs in G(L).
The latter are obtained by mapping values from L to variables and evalu-
ating expressions.
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2.2.3 Abstract Syntax of Programs

Recall that graph programs consist of declarations of (conditional) rule
schemata and some program text (which might be organised into macros).
In this subsection, we give a grammar defining the abstract syntax of pro-
grams in GP, before giving a basic intuition into the meaning of the control
constructs (a formal operational semantics will be given later).

Definition 2.42 (Abstract syntax of programs). Figure 2.18 contains the
grammar for the abstract syntax of graph program. The identifiers of cate-
gory RuleId occurring in a RuleSetCall refer to declarations of (conditional)
rule schemata in RuleDecl, which we have discussed in the previous sec-
tions. As usual, ambiguity is resolved by the use of parentheses.

The most fundamental command in GP is the application of a set of
(conditional) rule schemata, represented in the grammar by RuleSetCall.
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We formalise these steps in what follows. First we define premorphisms,
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2.2.3 Abstract Syntax of Programs

Recall that graph programs consist of declarations of (conditional) rule
schemata and some program text (which might be organised into macros).
In this subsection, we give a grammar defining the abstract syntax of pro-
grams in GP, before giving a basic intuition into the meaning of the control
constructs (a formal operational semantics will be given later).

Definition 2.42 (Abstract syntax of programs). Figure 2.18 contains the
grammar for the abstract syntax of graph program. The identifiers of cate-
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In this subsection we define the semantics of (conditional) rule schema ap-
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preserving;
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2.2.3 Abstract Syntax of Programs

Recall that graph programs consist of declarations of (conditional) rule
schemata and some program text (which might be organised into macros).
In this subsection, we give a grammar defining the abstract syntax of pro-
grams in GP, before giving a basic intuition into the meaning of the control
constructs (a formal operational semantics will be given later).

Definition 2.42 (Abstract syntax of programs). Figure 2.18 contains the
grammar for the abstract syntax of graph program. The identifiers of cate-
gory RuleId occurring in a RuleSetCall refer to declarations of (conditional)
rule schemata in RuleDecl, which we have discussed in the previous sec-
tions. As usual, ambiguity is resolved by the use of parentheses.

The most fundamental command in GP is the application of a set of
(conditional) rule schemata, represented in the grammar by RuleSetCall.
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2.2.2 Semantics of Rule Schema Application

In this subsection we define the semantics of (conditional) rule schema ap-
plication which proceeds roughly as follows. For a rule schema r with con-
dition Γ applied to a graph G ∈ G(L):

1. match the left-hand graph L of r with a subgraph of G, ignoring la-
bels;

2. check whether there is an assignment α mapping variables to values
in L such that after evaluating expressions in L, the match is label
preserving;

3. check whether the condition Γ evaluates to true under the assign-
ment;

4. apply to G the rule obtained from r by evaluating all expressions in
the left and right graph.

We formalise these steps in what follows. First we define premorphisms,
which are graph morphisms that disregard labels. Then, we define assign-
ments for the evaluation of expressions, showing how to obtain a graph
in G(L) from a graph in G(RS). Finally, we define the evaluation of rule
schema conditions before putting everything together and defining (condi-
tional) rule schema application.

Since premorphisms are only required in this thesis for graph matching,
we tailor our definition to the particular label alphabets, and require the
functions to be injective.

Definition 2.35 (Premorphism). Given graphs L ∈ G(RS) and G ∈ G(L), a
premorphism g : L ↪→ G consists of two injective functions gV : VL ↪→ VG and
gE : EL ↪→ EG that preserve sources and targets, i.e. sG ◦ gE = gV ◦ sL and
tG ◦ gE = gV ◦ tL.

Each graph in G(RS) represents a possibly infinite set of graphs in G(L).
The latter are obtained by mapping values from L to variables and evalu-
ating expressions.
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2.2.3 Abstract Syntax of Programs

Recall that graph programs consist of declarations of (conditional) rule
schemata and some program text (which might be organised into macros).
In this subsection, we give a grammar defining the abstract syntax of pro-
grams in GP, before giving a basic intuition into the meaning of the control
constructs (a formal operational semantics will be given later).

Definition 2.42 (Abstract syntax of programs). Figure 2.18 contains the
grammar for the abstract syntax of graph program. The identifiers of cate-
gory RuleId occurring in a RuleSetCall refer to declarations of (conditional)
rule schemata in RuleDecl, which we have discussed in the previous sec-
tions. As usual, ambiguity is resolved by the use of parentheses.

The most fundamental command in GP is the application of a set of
(conditional) rule schemata, represented in the grammar by RuleSetCall.
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Recall that graph programs consist of declarations of (conditional) rule
schemata and some program text (which might be organised into macros).
In this subsection, we give a grammar defining the abstract syntax of pro-
grams in GP, before giving a basic intuition into the meaning of the control
constructs (a formal operational semantics will be given later).
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2.2.2 Semantics of Rule Schema Application

In this subsection we define the semantics of (conditional) rule schema ap-
plication which proceeds roughly as follows. For a rule schema r with con-
dition Γ applied to a graph G ∈ G(L):

1. match the left-hand graph L of r with a subgraph of G, ignoring la-
bels;

2. check whether there is an assignment α mapping variables to values
in L such that after evaluating expressions in L, the match is label
preserving;

3. check whether the condition Γ evaluates to true under the assign-
ment;

4. apply to G the rule obtained from r by evaluating all expressions in
the left and right graph.

We formalise these steps in what follows. First we define premorphisms,
which are graph morphisms that disregard labels. Then, we define assign-
ments for the evaluation of expressions, showing how to obtain a graph
in G(L) from a graph in G(RS). Finally, we define the evaluation of rule
schema conditions before putting everything together and defining (condi-
tional) rule schema application.

Since premorphisms are only required in this thesis for graph matching,
we tailor our definition to the particular label alphabets, and require the
functions to be injective.

Definition 2.35 (Premorphism). Given graphs L ∈ G(RS) and G ∈ G(L), a
premorphism g : L ↪→ G consists of two injective functions gV : VL ↪→ VG and
gE : EL ↪→ EG that preserve sources and targets, i.e. sG ◦ gE = gV ◦ sL and
tG ◦ gE = gV ◦ tL.

Each graph in G(RS) represents a possibly infinite set of graphs in G(L).
The latter are obtained by mapping values from L to variables and evalu-
ating expressions.
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2.2.3 Abstract Syntax of Programs

Recall that graph programs consist of declarations of (conditional) rule
schemata and some program text (which might be organised into macros).
In this subsection, we give a grammar defining the abstract syntax of pro-
grams in GP, before giving a basic intuition into the meaning of the control
constructs (a formal operational semantics will be given later).

Definition 2.42 (Abstract syntax of programs). Figure 2.18 contains the
grammar for the abstract syntax of graph program. The identifiers of cate-
gory RuleId occurring in a RuleSetCall refer to declarations of (conditional)
rule schemata in RuleDecl, which we have discussed in the previous sec-
tions. As usual, ambiguity is resolved by the use of parentheses.

The most fundamental command in GP is the application of a set of
(conditional) rule schemata, represented in the grammar by RuleSetCall.
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2.2.2 Semantics of Rule Schema Application

In this subsection we define the semantics of (conditional) rule schema ap-
plication which proceeds roughly as follows. For a rule schema r with con-
dition Γ applied to a graph G ∈ G(L):

1. match the left-hand graph L of r with a subgraph of G, ignoring la-
bels;
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in L such that after evaluating expressions in L, the match is label
preserving;

3. check whether the condition Γ evaluates to true under the assign-
ment;

4. apply to G the rule obtained from r by evaluating all expressions in
the left and right graph.

We formalise these steps in what follows. First we define premorphisms,
which are graph morphisms that disregard labels. Then, we define assign-
ments for the evaluation of expressions, showing how to obtain a graph
in G(L) from a graph in G(RS). Finally, we define the evaluation of rule
schema conditions before putting everything together and defining (condi-
tional) rule schema application.

Since premorphisms are only required in this thesis for graph matching,
we tailor our definition to the particular label alphabets, and require the
functions to be injective.

Definition 2.35 (Premorphism). Given graphs L ∈ G(RS) and G ∈ G(L), a
premorphism g : L ↪→ G consists of two injective functions gV : VL ↪→ VG and
gE : EL ↪→ EG that preserve sources and targets, i.e. sG ◦ gE = gV ◦ sL and
tG ◦ gE = gV ◦ tL.

Each graph in G(RS) represents a possibly infinite set of graphs in G(L).
The latter are obtained by mapping values from L to variables and evalu-
ating expressions.
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2.2.3 Abstract Syntax of Programs

Recall that graph programs consist of declarations of (conditional) rule
schemata and some program text (which might be organised into macros).
In this subsection, we give a grammar defining the abstract syntax of pro-
grams in GP, before giving a basic intuition into the meaning of the control
constructs (a formal operational semantics will be given later).

Definition 2.42 (Abstract syntax of programs). Figure 2.18 contains the
grammar for the abstract syntax of graph program. The identifiers of cate-
gory RuleId occurring in a RuleSetCall refer to declarations of (conditional)
rule schemata in RuleDecl, which we have discussed in the previous sec-
tions. As usual, ambiguity is resolved by the use of parentheses.
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2.2.3 Abstract Syntax of Programs

Recall that graph programs consist of declarations of (conditional) rule
schemata and some program text (which might be organised into macros).
In this subsection, we give a grammar defining the abstract syntax of pro-
grams in GP, before giving a basic intuition into the meaning of the control
constructs (a formal operational semantics will be given later).

Definition 2.42 (Abstract syntax of programs). Figure 2.18 contains the
grammar for the abstract syntax of graph program. The identifiers of cate-
gory RuleId occurring in a RuleSetCall refer to declarations of (conditional)
rule schemata in RuleDecl, which we have discussed in the previous sec-
tions. As usual, ambiguity is resolved by the use of parentheses.

The most fundamental command in GP is the application of a set of
(conditional) rule schemata, represented in the grammar by RuleSetCall.
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2.2.2 Semantics of Rule Schema Application

In this subsection we define the semantics of (conditional) rule schema ap-
plication which proceeds roughly as follows. For a rule schema r with con-
dition Γ applied to a graph G ∈ G(L):

1. match the left-hand graph L of r with a subgraph of G, ignoring la-
bels;

2. check whether there is an assignment α mapping variables to values
in L such that after evaluating expressions in L, the match is label
preserving;

3. check whether the condition Γ evaluates to true under the assign-
ment;

4. apply to G the rule obtained from r by evaluating all expressions in
the left and right graph.

We formalise these steps in what follows. First we define premorphisms,
which are graph morphisms that disregard labels. Then, we define assign-
ments for the evaluation of expressions, showing how to obtain a graph
in G(L) from a graph in G(RS). Finally, we define the evaluation of rule
schema conditions before putting everything together and defining (condi-
tional) rule schema application.

Since premorphisms are only required in this thesis for graph matching,
we tailor our definition to the particular label alphabets, and require the
functions to be injective.

Definition 2.35 (Premorphism). Given graphs L ∈ G(RS) and G ∈ G(L), a
premorphism g : L ↪→ G consists of two injective functions gV : VL ↪→ VG and
gE : EL ↪→ EG that preserve sources and targets, i.e. sG ◦ gE = gV ◦ sL and
tG ◦ gE = gV ◦ tL.

Each graph in G(RS) represents a possibly infinite set of graphs in G(L).
The latter are obtained by mapping values from L to variables and evalu-
ating expressions.
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2.2.3 Abstract Syntax of Programs

Recall that graph programs consist of declarations of (conditional) rule
schemata and some program text (which might be organised into macros).
In this subsection, we give a grammar defining the abstract syntax of pro-
grams in GP, before giving a basic intuition into the meaning of the control
constructs (a formal operational semantics will be given later).

Definition 2.42 (Abstract syntax of programs). Figure 2.18 contains the
grammar for the abstract syntax of graph program. The identifiers of cate-
gory RuleId occurring in a RuleSetCall refer to declarations of (conditional)
rule schemata in RuleDecl, which we have discussed in the previous sec-
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The most fundamental command in GP is the application of a set of
(conditional) rule schemata, represented in the grammar by RuleSetCall.
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2.2.2 Semantics of Rule Schema Application

In this subsection we define the semantics of (conditional) rule schema ap-
plication which proceeds roughly as follows. For a rule schema r with con-
dition Γ applied to a graph G ∈ G(L):

1. match the left-hand graph L of r with a subgraph of G, ignoring la-
bels;

2. check whether there is an assignment α mapping variables to values
in L such that after evaluating expressions in L, the match is label
preserving;

3. check whether the condition Γ evaluates to true under the assign-
ment;

4. apply to G the rule obtained from r by evaluating all expressions in
the left and right graph.

We formalise these steps in what follows. First we define premorphisms,
which are graph morphisms that disregard labels. Then, we define assign-
ments for the evaluation of expressions, showing how to obtain a graph
in G(L) from a graph in G(RS). Finally, we define the evaluation of rule
schema conditions before putting everything together and defining (condi-
tional) rule schema application.

Since premorphisms are only required in this thesis for graph matching,
we tailor our definition to the particular label alphabets, and require the
functions to be injective.

Definition 2.35 (Premorphism). Given graphs L ∈ G(RS) and G ∈ G(L), a
premorphism g : L ↪→ G consists of two injective functions gV : VL ↪→ VG and
gE : EL ↪→ EG that preserve sources and targets, i.e. sG ◦ gE = gV ◦ sL and
tG ◦ gE = gV ◦ tL.

Each graph in G(RS) represents a possibly infinite set of graphs in G(L).
The latter are obtained by mapping values from L to variables and evalu-
ating expressions.
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2.2.3 Abstract Syntax of Programs

Recall that graph programs consist of declarations of (conditional) rule
schemata and some program text (which might be organised into macros).
In this subsection, we give a grammar defining the abstract syntax of pro-
grams in GP, before giving a basic intuition into the meaning of the control
constructs (a formal operational semantics will be given later).

Definition 2.42 (Abstract syntax of programs). Figure 2.18 contains the
grammar for the abstract syntax of graph program. The identifiers of cate-
gory RuleId occurring in a RuleSetCall refer to declarations of (conditional)
rule schemata in RuleDecl, which we have discussed in the previous sec-
tions. As usual, ambiguity is resolved by the use of parentheses.

The most fundamental command in GP is the application of a set of
(conditional) rule schemata, represented in the grammar by RuleSetCall.
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Recall that graph programs consist of declarations of (conditional) rule
schemata and some program text (which might be organised into macros).
In this subsection, we give a grammar defining the abstract syntax of pro-
grams in GP, before giving a basic intuition into the meaning of the control
constructs (a formal operational semantics will be given later).

Definition 2.42 (Abstract syntax of programs). Figure 2.18 contains the
grammar for the abstract syntax of graph program. The identifiers of cate-
gory RuleId occurring in a RuleSetCall refer to declarations of (conditional)
rule schemata in RuleDecl, which we have discussed in the previous sec-
tions. As usual, ambiguity is resolved by the use of parentheses.

The most fundamental command in GP is the application of a set of
(conditional) rule schemata, represented in the grammar by RuleSetCall.

28

Chapter 2. Computing by Graph Transformation

bridge(a, b, x, y, z : list)

x

1

y

2

z

3

a b ⇒ x

1

y

2 3

z

3

x : z

a b

where not edge(1, 3)

"→

α, g

"→

α, g

0:1:2

1

3

2

4

3

⇒ 0:1:2

1

3

2

4

3

0:1:2:4

↓ g ↓

0:1:2 3 4

2

⇒ 0:1:2 3 4

2

0:1:2:4

Figure 2.17: A conditional rule schema and a possible application of it

2.2.3 Abstract Syntax of Programs

Recall that graph programs consist of declarations of (conditional) rule
schemata and some program text (which might be organised into macros).
In this subsection, we give a grammar defining the abstract syntax of pro-
grams in GP, before giving a basic intuition into the meaning of the control
constructs (a formal operational semantics will be given later).

Definition 2.42 (Abstract syntax of programs). Figure 2.18 contains the
grammar for the abstract syntax of graph program. The identifiers of cate-
gory RuleId occurring in a RuleSetCall refer to declarations of (conditional)
rule schemata in RuleDecl, which we have discussed in the previous sec-
tions. As usual, ambiguity is resolved by the use of parentheses.

The most fundamental command in GP is the application of a set of
(conditional) rule schemata, represented in the grammar by RuleSetCall.

28

bridge



Rule application is nondeterministic

44

2.2. Graph Programs
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x : z
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where not edge(1, 3)

Figure 2.16: A conditional rule schema

2.2.2 Semantics of Rule Schema Application

In this subsection we define the semantics of (conditional) rule schema ap-
plication which proceeds roughly as follows. For a rule schema r with con-
dition Γ applied to a graph G ∈ G(L):

1. match the left-hand graph L of r with a subgraph of G, ignoring la-
bels;

2. check whether there is an assignment α mapping variables to values
in L such that after evaluating expressions in L, the match is label
preserving;

3. check whether the condition Γ evaluates to true under the assign-
ment;

4. apply to G the rule obtained from r by evaluating all expressions in
the left and right graph.

We formalise these steps in what follows. First we define premorphisms,
which are graph morphisms that disregard labels. Then, we define assign-
ments for the evaluation of expressions, showing how to obtain a graph
in G(L) from a graph in G(RS). Finally, we define the evaluation of rule
schema conditions before putting everything together and defining (condi-
tional) rule schema application.

Since premorphisms are only required in this thesis for graph matching,
we tailor our definition to the particular label alphabets, and require the
functions to be injective.

Definition 2.35 (Premorphism). Given graphs L ∈ G(RS) and G ∈ G(L), a
premorphism g : L ↪→ G consists of two injective functions gV : VL ↪→ VG and
gE : EL ↪→ EG that preserve sources and targets, i.e. sG ◦ gE = gV ◦ sL and
tG ◦ gE = gV ◦ tL.

Each graph in G(RS) represents a possibly infinite set of graphs in G(L).
The latter are obtained by mapping values from L to variables and evalu-
ating expressions.
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!
rule application is nondeterministic
   - what other graph could result?
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• we can create nodes/edges and relabel without issue

• we can even delete edges without issue

• can we arbitrarily delete nodes?
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1

yx

clip (x,y: int)

=>
1

x
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clip (x,y: int)
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x
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7
=>clip
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1

yx

clip (x,y: int)

=>
1

x

65

7
=>clip

5

7 not a graph !



Deleting nodes: a solution
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• only allow rule applications that do not leave edges 
dangling

• satisfy the “dangling condition”

• called the double-pushout approach (DPO) to graph 
transformation

   - key property: rule applications are side-effect free



Deleting nodes: notation alert!
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x

trickyRule (x: int)

=> x



Deleting nodes: notation alert!
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x

trickyRule (x: int)

=> x

no number implies nodes are not the same

i.e. match of Lα is deleted, then recreated with the same label
!



No matches => failure
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x

trickyRule (x: int)

=> x

65

7
=>trickyRule



No matches => failure
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x

trickyRule (x: int)

=> x

65

7
=>trickyRule fail



No matches => failure
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x

trickyRule (x: int)

=> x

65

7
=>trickyRule fail

no match since an edge would be left dangling
   - program fails and terminates
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55

• simple core of control constructs

r
{r0, ..., rn}

P; Q
{r0, ..., rn}!

if {r0, ..., rn} then P else Q
try {r0, ..., rn} then P else Q

single rule application
nondeterministic rule choice
sequential composition
as-long-as-possible iteration
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• simple core of control constructs

r
{r0, ..., rn}

P; Q
{r0, ..., rn}!

if {r0, ..., rn} then P else Q
try {r0, ..., rn} then P else Q

single rule application
nondeterministic rule choice
sequential composition
as-long-as-possible iteration

branch decided on whether guard fails or not
   - in “if ”, the effects of guard not retained
   - in “try”, the effects of guard are retained



Example graph program: compute a 
colouring

57

Chapter 2. Computing by Graph Transformation

2.2.4 Example Programs

In this subsection, we present some example programs in order to give
some intuition into graph programming, before later introducing a formal
operational semantics. The first program manipulates the labels of nodes
to compute a graph colouring; the second marks nodes in order to check
connectedness; and the third reduces an input graph to check whether it
was a tree or not.

Example 2.43 (Computing a graph colouring). The program colouring in
Figure 2.19 produces a colouring (an assignment of integers to nodes such
that adjacent nodes have different colours) for every input graph that is
unmarked and atom-labelled, recording colours as the second elements in
the list components of nodes.

main = init!; inc!

init(x : atom) inc(i : int; k : list; x, y : atom)

1

x ⇒
1

x :0 x :i y :i

1 2

k ⇒ x :i y :i+1

1
2

k

3

3

33

3 3

33 ⇒+ 3:0

3:1

3:03:1

3 3

33

⇒+

3:0

3:1

3:23:1

3 3

33

Figure 2.19: The program colouring and two of its executions

The program initially colours each node with 0 by applying the rule
schema init as long as possible, using the iteration operator ’!’. It then
iterates inc for as long as possible, which matches adjacent nodes with the
same colour, and increments the colour of the target node by 1. Observe
that the iteration of inc will only end once the graph is correctly coloured,
otherwise inc would be applied again and the iteration would continue.
(Note that for simplicity the program only operates on unmarked nodes
and edges, but could easily be extended for marked ones were it necessary.)
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30

NB:  type “atom” denotes an int or string; type “list” denotes an
       arbitrary sequence of ints/strings

colouring = init!; inc!
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colouring = init!; inc!
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2.2.4 Example Programs
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same colour, and increments the colour of the target node by 1. Observe
that the iteration of inc will only end once the graph is correctly coloured,
otherwise inc would be applied again and the iteration would continue.
(Note that for simplicity the program only operates on unmarked nodes
and edges, but could easily be extended for marked ones were it necessary.)
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Next on the agenda

(1) a programming language for graphs

(2) an assertion language for graphs

(3) Hoare-style reasoning about graph transformation

(4) program proofs

61



An assertion language for graphs

62

• we could use some first-order logic interpreted over 
graphs

• but program states are graphs, and computational steps 
are graph transformation rules
   - both at a high-level of abstraction

• define an assertion language at the same level of 
abstraction
   - facilitate visual specifications
   - integrate the theory of graph transformation into
          assertional reasoning

9v. node(v) ^ l(v) = ”party”
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• E-conditions - a logical assertion language embedding 
pictures of graphs

• idea: express the existence of some subgraph with 
particular structural features and particular relations 
between labels

• combine with Boolean negation and connectives for a 
visual logic equivalent to first-order logic over graphs

• historical note: a generalisation of nested conditions (Habel 
& Pennemann)

E-conditions: graphical assertions about 
the program state



E-conditions: graphical assertions about 
the program state
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9(C | �, c0)true



E-conditions: graphical assertions about 
the program state
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9(C | �, c0)true

a constant symbol



E-conditions: graphical assertions about 
the program state
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9(C | �, c0)

C is a graph labelled over expressions

true



E-conditions: graphical assertions about 
the program state
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9(C | �, c0)

γ is a constraint over the labels of C

true



E-conditions: graphical assertions about 
the program state
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9(C | �, c0)

c’ is an E-condition, i.e. true or 

true

9(C 0 | �0, c00)
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satisfied by all graphs

true
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4.1. Nested Conditions with Expressions

simplicity, we take that P1–P6 refer only to the parts of graphs that are un-
marked.)

At their simplest, E-conditions have the form:

∃(C)

where C is a graph labelled with expressions. A graph G in G(L) satisfies
such an E-condition if there is an assignment α from variables in C to values
in L such that there is an injective morphism from Cα to G. We can use
Boolean negation ¬ to express the non-existence of such a morphism, and
so straight away express the property P1 with the E-condition:

¬∃( x

y

)

Here, x and y in the labels are variables that can be instantiated to any
value in L. A graph G will satisfy this if it does not contain a node incident
to a loop with any combination of labels. We can strengthen this to forbid
loops when either the node or edge are marked (or both) using Boolean
connectives:

¬∃( x

y

) ∧ ¬∃( x

y

) ∧ ¬∃( x

y

) ∧ ¬∃( x

y

)

It is important to note here that the xs and ys are not bound to each other:
the E-condition forbids the existence of any loop regardless of marking, and
regardless of label.

Remark 4.1 (Marked nodes and edges). In this thesis, unless a program is
explicitly utilising marked nodes or edges, for simplicity we will usually
write E-conditions about only the unmarked parts of the graph. When we
write that some E-condition expresses that “the graph has property X”, this
is really short for the more correct: “the graph – ignoring all marked edges,
marked nodes, and edges incident to them – has property X”. If no rule
schema of a program matches or creates marked items, then any marked
items in the input graph will be present and unchanged in the resulting
graph. Of course, if marked items are operated on, it will usually be neces-
sary to write E-conditions about those items when constructing interesting
proofs.

Property P2, “every node is incident to exactly one outgoing edge”, re-
quires a less simple E-condition. When descriptions of properties have the
pattern “every instance of some structure X should be within some partic-
ular context Y ” we require a combination of universal quantification and
nesting. Informally, the universally quantified part describes X , and then
a nested E-condition describes the required context Y . The following E-
condition describes property P2:

∀( x
1
, ∃( x

1
y

k
) ∧ ¬∃( x

1
y

k

j
))

79

“there exists a node incident to 
a loop”
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4.1. Nested Conditions with Expressions

simplicity, we take that P1–P6 refer only to the parts of graphs that are un-
marked.)
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where C is a graph labelled with expressions. A graph G in G(L) satisfies
such an E-condition if there is an assignment α from variables in C to values
in L such that there is an injective morphism from Cα to G. We can use
Boolean negation ¬ to express the non-existence of such a morphism, and
so straight away express the property P1 with the E-condition:

¬∃( x
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)

Here, x and y in the labels are variables that can be instantiated to any
value in L. A graph G will satisfy this if it does not contain a node incident
to a loop with any combination of labels. We can strengthen this to forbid
loops when either the node or edge are marked (or both) using Boolean
connectives:

¬∃( x

y
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y
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y
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)

It is important to note here that the xs and ys are not bound to each other:
the E-condition forbids the existence of any loop regardless of marking, and
regardless of label.

Remark 4.1 (Marked nodes and edges). In this thesis, unless a program is
explicitly utilising marked nodes or edges, for simplicity we will usually
write E-conditions about only the unmarked parts of the graph. When we
write that some E-condition expresses that “the graph has property X”, this
is really short for the more correct: “the graph – ignoring all marked edges,
marked nodes, and edges incident to them – has property X”. If no rule
schema of a program matches or creates marked items, then any marked
items in the input graph will be present and unchanged in the resulting
graph. Of course, if marked items are operated on, it will usually be neces-
sary to write E-conditions about those items when constructing interesting
proofs.

Property P2, “every node is incident to exactly one outgoing edge”, re-
quires a less simple E-condition. When descriptions of properties have the
pattern “every instance of some structure X should be within some partic-
ular context Y ” we require a combination of universal quantification and
nesting. Informally, the universally quantified part describes X , and then
a nested E-condition describes the required context Y . The following E-
condition describes property P2:

∀( x
1
, ∃( x

1
y

k
) ∧ ¬∃( x

1
y

k

j
))

79

“there exists a node incident to 
a loop”

variables are untyped
(and here, unconstrained)
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4.1. Nested Conditions with Expressions

simplicity, we take that P1–P6 refer only to the parts of graphs that are un-
marked.)

At their simplest, E-conditions have the form:

∃(C)

where C is a graph labelled with expressions. A graph G in G(L) satisfies
such an E-condition if there is an assignment α from variables in C to values
in L such that there is an injective morphism from Cα to G. We can use
Boolean negation ¬ to express the non-existence of such a morphism, and
so straight away express the property P1 with the E-condition:
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Here, x and y in the labels are variables that can be instantiated to any
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items in the input graph will be present and unchanged in the resulting
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Property P2, “every node is incident to exactly one outgoing edge”, re-
quires a less simple E-condition. When descriptions of properties have the
pattern “every instance of some structure X should be within some partic-
ular context Y ” we require a combination of universal quantification and
nesting. Informally, the universally quantified part describes X , and then
a nested E-condition describes the required context Y . The following E-
condition describes property P2:
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, ∃( x

1
y

k
) ∧ ¬∃( x
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y
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79

“there exists a node incident to 
a loop”

9(C | �, c0)

we don’t write γ or c’
if they are just true
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4.1. Nested Conditions with Expressions
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It is important to note here that the xs and ys are not bound to each other:
the E-condition forbids the existence of any loop regardless of marking, and
regardless of label.

Remark 4.1 (Marked nodes and edges). In this thesis, unless a program is
explicitly utilising marked nodes or edges, for simplicity we will usually
write E-conditions about only the unmarked parts of the graph. When we
write that some E-condition expresses that “the graph has property X”, this
is really short for the more correct: “the graph – ignoring all marked edges,
marked nodes, and edges incident to them – has property X”. If no rule
schema of a program matches or creates marked items, then any marked
items in the input graph will be present and unchanged in the resulting
graph. Of course, if marked items are operated on, it will usually be neces-
sary to write E-conditions about those items when constructing interesting
proofs.

Property P2, “every node is incident to exactly one outgoing edge”, re-
quires a less simple E-condition. When descriptions of properties have the
pattern “every instance of some structure X should be within some partic-
ular context Y ” we require a combination of universal quantification and
nesting. Informally, the universally quantified part describes X , and then
a nested E-condition describes the required context Y . The following E-
condition describes property P2:

∀( x
1
, ∃( x

1
y

k
) ∧ ¬∃( x

1
y

k

j
))

79

“there does not exist a node 
incident to a loop”
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Chapter 4. Verification with E-Conditions

This E-condition is satisfied by any graph in which every node is incident
to an outgoing edge, but not incident to more than one. Numbers are used
to indicate which nodes are the same down the levels of nesting; here, the
node labelled x (which is universally quantified) appears in the nested E-
condition where information about its required context is given. Again, the
ks and ys in the nested E-condition are not bound together, but this time,
the xs are bound. Once a variable is used within an E-condition, every
other occurence of it down the levels of nesting evaluates to the same value
under an assignment. It can help to think of this nesting in E-conditions as
a tree of (injective) graph morphisms1 equipped with Boolean symbols, as
in Figure 4.1.

( x
1

,

( x
1

y
k

( x
1

y
k

j

∃ ¬∃

∧

∅

∀

Figure 4.1: Tree representation of the E-condition expressing P2

Property P3 can be expressed by an E-condition with nesting, too. Here,
we define undirected to mean that if there is an edge from some node v1 to
v2, then there is also an edge from v2 to v1:

∀( x
1

y
k

2
, ∃( x

1
y

k

j 2
))

Here, the xs (resp. ys, ks) are bounded.
Thus far, the graphs of our E-conditions have been labelled with vari-

ables distinct from each other and representing any combination of labels
from L. An important and powerful feature of E-conditions that we have
not yet discussed, is the ability to constrain what values in L these variables
represent. There are two ways of achieving this. One way is through using
expressions as labels, e.g. one node might have label x with another having
label x*x. Writing properties about nodes and edges with the same label is
even simpler, as this E-condition for P4 demonstrates:

¬∃( x x
k

)

1Actually, E-conditions are morphisms equipped with Boolean symbols (and assignment
constraints). We will properly reveal and discuss this technical detail shortly.
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“there does not exist a pair of 
adjacent nodes with the same 

label”

Chapter 4. Verification with E-Conditions

This E-condition is satisfied by any graph in which every node is incident
to an outgoing edge, but not incident to more than one. Numbers are used
to indicate which nodes are the same down the levels of nesting; here, the
node labelled x (which is universally quantified) appears in the nested E-
condition where information about its required context is given. Again, the
ks and ys in the nested E-condition are not bound together, but this time,
the xs are bound. Once a variable is used within an E-condition, every
other occurence of it down the levels of nesting evaluates to the same value
under an assignment. It can help to think of this nesting in E-conditions as
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in Figure 4.1.
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Property P3 can be expressed by an E-condition with nesting, too. Here,
we define undirected to mean that if there is an edge from some node v1 to
v2, then there is also an edge from v2 to v1:
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k
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Here, the xs (resp. ys, ks) are bounded.
Thus far, the graphs of our E-conditions have been labelled with vari-

ables distinct from each other and representing any combination of labels
from L. An important and powerful feature of E-conditions that we have
not yet discussed, is the ability to constrain what values in L these variables
represent. There are two ways of achieving this. One way is through using
expressions as labels, e.g. one node might have label x with another having
label x*x. Writing properties about nodes and edges with the same label is
even simpler, as this E-condition for P4 demonstrates:

¬∃( x x
k

)

1Actually, E-conditions are morphisms equipped with Boolean symbols (and assignment
constraints). We will properly reveal and discuss this technical detail shortly.
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Chapter 4. Verification with E-Conditions
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Property P3 can be expressed by an E-condition with nesting, too. Here,
we define undirected to mean that if there is an edge from some node v1 to
v2, then there is also an edge from v2 to v1:
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y

k

j 2
))

Here, the xs (resp. ys, ks) are bounded.
Thus far, the graphs of our E-conditions have been labelled with vari-

ables distinct from each other and representing any combination of labels
from L. An important and powerful feature of E-conditions that we have
not yet discussed, is the ability to constrain what values in L these variables
represent. There are two ways of achieving this. One way is through using
expressions as labels, e.g. one node might have label x with another having
label x*x. Writing properties about nodes and edges with the same label is
even simpler, as this E-condition for P4 demonstrates:

¬∃( x x
k

)

1Actually, E-conditions are morphisms equipped with Boolean symbols (and assignment
constraints). We will properly reveal and discuss this technical detail shortly.
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now k is constrained

Chapter 4. Verification with E-Conditions

This E-condition is satisfied by any graph in which every node is incident
to an outgoing edge, but not incident to more than one. Numbers are used
to indicate which nodes are the same down the levels of nesting; here, the
node labelled x (which is universally quantified) appears in the nested E-
condition where information about its required context is given. Again, the
ks and ys in the nested E-condition are not bound together, but this time,
the xs are bound. Once a variable is used within an E-condition, every
other occurence of it down the levels of nesting evaluates to the same value
under an assignment. It can help to think of this nesting in E-conditions as
a tree of (injective) graph morphisms1 equipped with Boolean symbols, as
in Figure 4.1.
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Property P3 can be expressed by an E-condition with nesting, too. Here,
we define undirected to mean that if there is an edge from some node v1 to
v2, then there is also an edge from v2 to v1:
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Here, the xs (resp. ys, ks) are bounded.
Thus far, the graphs of our E-conditions have been labelled with vari-

ables distinct from each other and representing any combination of labels
from L. An important and powerful feature of E-conditions that we have
not yet discussed, is the ability to constrain what values in L these variables
represent. There are two ways of achieving this. One way is through using
expressions as labels, e.g. one node might have label x with another having
label x*x. Writing properties about nodes and edges with the same label is
even simpler, as this E-condition for P4 demonstrates:

¬∃( x x
k

)

1Actually, E-conditions are morphisms equipped with Boolean symbols (and assignment
constraints). We will properly reveal and discuss this technical detail shortly.
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“there does not exist a pair of adjacent 
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(1) the nodes have the same label; and
(2) the edge is the square of that label”

now k is constrained

Chapter 4. Verification with E-Conditions

This E-condition is satisfied by any graph in which every node is incident
to an outgoing edge, but not incident to more than one. Numbers are used
to indicate which nodes are the same down the levels of nesting; here, the
node labelled x (which is universally quantified) appears in the nested E-
condition where information about its required context is given. Again, the
ks and ys in the nested E-condition are not bound together, but this time,
the xs are bound. Once a variable is used within an E-condition, every
other occurence of it down the levels of nesting evaluates to the same value
under an assignment. It can help to think of this nesting in E-conditions as
a tree of (injective) graph morphisms1 equipped with Boolean symbols, as
in Figure 4.1.
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Figure 4.1: Tree representation of the E-condition expressing P2

Property P3 can be expressed by an E-condition with nesting, too. Here,
we define undirected to mean that if there is an edge from some node v1 to
v2, then there is also an edge from v2 to v1:
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Here, the xs (resp. ys, ks) are bounded.
Thus far, the graphs of our E-conditions have been labelled with vari-

ables distinct from each other and representing any combination of labels
from L. An important and powerful feature of E-conditions that we have
not yet discussed, is the ability to constrain what values in L these variables
represent. There are two ways of achieving this. One way is through using
expressions as labels, e.g. one node might have label x with another having
label x*x. Writing properties about nodes and edges with the same label is
even simpler, as this E-condition for P4 demonstrates:

¬∃( x x
k

)

1Actually, E-conditions are morphisms equipped with Boolean symbols (and assignment
constraints). We will properly reveal and discuss this technical detail shortly.
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This E-condition is satisfied by any graph in which every node is incident
to an outgoing edge, but not incident to more than one. Numbers are used
to indicate which nodes are the same down the levels of nesting; here, the
node labelled x (which is universally quantified) appears in the nested E-
condition where information about its required context is given. Again, the
ks and ys in the nested E-condition are not bound together, but this time,
the xs are bound. Once a variable is used within an E-condition, every
other occurence of it down the levels of nesting evaluates to the same value
under an assignment. It can help to think of this nesting in E-conditions as
a tree of (injective) graph morphisms1 equipped with Boolean symbols, as
in Figure 4.1.
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Figure 4.1: Tree representation of the E-condition expressing P2

Property P3 can be expressed by an E-condition with nesting, too. Here,
we define undirected to mean that if there is an edge from some node v1 to
v2, then there is also an edge from v2 to v1:
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Here, the xs (resp. ys, ks) are bounded.
Thus far, the graphs of our E-conditions have been labelled with vari-

ables distinct from each other and representing any combination of labels
from L. An important and powerful feature of E-conditions that we have
not yet discussed, is the ability to constrain what values in L these variables
represent. There are two ways of achieving this. One way is through using
expressions as labels, e.g. one node might have label x with another having
label x*x. Writing properties about nodes and edges with the same label is
even simpler, as this E-condition for P4 demonstrates:

¬∃( x x
k

)

1Actually, E-conditions are morphisms equipped with Boolean symbols (and assignment
constraints). We will properly reveal and discuss this technical detail shortly.
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This E-condition is satisfied by any graph in which every node is incident
to an outgoing edge, but not incident to more than one. Numbers are used
to indicate which nodes are the same down the levels of nesting; here, the
node labelled x (which is universally quantified) appears in the nested E-
condition where information about its required context is given. Again, the
ks and ys in the nested E-condition are not bound together, but this time,
the xs are bound. Once a variable is used within an E-condition, every
other occurence of it down the levels of nesting evaluates to the same value
under an assignment. It can help to think of this nesting in E-conditions as
a tree of (injective) graph morphisms1 equipped with Boolean symbols, as
in Figure 4.1.
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Figure 4.1: Tree representation of the E-condition expressing P2

Property P3 can be expressed by an E-condition with nesting, too. Here,
we define undirected to mean that if there is an edge from some node v1 to
v2, then there is also an edge from v2 to v1:
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Here, the xs (resp. ys, ks) are bounded.
Thus far, the graphs of our E-conditions have been labelled with vari-

ables distinct from each other and representing any combination of labels
from L. An important and powerful feature of E-conditions that we have
not yet discussed, is the ability to constrain what values in L these variables
represent. There are two ways of achieving this. One way is through using
expressions as labels, e.g. one node might have label x with another having
label x*x. Writing properties about nodes and edges with the same label is
even simpler, as this E-condition for P4 demonstrates:

¬∃( x x
k

)

1Actually, E-conditions are morphisms equipped with Boolean symbols (and assignment
constraints). We will properly reveal and discuss this technical detail shortly.
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This E-condition is satisfied by any graph in which every node is incident
to an outgoing edge, but not incident to more than one. Numbers are used
to indicate which nodes are the same down the levels of nesting; here, the
node labelled x (which is universally quantified) appears in the nested E-
condition where information about its required context is given. Again, the
ks and ys in the nested E-condition are not bound together, but this time,
the xs are bound. Once a variable is used within an E-condition, every
other occurence of it down the levels of nesting evaluates to the same value
under an assignment. It can help to think of this nesting in E-conditions as
a tree of (injective) graph morphisms1 equipped with Boolean symbols, as
in Figure 4.1.
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Figure 4.1: Tree representation of the E-condition expressing P2

Property P3 can be expressed by an E-condition with nesting, too. Here,
we define undirected to mean that if there is an edge from some node v1 to
v2, then there is also an edge from v2 to v1:
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Here, the xs (resp. ys, ks) are bounded.
Thus far, the graphs of our E-conditions have been labelled with vari-

ables distinct from each other and representing any combination of labels
from L. An important and powerful feature of E-conditions that we have
not yet discussed, is the ability to constrain what values in L these variables
represent. There are two ways of achieving this. One way is through using
expressions as labels, e.g. one node might have label x with another having
label x*x. Writing properties about nodes and edges with the same label is
even simpler, as this E-condition for P4 demonstrates:

¬∃( x x
k

)

1Actually, E-conditions are morphisms equipped with Boolean symbols (and assignment
constraints). We will properly reveal and discuss this technical detail shortly.
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This E-condition is satisfied by any graph in which every node is incident
to an outgoing edge, but not incident to more than one. Numbers are used
to indicate which nodes are the same down the levels of nesting; here, the
node labelled x (which is universally quantified) appears in the nested E-
condition where information about its required context is given. Again, the
ks and ys in the nested E-condition are not bound together, but this time,
the xs are bound. Once a variable is used within an E-condition, every
other occurence of it down the levels of nesting evaluates to the same value
under an assignment. It can help to think of this nesting in E-conditions as
a tree of (injective) graph morphisms1 equipped with Boolean symbols, as
in Figure 4.1.
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Figure 4.1: Tree representation of the E-condition expressing P2

Property P3 can be expressed by an E-condition with nesting, too. Here,
we define undirected to mean that if there is an edge from some node v1 to
v2, then there is also an edge from v2 to v1:
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Here, the xs (resp. ys, ks) are bounded.
Thus far, the graphs of our E-conditions have been labelled with vari-

ables distinct from each other and representing any combination of labels
from L. An important and powerful feature of E-conditions that we have
not yet discussed, is the ability to constrain what values in L these variables
represent. There are two ways of achieving this. One way is through using
expressions as labels, e.g. one node might have label x with another having
label x*x. Writing properties about nodes and edges with the same label is
even simpler, as this E-condition for P4 demonstrates:

¬∃( x x
k

)

1Actually, E-conditions are morphisms equipped with Boolean symbols (and assignment
constraints). We will properly reveal and discuss this technical detail shortly.
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This E-condition is satisfied by any graph in which every node is incident
to an outgoing edge, but not incident to more than one. Numbers are used
to indicate which nodes are the same down the levels of nesting; here, the
node labelled x (which is universally quantified) appears in the nested E-
condition where information about its required context is given. Again, the
ks and ys in the nested E-condition are not bound together, but this time,
the xs are bound. Once a variable is used within an E-condition, every
other occurence of it down the levels of nesting evaluates to the same value
under an assignment. It can help to think of this nesting in E-conditions as
a tree of (injective) graph morphisms1 equipped with Boolean symbols, as
in Figure 4.1.
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Figure 4.1: Tree representation of the E-condition expressing P2

Property P3 can be expressed by an E-condition with nesting, too. Here,
we define undirected to mean that if there is an edge from some node v1 to
v2, then there is also an edge from v2 to v1:
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Here, the xs (resp. ys, ks) are bounded.
Thus far, the graphs of our E-conditions have been labelled with vari-

ables distinct from each other and representing any combination of labels
from L. An important and powerful feature of E-conditions that we have
not yet discussed, is the ability to constrain what values in L these variables
represent. There are two ways of achieving this. One way is through using
expressions as labels, e.g. one node might have label x with another having
label x*x. Writing properties about nodes and edges with the same label is
even simpler, as this E-condition for P4 demonstrates:

¬∃( x x
k

)

1Actually, E-conditions are morphisms equipped with Boolean symbols (and assignment
constraints). We will properly reveal and discuss this technical detail shortly.
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View as a “tree” that is building up 
structural and relational information

E-conditions
view as a tree of morphisms equipped with Boolean symbols

Chapter 5. Verification with E-Conditions

pattern “every instance of some structure X should be within some partic-
ular context Y ” we require a combination of universal quantification and
nesting. Informally, the universally quantified part describes X , and then
a nested E-condition describes the required context Y . The following E-
condition following this pattern describes property P2:
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This E-condition is satisfied by any graph in which every node is incident
to an outgoing edge, but not incident to more than one. Numbers are used
to indicate which nodes are the same down the levels of nesting; here, the
node labelled x which is universally quantified appears in the nested E-
condition where information about its required context is given. Again, the
ks and ys in the nested E-condition are not bound together, but this time,
the xs are bound. Once a variable is used within an E-condition, every
other occurence of it down the levels of nesting evaluates to the same value
under an assignment. It can help to think of this nesting in E-conditions as
a tree of (injective) graph morphisms1 equipped with Boolean symbols, as
in Figure 5.1.
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Figure 5.1: Tree representation of the E-condition expressing P2

Property P3 can be expressed by an E-condition with nesting, too. Here,
we define undirected to mean that if there is an edge from some node v1 to
v2, then there is also an edge from v2 to v1:
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Here, the xs (resp. ys, ks) are bounded.
Thus far, the graphs of our E-conditions have been labelled with vari-

ables distinct from each other and representing any combination of labels
from L. An important and powerful feature of E-conditions that we have

1Actually, E-conditions are morphisms equipped with Boolean symbols (and assignment
constraints). We will properly reveal and discuss this technical detail shortly.
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pattern “every instance of some structure X should be within some partic-
ular context Y ” we require a combination of universal quantification and
nesting. Informally, the universally quantified part describes X , and then
a nested E-condition describes the required context Y . The following E-
condition following this pattern describes property P2:
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This E-condition is satisfied by any graph in which every node is incident
to an outgoing edge, but not incident to more than one. Numbers are used
to indicate which nodes are the same down the levels of nesting; here, the
node labelled x which is universally quantified appears in the nested E-
condition where information about its required context is given. Again, the
ks and ys in the nested E-condition are not bound together, but this time,
the xs are bound. Once a variable is used within an E-condition, every
other occurence of it down the levels of nesting evaluates to the same value
under an assignment. It can help to think of this nesting in E-conditions as
a tree of (injective) graph morphisms1 equipped with Boolean symbols, as
in Figure 5.1.
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Figure 5.1: Tree representation of the E-condition expressing P2

Property P3 can be expressed by an E-condition with nesting, too. Here,
we define undirected to mean that if there is an edge from some node v1 to
v2, then there is also an edge from v2 to v1:
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Here, the xs (resp. ys, ks) are bounded.
Thus far, the graphs of our E-conditions have been labelled with vari-

ables distinct from each other and representing any combination of labels
from L. An important and powerful feature of E-conditions that we have

1Actually, E-conditions are morphisms equipped with Boolean symbols (and assignment
constraints). We will properly reveal and discuss this technical detail shortly.

42

an assignment constraint can be added to each level, e.g.

5.1. Nested Conditions with Expressions

not yet discussed, is the ability to constrain what values in L these variables
represent. There are two ways of achieving this. One way is through using
expressions as labels, e.g. one node might have label x with another having
label x*x. Writing properties about nodes and edges with the same label is
even simpler, as this E-condition for P4 demonstrates:

¬9( x x

k

)

Under any assignment both xs must be mapped to the same value in L,
hence this E-condition is only satisfied by graphs that have no two adjacent
nodes with the same value.

The other way of constraining the instantiation of variables is to add
so-called assignment constraints. Informally, assignment constraints are
simple Boolean expressions establishing relations between variables, and
restricting the types of values that variables can (or cannot) be instantiated
to. Given an assignment ↵ for a graph, an assignment constraint must eval-
uate to true when interpreted with regards to ↵. Assignment constraints
can be written for each graph in each level of nesting of an E-condition;
they are displayed after a vertical bar (which can be read aloud as “where”
or “such that”). For example, property P5 is expressed by:
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A graph will satisfy this E-condition, if every node with an integer label x
has an outgoing edge to a node labelled with 0 or some y that is larger than
x. The innermost assignment constraint is hopefully clear. The outermost
one, int(x), will evaluate to true under an assignment if x is mapped to
an integer; false if not. In rule schemata, such a predicate is unnecessary
because all variables are typed. In E-conditions however, it is important to
note that for notational simplicity, all variables are treated as untyped.

Remark 5.2 (Untyped variables). For notational simplicity, all of the vari-
ables appearing in the graphs and assignment constraints of E-conditions
are untyped. Rather, predicate symbols in the assignment constraints are
used to restrict the permissible values in L that a variable can be mapped
to. Type safety is imposed not at the syntactic level, but rather at the se-
mantic level: assignments are required to be “well-typed”. For example,
an assignment is not well-typed if it maps a variable to a string when that
same variable appears within an arithmetical expression.

Property P6 can be expressed by an E-condition exploiting several of
the features we have discussed:

¬9( x | not int(x)) ^ 8( x

1
y

2
| x <= y, 9( x

1
y

2

k

))

43



85

View as a “tree” that is building up 
structural and relational information

E-conditions
view as a tree of morphisms equipped with Boolean symbols

Chapter 5. Verification with E-Conditions

pattern “every instance of some structure X should be within some partic-
ular context Y ” we require a combination of universal quantification and
nesting. Informally, the universally quantified part describes X , and then
a nested E-condition describes the required context Y . The following E-
condition following this pattern describes property P2:
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This E-condition is satisfied by any graph in which every node is incident
to an outgoing edge, but not incident to more than one. Numbers are used
to indicate which nodes are the same down the levels of nesting; here, the
node labelled x which is universally quantified appears in the nested E-
condition where information about its required context is given. Again, the
ks and ys in the nested E-condition are not bound together, but this time,
the xs are bound. Once a variable is used within an E-condition, every
other occurence of it down the levels of nesting evaluates to the same value
under an assignment. It can help to think of this nesting in E-conditions as
a tree of (injective) graph morphisms1 equipped with Boolean symbols, as
in Figure 5.1.
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Figure 5.1: Tree representation of the E-condition expressing P2

Property P3 can be expressed by an E-condition with nesting, too. Here,
we define undirected to mean that if there is an edge from some node v1 to
v2, then there is also an edge from v2 to v1:
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Here, the xs (resp. ys, ks) are bounded.
Thus far, the graphs of our E-conditions have been labelled with vari-

ables distinct from each other and representing any combination of labels
from L. An important and powerful feature of E-conditions that we have

1Actually, E-conditions are morphisms equipped with Boolean symbols (and assignment
constraints). We will properly reveal and discuss this technical detail shortly.

42

Chapter 5. Verification with E-Conditions

pattern “every instance of some structure X should be within some partic-
ular context Y ” we require a combination of universal quantification and
nesting. Informally, the universally quantified part describes X , and then
a nested E-condition describes the required context Y . The following E-
condition following this pattern describes property P2:
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This E-condition is satisfied by any graph in which every node is incident
to an outgoing edge, but not incident to more than one. Numbers are used
to indicate which nodes are the same down the levels of nesting; here, the
node labelled x which is universally quantified appears in the nested E-
condition where information about its required context is given. Again, the
ks and ys in the nested E-condition are not bound together, but this time,
the xs are bound. Once a variable is used within an E-condition, every
other occurence of it down the levels of nesting evaluates to the same value
under an assignment. It can help to think of this nesting in E-conditions as
a tree of (injective) graph morphisms1 equipped with Boolean symbols, as
in Figure 5.1.
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Figure 5.1: Tree representation of the E-condition expressing P2

Property P3 can be expressed by an E-condition with nesting, too. Here,
we define undirected to mean that if there is an edge from some node v1 to
v2, then there is also an edge from v2 to v1:
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Here, the xs (resp. ys, ks) are bounded.
Thus far, the graphs of our E-conditions have been labelled with vari-

ables distinct from each other and representing any combination of labels
from L. An important and powerful feature of E-conditions that we have

1Actually, E-conditions are morphisms equipped with Boolean symbols (and assignment
constraints). We will properly reveal and discuss this technical detail shortly.
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an assignment constraint can be added to each level, e.g.

5.1. Nested Conditions with Expressions

not yet discussed, is the ability to constrain what values in L these variables
represent. There are two ways of achieving this. One way is through using
expressions as labels, e.g. one node might have label x with another having
label x*x. Writing properties about nodes and edges with the same label is
even simpler, as this E-condition for P4 demonstrates:
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Under any assignment both xs must be mapped to the same value in L,
hence this E-condition is only satisfied by graphs that have no two adjacent
nodes with the same value.

The other way of constraining the instantiation of variables is to add
so-called assignment constraints. Informally, assignment constraints are
simple Boolean expressions establishing relations between variables, and
restricting the types of values that variables can (or cannot) be instantiated
to. Given an assignment ↵ for a graph, an assignment constraint must eval-
uate to true when interpreted with regards to ↵. Assignment constraints
can be written for each graph in each level of nesting of an E-condition;
they are displayed after a vertical bar (which can be read aloud as “where”
or “such that”). For example, property P5 is expressed by:
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A graph will satisfy this E-condition, if every node with an integer label x
has an outgoing edge to a node labelled with 0 or some y that is larger than
x. The innermost assignment constraint is hopefully clear. The outermost
one, int(x), will evaluate to true under an assignment if x is mapped to
an integer; false if not. In rule schemata, such a predicate is unnecessary
because all variables are typed. In E-conditions however, it is important to
note that for notational simplicity, all variables are treated as untyped.

Remark 5.2 (Untyped variables). For notational simplicity, all of the vari-
ables appearing in the graphs and assignment constraints of E-conditions
are untyped. Rather, predicate symbols in the assignment constraints are
used to restrict the permissible values in L that a variable can be mapped
to. Type safety is imposed not at the syntactic level, but rather at the se-
mantic level: assignments are required to be “well-typed”. For example,
an assignment is not well-typed if it maps a variable to a string when that
same variable appears within an arithmetical expression.

Property P6 can be expressed by an E-condition exploiting several of
the features we have discussed:
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pattern “every instance of some structure X should be within some partic-
ular context Y ” we require a combination of universal quantification and
nesting. Informally, the universally quantified part describes X , and then
a nested E-condition describes the required context Y . The following E-
condition following this pattern describes property P2:
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This E-condition is satisfied by any graph in which every node is incident
to an outgoing edge, but not incident to more than one. Numbers are used
to indicate which nodes are the same down the levels of nesting; here, the
node labelled x which is universally quantified appears in the nested E-
condition where information about its required context is given. Again, the
ks and ys in the nested E-condition are not bound together, but this time,
the xs are bound. Once a variable is used within an E-condition, every
other occurence of it down the levels of nesting evaluates to the same value
under an assignment. It can help to think of this nesting in E-conditions as
a tree of (injective) graph morphisms1 equipped with Boolean symbols, as
in Figure 5.1.

( x

1
,

( x

1
y

k

( x

1
y

k

j

9 ¬9
^

;
8

Figure 5.1: Tree representation of the E-condition expressing P2

Property P3 can be expressed by an E-condition with nesting, too. Here,
we define undirected to mean that if there is an edge from some node v1 to
v2, then there is also an edge from v2 to v1:
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Here, the xs (resp. ys, ks) are bounded.
Thus far, the graphs of our E-conditions have been labelled with vari-

ables distinct from each other and representing any combination of labels
from L. An important and powerful feature of E-conditions that we have

1Actually, E-conditions are morphisms equipped with Boolean symbols (and assignment
constraints). We will properly reveal and discuss this technical detail shortly.
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pattern “every instance of some structure X should be within some partic-
ular context Y ” we require a combination of universal quantification and
nesting. Informally, the universally quantified part describes X , and then
a nested E-condition describes the required context Y . The following E-
condition following this pattern describes property P2:
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This E-condition is satisfied by any graph in which every node is incident
to an outgoing edge, but not incident to more than one. Numbers are used
to indicate which nodes are the same down the levels of nesting; here, the
node labelled x which is universally quantified appears in the nested E-
condition where information about its required context is given. Again, the
ks and ys in the nested E-condition are not bound together, but this time,
the xs are bound. Once a variable is used within an E-condition, every
other occurence of it down the levels of nesting evaluates to the same value
under an assignment. It can help to think of this nesting in E-conditions as
a tree of (injective) graph morphisms1 equipped with Boolean symbols, as
in Figure 5.1.
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Property P3 can be expressed by an E-condition with nesting, too. Here,
we define undirected to mean that if there is an edge from some node v1 to
v2, then there is also an edge from v2 to v1:
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Here, the xs (resp. ys, ks) are bounded.
Thus far, the graphs of our E-conditions have been labelled with vari-

ables distinct from each other and representing any combination of labels
from L. An important and powerful feature of E-conditions that we have
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constraints). We will properly reveal and discuss this technical detail shortly.
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an assignment constraint can be added to each level, e.g.

5.1. Nested Conditions with Expressions

not yet discussed, is the ability to constrain what values in L these variables
represent. There are two ways of achieving this. One way is through using
expressions as labels, e.g. one node might have label x with another having
label x*x. Writing properties about nodes and edges with the same label is
even simpler, as this E-condition for P4 demonstrates:

¬9( x x

k
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Under any assignment both xs must be mapped to the same value in L,
hence this E-condition is only satisfied by graphs that have no two adjacent
nodes with the same value.

The other way of constraining the instantiation of variables is to add
so-called assignment constraints. Informally, assignment constraints are
simple Boolean expressions establishing relations between variables, and
restricting the types of values that variables can (or cannot) be instantiated
to. Given an assignment ↵ for a graph, an assignment constraint must eval-
uate to true when interpreted with regards to ↵. Assignment constraints
can be written for each graph in each level of nesting of an E-condition;
they are displayed after a vertical bar (which can be read aloud as “where”
or “such that”). For example, property P5 is expressed by:
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A graph will satisfy this E-condition, if every node with an integer label x
has an outgoing edge to a node labelled with 0 or some y that is larger than
x. The innermost assignment constraint is hopefully clear. The outermost
one, int(x), will evaluate to true under an assignment if x is mapped to
an integer; false if not. In rule schemata, such a predicate is unnecessary
because all variables are typed. In E-conditions however, it is important to
note that for notational simplicity, all variables are treated as untyped.

Remark 5.2 (Untyped variables). For notational simplicity, all of the vari-
ables appearing in the graphs and assignment constraints of E-conditions
are untyped. Rather, predicate symbols in the assignment constraints are
used to restrict the permissible values in L that a variable can be mapped
to. Type safety is imposed not at the syntactic level, but rather at the se-
mantic level: assignments are required to be “well-typed”. For example,
an assignment is not well-typed if it maps a variable to a string when that
same variable appears within an arithmetical expression.

Property P6 can be expressed by an E-condition exploiting several of
the features we have discussed:
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View as a “tree” that is building up 
structural and relational information

E-conditions
view as a tree of morphisms equipped with Boolean symbols

Chapter 5. Verification with E-Conditions

pattern “every instance of some structure X should be within some partic-
ular context Y ” we require a combination of universal quantification and
nesting. Informally, the universally quantified part describes X , and then
a nested E-condition describes the required context Y . The following E-
condition following this pattern describes property P2:
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This E-condition is satisfied by any graph in which every node is incident
to an outgoing edge, but not incident to more than one. Numbers are used
to indicate which nodes are the same down the levels of nesting; here, the
node labelled x which is universally quantified appears in the nested E-
condition where information about its required context is given. Again, the
ks and ys in the nested E-condition are not bound together, but this time,
the xs are bound. Once a variable is used within an E-condition, every
other occurence of it down the levels of nesting evaluates to the same value
under an assignment. It can help to think of this nesting in E-conditions as
a tree of (injective) graph morphisms1 equipped with Boolean symbols, as
in Figure 5.1.
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Property P3 can be expressed by an E-condition with nesting, too. Here,
we define undirected to mean that if there is an edge from some node v1 to
v2, then there is also an edge from v2 to v1:
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Here, the xs (resp. ys, ks) are bounded.
Thus far, the graphs of our E-conditions have been labelled with vari-

ables distinct from each other and representing any combination of labels
from L. An important and powerful feature of E-conditions that we have

1Actually, E-conditions are morphisms equipped with Boolean symbols (and assignment
constraints). We will properly reveal and discuss this technical detail shortly.
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Property P3 can be expressed by an E-condition with nesting, too. Here,
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Here, the xs (resp. ys, ks) are bounded.
Thus far, the graphs of our E-conditions have been labelled with vari-

ables distinct from each other and representing any combination of labels
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an assignment constraint can be added to each level, e.g.

5.1. Nested Conditions with Expressions

not yet discussed, is the ability to constrain what values in L these variables
represent. There are two ways of achieving this. One way is through using
expressions as labels, e.g. one node might have label x with another having
label x*x. Writing properties about nodes and edges with the same label is
even simpler, as this E-condition for P4 demonstrates:
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Under any assignment both xs must be mapped to the same value in L,
hence this E-condition is only satisfied by graphs that have no two adjacent
nodes with the same value.

The other way of constraining the instantiation of variables is to add
so-called assignment constraints. Informally, assignment constraints are
simple Boolean expressions establishing relations between variables, and
restricting the types of values that variables can (or cannot) be instantiated
to. Given an assignment ↵ for a graph, an assignment constraint must eval-
uate to true when interpreted with regards to ↵. Assignment constraints
can be written for each graph in each level of nesting of an E-condition;
they are displayed after a vertical bar (which can be read aloud as “where”
or “such that”). For example, property P5 is expressed by:
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A graph will satisfy this E-condition, if every node with an integer label x
has an outgoing edge to a node labelled with 0 or some y that is larger than
x. The innermost assignment constraint is hopefully clear. The outermost
one, int(x), will evaluate to true under an assignment if x is mapped to
an integer; false if not. In rule schemata, such a predicate is unnecessary
because all variables are typed. In E-conditions however, it is important to
note that for notational simplicity, all variables are treated as untyped.

Remark 5.2 (Untyped variables). For notational simplicity, all of the vari-
ables appearing in the graphs and assignment constraints of E-conditions
are untyped. Rather, predicate symbols in the assignment constraints are
used to restrict the permissible values in L that a variable can be mapped
to. Type safety is imposed not at the syntactic level, but rather at the se-
mantic level: assignments are required to be “well-typed”. For example,
an assignment is not well-typed if it maps a variable to a string when that
same variable appears within an arithmetical expression.

Property P6 can be expressed by an E-condition exploiting several of
the features we have discussed:
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pattern “every instance of some structure X should be within some partic-
ular context Y ” we require a combination of universal quantification and
nesting. Informally, the universally quantified part describes X , and then
a nested E-condition describes the required context Y . The following E-
condition following this pattern describes property P2:
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This E-condition is satisfied by any graph in which every node is incident
to an outgoing edge, but not incident to more than one. Numbers are used
to indicate which nodes are the same down the levels of nesting; here, the
node labelled x which is universally quantified appears in the nested E-
condition where information about its required context is given. Again, the
ks and ys in the nested E-condition are not bound together, but this time,
the xs are bound. Once a variable is used within an E-condition, every
other occurence of it down the levels of nesting evaluates to the same value
under an assignment. It can help to think of this nesting in E-conditions as
a tree of (injective) graph morphisms1 equipped with Boolean symbols, as
in Figure 5.1.
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Property P3 can be expressed by an E-condition with nesting, too. Here,
we define undirected to mean that if there is an edge from some node v1 to
v2, then there is also an edge from v2 to v1:
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Here, the xs (resp. ys, ks) are bounded.
Thus far, the graphs of our E-conditions have been labelled with vari-

ables distinct from each other and representing any combination of labels
from L. An important and powerful feature of E-conditions that we have

1Actually, E-conditions are morphisms equipped with Boolean symbols (and assignment
constraints). We will properly reveal and discuss this technical detail shortly.
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an assignment constraint can be added to each level, e.g.

5.1. Nested Conditions with Expressions

not yet discussed, is the ability to constrain what values in L these variables
represent. There are two ways of achieving this. One way is through using
expressions as labels, e.g. one node might have label x with another having
label x*x. Writing properties about nodes and edges with the same label is
even simpler, as this E-condition for P4 demonstrates:
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Under any assignment both xs must be mapped to the same value in L,
hence this E-condition is only satisfied by graphs that have no two adjacent
nodes with the same value.

The other way of constraining the instantiation of variables is to add
so-called assignment constraints. Informally, assignment constraints are
simple Boolean expressions establishing relations between variables, and
restricting the types of values that variables can (or cannot) be instantiated
to. Given an assignment ↵ for a graph, an assignment constraint must eval-
uate to true when interpreted with regards to ↵. Assignment constraints
can be written for each graph in each level of nesting of an E-condition;
they are displayed after a vertical bar (which can be read aloud as “where”
or “such that”). For example, property P5 is expressed by:
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A graph will satisfy this E-condition, if every node with an integer label x
has an outgoing edge to a node labelled with 0 or some y that is larger than
x. The innermost assignment constraint is hopefully clear. The outermost
one, int(x), will evaluate to true under an assignment if x is mapped to
an integer; false if not. In rule schemata, such a predicate is unnecessary
because all variables are typed. In E-conditions however, it is important to
note that for notational simplicity, all variables are treated as untyped.

Remark 5.2 (Untyped variables). For notational simplicity, all of the vari-
ables appearing in the graphs and assignment constraints of E-conditions
are untyped. Rather, predicate symbols in the assignment constraints are
used to restrict the permissible values in L that a variable can be mapped
to. Type safety is imposed not at the syntactic level, but rather at the se-
mantic level: assignments are required to be “well-typed”. For example,
an assignment is not well-typed if it maps a variable to a string when that
same variable appears within an arithmetical expression.

Property P6 can be expressed by an E-condition exploiting several of
the features we have discussed:
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for every node,
   (1) there exists an outgoing edge
           to another node; and
   (2) there does not exist a pair of
           outgoing edges to another node



Satisfaction of E-conditions
(an incomplete definition)

87

• a graph G satisfies an E-condition c, written G ⊨ c, if:

   (1) c = true; or

   (2) c = 

        and there is a mapping α: Vars -> Data such that

           (a)  [|γ|]α = true;
           (b)  Cα is a subgraph of G;
           (c)  the context of Cα in G  “satisfies” c’

9(C | �, c0)
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Satisfaction of E-conditions
(an incomplete definition)

• a graph G satisfies an E-condition c, written G ⊨ c, if:

   (1) c = true; or

   (2) c = 

        and there is a mapping α: Vars -> Data such that

           (a)  [|γ|]α = true;
           (b)  Cα is a subgraph of G;
           (c)  the context of Cα in G  “satisfies” c’

9(C | �, c0)

the complete formal definition needs the 
notion of “morphism” for the inductive part (c)



Satisfaction by example
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E-conditions: Satisfaction

5

6

1

2

|= 9(

k

x

| type(x) = int)

C.M. Poskitt (York, UK) Verification of Graph Programs 6th August 2012 20 / 50

| int(x)) ?
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E-conditions: Satisfaction

5

6

1

2

|= 9(

k

x

| type(x) = int)

C.M. Poskitt (York, UK) Verification of Graph Programs 6th August 2012 20 / 50

| int(x))

by assignment x |-> 6,  k |-> 2



What can E-conditions not specify?
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• E-conditions are expressively equivalent to a first-order logic 
interpreted over graphs

• for relations between labels, this is great...

• ...but for graphs, first-order logic is quite weak for expressing 
structure

   - only “local” properties
   - need more than FO for path properties, connectedness...

? what prevents us from simply adding
predicates for these properties?



Next on the agenda

(1) a programming language for graphs

(2) an assertion language for graphs

(3) Hoare-style reasoning about graph transformation

(4) program proofs

93



Partial correctness specifications
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• partial correctness: if program P is executed on a graph G 
such that G |= pre, then if a graph H results, H |= post

• differs to the partial correctness definition in lecture 2:

   - nondeterminism: many graphs H could result, but all
       guaranteed to satisfy post
   - P might fail on G

|= {pre} P {post}

graph program

E-conditions



Proof rules
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Chapter 4. Verification with E-Conditions

[ruleapp]wlp
{Pre(r, c) ∨ ¬App({r})} r {c}

[ruleapp]
{Pre(r, c)} r {c}

[nonapp]
{¬App({r})} r {false}

{c} r {d} for each r ∈ R
[ruleset]

{c} R {d}

{c} P {e} {e} Q {d}
[comp]

{c} P ; Q {d}

{c ∧App(R)} P {d} {c ∧ ¬App(R)} Q {d}
[if]

{c} ifR then P else Q {d}

{c ∧App(R)} R; P {d} {c ∧ ¬App(R)} Q {d}
[try]

{c} tryR then P else Q {d}

{inv} R {inv}
[!]

{inv} R! {inv ∧ ¬App(R)}

c⇒ c′ {c′} P {d′} d′ ⇒ d
[cons]

{c} P {d}

Figure 4.6: Partial correctness rules with E-constraints for core commands

2. shift this E-condition over to the left-hand graph of r; and

3. nest this within an E-constraint universally quantified over all possi-
ble matches of r (accounting also for its applicability).

The transformation App(R) of [ruleapp]wlp, [nonapp], [if], [try], and [!]
takes as input a set of conditional rule schemata R, and transforms it into
an E-constraint expressing that at least one of the rule schemata within the
set is applicable. (Again, this will be defined formally in Section 4.3.) If a
graph G satisfies App(R), then there exists a direct derivation G⇒R H for
some graph H . If a graph G satisfies ¬App(R), then there is no such direct
derivation and executing R on G will lead to failure.

94

where: R = {r0, . . . , rn}
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3. nest this within an E-constraint universally quantified over all possi-
ble matches of r (accounting also for its applicability).

The transformation App(R) of [ruleapp]wlp, [nonapp], [if], [try], and [!]
takes as input a set of conditional rule schemata R, and transforms it into
an E-constraint expressing that at least one of the rule schemata within the
set is applicable. (Again, this will be defined formally in Section 4.3.) If a
graph G satisfies App(R), then there exists a direct derivation G⇒R H for
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where App(R) constructs an E-condition 
expressing that R will not fail on the graph
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[ruleapp]wlp
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[try]

{c} tryR then P else Q {d}

{inv} R {inv}
[!]

{inv} R! {inv ∧ ¬App(R)}

c⇒ c′ {c′} P {d′} d′ ⇒ d
[cons]

{c} P {d}

Figure 4.6: Partial correctness rules with E-constraints for core commands

2. shift this E-condition over to the left-hand graph of r; and

3. nest this within an E-constraint universally quantified over all possi-
ble matches of r (accounting also for its applicability).

The transformation App(R) of [ruleapp]wlp, [nonapp], [if], [try], and [!]
takes as input a set of conditional rule schemata R, and transforms it into
an E-constraint expressing that at least one of the rule schemata within the
set is applicable. (Again, this will be defined formally in Section 4.3.) If a
graph G satisfies App(R), then there exists a direct derivation G⇒R H for
some graph H . If a graph G satisfies ¬App(R), then there is no such direct
derivation and executing R on G will lead to failure.
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reduce(a,b,c: int)
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Now, we define the transformation App for expressing applicability of
sets of (conditional) rule schemata. The idea is to express through nesting
– for each rule schema – that there exists a morphism from an instantiation
of the left-hand graph that satisfies the dangling condition and rule schema
condition. We directly use the intermediate transformations Dang and τ in
the construction.

Definition 4.33 (Transformation App). Let R denote a set of (conditional)
rule schemata. If R is empty, define App(R) = false. Otherwise, if R =
{r1, . . . , rn}, define:

App(R) = app(r1) ∨ · · · ∨ app(rn)

where for each (conditional) rule schema ri = 〈Li ←↩ Ki ↪→ Ri,Γi〉, define:

app(ri) = ∃(∅ ↪→ Li | γri ,Dang(ri) ∧ τ(ri)).

Here, γri is a conjunction of type predicates restricting integer, string, and
atom variables in ri to their declared types.

Example 4.34 (Transformation App). Consider the conditional rule schema:

reduce3(a, b, c : int) = 〈 a b
1

c
⇒ a

1
,Γ〉

where Γ = a < b and b < c. Applying App to reduce3 yields the following
E-constraint:

App({reduce3})
= app(reduce3)

= ∃(∅ ↪→ a b
1 2

c
| int(a, b, c),

Dang(reduce3) ∧ τ ′( a b
1 2

c
,Γ))

= ∃( a b
1 2

c
| int(a, b, c),

(¬∃( a b
1 2

c

x
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) ∧ ¬∃( a b x
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c y
)
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c y
) ∧ ¬∃( a b

1 2

c
x
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∧ (∃( a b
1 2

c
| a < b) ∧ ∃( a b

1 2

c
| b < c)))

which can be simplified to the following equivalent E-constraint:

≡ ∃( a b
1 2

c
| a < b and b < c,

¬∃( a b
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c

x
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c

x
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c
x
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(Again, as for Example 4.30, we omit for simplicity the conjuncts about
marked nodes and edges in the Dang(reduce3) part of the E-constraint.)
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(Again, as for Example 4.30, we omit for simplicity the conjuncts about
marked nodes and edges in the Dang(reduce3) part of the E-constraint.)
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(Again, as for Example 4.30, we omit for simplicity the conjuncts about
marked nodes and edges in the Dang(reduce3) part of the E-constraint.)
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(Again, as for Example 4.30, we omit for simplicity the conjuncts about
marked nodes and edges in the Dang(reduce3) part of the E-constraint.)
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app(ri) = ∃(∅ ↪→ Li | γri ,Dang(ri) ∧ τ(ri)).

Here, γri is a conjunction of type predicates restricting integer, string, and
atom variables in ri to their declared types.

Example 4.34 (Transformation App). Consider the conditional rule schema:
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(Again, as for Example 4.30, we omit for simplicity the conjuncts about
marked nodes and edges in the Dang(reduce3) part of the E-constraint.)
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(Again, as for Example 4.30, we omit for simplicity the conjuncts about
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4.3. Transformations of E-Conditions

are injective graph morphisms. The set εσ is the set of such surjective graph
morphisms for a particular σ, the codomains of which we consider up to
isomorphism11, and up to the redundancy check as follows. Given a surjec-
tive graph morphism e1 : (C ′)σ1 → E1, E1 is considered redundant and the
morphism is excluded from the disjunction if there exists a surjective graph
morphism e2 : (C ′)σ2 → E2, such that E2 ! E1, and there exists some σ ∈ Σ
such that Eσ

2
∼= E1.

Note that the definition of substitutions in Σ means that for any σ ∈ Σ,
P σ = P , and (P ′)σ = P ′. Note also that b and s are jointly surjective; the
idea is that each E contains an image of both P ′ and Cσ, with the substitu-
tions equating labels on the syntactic level and thus facilitating Es in which
nodes and edges are merged.

The transformations A,A′ are extended for Boolean formulae over E-
conditions in the usual way, that is, A(r,¬c) = ¬A(r, c), A(r, c1 ∧ c2) =
A(r, c1) ∧ A(r, c2), and A(r, c1 ∨ c2) = A(r, c1) ∨ A(r, c2) (analogous for
A′).

We demonstrate the transformation A on an example rule schema and
E-constraint. This is the beginning of a running example, which will be
returned to for demonstrating transformation L and then finally Pre.

Example 4.37 (Transformation A). Let r denote the rule schema init of the
program colouring, given in Figure 2.19 and again below:

init(x : atom)

1

x ⇒
1

x :0

and let c denote the E-constraint:

∀( a
1
, ∃( a

1
| atom(a)) ∨ ∃( a

1
| a = b :c and atom(b) and c >= 0))

expressing that “every (unmarked) node is labelled by either an atom or
a list comprising an atom followed by a natural number”. For brevity, in
what follows, we define:

c′1 = ∃( a
1
| atom(a))

and:
c′2 = ∃( a

1
| a = b :c and atom(b) and c >= 0).

With the definition of ∀, we can take c to be the equivalent E-constraint:

¬∃( a
1
,¬c′1 ∧ ¬c′2).

Now, applying transformation A to r and c, we get:

11Hence the disjunction is finite.
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What does Pre(r,c) look like?
(see Poskitt 13 for the construction)
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Pre(r, c) = ∀(∅ ↪→ x
1
| atom(x),Dang(r) ∧ τ(r)⇒ L(r,A(r, c)))

= ∀( x
1
| atom(x),L(r,A(r, c)))

= ∀( x
1
| atom(x),

∀( x
1
a

2
, ∃( x

1
a

2
| atom(a))

∨ ∃( x
1
a

2
| a = b :c and atom(b) and c >= 0))

∧ ∀( x
1
, ∃( x

1
| atom(x :0))

∨ ∃( x
1
| x :0 = b :c and atom(b) and c >= 0)))

Since r does not delete any nodes, and does not have a rule schema condi-
tion, Dang(r) ∧ τ(r) = true, simplifying the nested E-constraint generated
by Pre. We can simplify Pre(r, c) further by hand to get:

Pre(r, c) ≡ ∀( x
1
a

2
| atom(x), ∃( x

1
a

2
| atom(a))

∨ ∃( x
1
a

2
| a = b :c and atom(b) and c >= 0))

4.4 Soundness

In this section we prove the soundness of our calculi with E-constraints, i.e.
proving a triple in a calculus for a notion of correctness implies its truth
with regards to that notion of correctness.

We have already proved soundness for the extensional calculi in Theo-
rems 3.22, 3.23, and 3.24, and so the main task that remains to prove sound-
ness for our calculi with E-constraints is to show that:

1. c ∧App(R) defines SEE[c,R];

2. c ∧ ¬App(R) defines FEE[c,R]; and

3. Pre(r, c) ∨ ¬App({r}) defines WlpE[r, c].

The soundness proof will be presented as follows. First, we will state and
prove a lemma about induced substitutions and satisfaction that is useful
in later proofs. Then, we will prove the correctness of App and Pre in the
sense that they define the assertions in (1–3) above. Finally, the soundness
of our extensional calculi and the correctness of the transformations will be
used to prove the soundness of our verification calculi with E-constraints.

We remark that some of the proofs utilise basic definitions and facts
about pushout and pullback constructions. The essentials are presented
together in Appendix C.
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a

2
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1
a

2
| atom(a))
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1
a

2
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Classic Hoare logic vs. graph program 
Hoare logic
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• for the most part, classic and graph-based Hoare logic are 
very similar

• but interestingly, in “raising the abstraction” of programs 
and assertions, we make the core axiom of the Hoare 
logic very technical / complicated

   - compare to the simplicity of the assignment axiom

• motivates tool support, especially for generating App(R), 
Pre(r,c), and for deciding implications that have them as 
consequences

!



Next on the agenda

(1) a programming language for graphs

(2) an assertion language for graphs

(3) Hoare-style reasoning about graph transformation

(4) program proofs

109



Partial correctness of colouring
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2.2.4 Example Programs

In this subsection, we present some example programs in order to give
some intuition into graph programming, before later introducing a formal
operational semantics. The first program manipulates the labels of nodes
to compute a graph colouring; the second marks nodes in order to check
connectedness; and the third reduces an input graph to check whether it
was a tree or not.

Example 2.43 (Computing a graph colouring). The program colouring in
Figure 2.19 produces a colouring (an assignment of integers to nodes such
that adjacent nodes have different colours) for every input graph that is
unmarked and atom-labelled, recording colours as the second elements in
the list components of nodes.

main = init!; inc!

init(x : atom) inc(i : int; k : list; x, y : atom)

1

x ⇒
1

x :0 x :i y :i

1 2

k ⇒ x :i y :i+1

1
2

k

3

3

33

3 3

33 ⇒+ 3:0

3:1

3:03:1

3 3

33

⇒+

3:0

3:1

3:23:1

3 3

33

Figure 2.19: The program colouring and two of its executions

The program initially colours each node with 0 by applying the rule
schema init as long as possible, using the iteration operator ’!’. It then
iterates inc for as long as possible, which matches adjacent nodes with the
same colour, and increments the colour of the target node by 1. Observe
that the iteration of inc will only end once the graph is correctly coloured,
otherwise inc would be applied again and the iteration would continue.
(Note that for simplicity the program only operates on unmarked nodes
and edges, but could easily be extended for marked ones were it necessary.)
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main = init!; inc!
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x ⇒
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x :0 x :i y :i

1 2

k ⇒ x :i y :i+1
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k

Figure 5.1: The program colouring

Example 5.1 (Partial correctness of colouring). We begin by formalising a
partial correctness specification of colouring using E-constraints:

Precondition “every (unmarked) node is labelled by an atom”

∀( a
1
, ∃( a

1
| atom(a)))

Postcondition “every (unmarked) node is labelled by a list b : c with b
an atom and c a natural number, and adjacent nodes are distinctly
coloured”

∀( a
1
, ∃( a

1
| a = b :c and atom(b) and c >= 0))

∧ ¬∃( x :i y :i
k

| atom(x, y) and int(i))

Note that the specification we are proving does not guarantee anything
about marked nodes, or nodes linked by marked edges. We could write a
stronger specification that requiring their absence, but we choose not to in
order to keep the example simple.

We give a proof tree for this specification in Figure 5.2, with the precon-
dition, program, and postcondition forming the triple at the root of the tree.
For clarity, we split the postcondition into two parts: d and ¬App({inc}).
This makes clear the insight that part of the postcondition is a direct result
of the non-applicability of inc once the iteration terminates. The assertion
d itself is an invariant for inc, and is inferred from the invariant of init
and the non-applicability of that rule schema once its iteration terminates.

Note that we give simplified (by hand) E-constraints from Pre in Figure
5.2. The actual results of the transformation are given in full in Figure 5.3.

The three applications of [cons] have side conditions to be shown, i.e.
implications that must be shown to be valid. We argue that this is the case
for the non-trivial implications:
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5.1. Computing a Graph Colouring

[ruleapp]
{Pre(init, e)} init {e}

[cons]
{e} init {e}

[!]
{e} init! {e ∧ ¬App({init})}

[cons]
{c} init! {d}

[ruleapp]
{Pre(inc, d)} inc {d}

[cons]
{d} inc {d}

[!]
{d} inc! {d ∧ ¬App({inc})}

[comp]
"par {c} init!; inc! {d ∧ ¬App({inc})}

c = ∀( a
1
, ∃( a

1
| atom(a)))

d = ∀( a
1
, ∃( a

1
| a = b :c and atom(b) and c >= 0))

e = ∀( a
1
, ∃( a

1
| atom(a))

∨ ∃( a
1
| a = b :c and atom(b) and c >= 0))

¬App({init}) = ¬∃( x | atom(x))

¬App({inc}) = ¬∃( x :i y :i
k

| atom(x, y) and int(i))

Pre(init, e) ≡ ∀( x
1
a

2
| atom(x), ∃( x

1
a

2
| atom(a))

∨ ∃( x
1
a

2
| a = b :c and atom(b) and c >= 0))

Pre(inc, d) ≡ ∀( x :i y :i
1 2

k
| atom(x, y) and int(i),

∀( x :i y :i a
1 2 3

k
,

∃( x :i y :i a
1 2 3

k
| a = b :c and atom(b)

and c >= 0))

∧ ∃( x :i y :i
1 2

k
| i >= 0))

Figure 5.2: A partial correctness proof tree for the program colouring

Validity of e ⇒ Pre(init, e). If e is satisfied by a graph, then every
(unmarked) node is either labelled with an atom, or a list b : c with b an
atom and c a natural number. Such a graph will also satisfy Pre(init, e),
which expresses the same requirement of every node distinct from matches
of atom-labelled nodes. Hence the implication is valid.

Validity of d ⇒ Pre(inc, d). If d is satisfied by a graph, then every (un-
marked) node is labelled by a list b :c with b an atom and c a natural number.
Such a graph will also satisfy Pre(inc, d), which expresses that (1) the prop-
erty is true of every node outside matches of inc; and (2) that the colours
i in matches of inc are natural numbers (this must be the case since d ex-
presses that all nodes are coloured, and all colours are natural numbers).
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[ruleapp]
{Pre(init, e)} init {e}

[cons]
{e} init {e}

[!]
{e} init! {e ∧ ¬App({init})}

[cons]
{c} init! {d}

[ruleapp]
{Pre(inc, d)} inc {d}

[cons]
{d} inc {d}

[!]
{d} inc! {d ∧ ¬App({inc})}

[comp]
"par {c} init!; inc! {d ∧ ¬App({inc})}

c = ∀( a
1
, ∃( a

1
| atom(a)))

d = ∀( a
1
, ∃( a

1
| a = b :c and atom(b) and c >= 0))

e = ∀( a
1
, ∃( a

1
| atom(a))

∨ ∃( a
1
| a = b :c and atom(b) and c >= 0))

¬App({init}) = ¬∃( x | atom(x))

¬App({inc}) = ¬∃( x :i y :i
k

| atom(x, y) and int(i))

Pre(init, e) ≡ ∀( x
1
a

2
| atom(x), ∃( x

1
a

2
| atom(a))

∨ ∃( x
1
a

2
| a = b :c and atom(b) and c >= 0))

Pre(inc, d) ≡ ∀( x :i y :i
1 2

k
| atom(x, y) and int(i),

∀( x :i y :i a
1 2 3

k
,

∃( x :i y :i a
1 2 3

k
| a = b :c and atom(b)

and c >= 0))

∧ ∃( x :i y :i
1 2

k
| i >= 0))

Figure 5.2: A partial correctness proof tree for the program colouring

Validity of e ⇒ Pre(init, e). If e is satisfied by a graph, then every
(unmarked) node is either labelled with an atom, or a list b : c with b an
atom and c a natural number. Such a graph will also satisfy Pre(init, e),
which expresses the same requirement of every node distinct from matches
of atom-labelled nodes. Hence the implication is valid.

Validity of d ⇒ Pre(inc, d). If d is satisfied by a graph, then every (un-
marked) node is labelled by a list b :c with b an atom and c a natural number.
Such a graph will also satisfy Pre(inc, d), which expresses that (1) the prop-
erty is true of every node outside matches of inc; and (2) that the colours
i in matches of inc are natural numbers (this must be the case since d ex-
presses that all nodes are coloured, and all colours are natural numbers).

131

5.1. Computing a Graph Colouring

[ruleapp]
{Pre(init, e)} init {e}

[cons]
{e} init {e}

[!]
{e} init! {e ∧ ¬App({init})}

[cons]
{c} init! {d}

[ruleapp]
{Pre(inc, d)} inc {d}

[cons]
{d} inc {d}

[!]
{d} inc! {d ∧ ¬App({inc})}

[comp]
"par {c} init!; inc! {d ∧ ¬App({inc})}

c = ∀( a
1
, ∃( a

1
| atom(a)))

d = ∀( a
1
, ∃( a

1
| a = b :c and atom(b) and c >= 0))

e = ∀( a
1
, ∃( a

1
| atom(a))

∨ ∃( a
1
| a = b :c and atom(b) and c >= 0))

¬App({init}) = ¬∃( x | atom(x))

¬App({inc}) = ¬∃( x :i y :i
k

| atom(x, y) and int(i))

Pre(init, e) ≡ ∀( x
1
a

2
| atom(x), ∃( x

1
a

2
| atom(a))

∨ ∃( x
1
a

2
| a = b :c and atom(b) and c >= 0))

Pre(inc, d) ≡ ∀( x :i y :i
1 2

k
| atom(x, y) and int(i),

∀( x :i y :i a
1 2 3

k
,

∃( x :i y :i a
1 2 3

k
| a = b :c and atom(b)

and c >= 0))

∧ ∃( x :i y :i
1 2

k
| i >= 0))

Figure 5.2: A partial correctness proof tree for the program colouring

Validity of e ⇒ Pre(init, e). If e is satisfied by a graph, then every
(unmarked) node is either labelled with an atom, or a list b : c with b an
atom and c a natural number. Such a graph will also satisfy Pre(init, e),
which expresses the same requirement of every node distinct from matches
of atom-labelled nodes. Hence the implication is valid.

Validity of d ⇒ Pre(inc, d). If d is satisfied by a graph, then every (un-
marked) node is labelled by a list b :c with b an atom and c a natural number.
Such a graph will also satisfy Pre(inc, d), which expresses that (1) the prop-
erty is true of every node outside matches of inc; and (2) that the colours
i in matches of inc are natural numbers (this must be the case since d ex-
presses that all nodes are coloured, and all colours are natural numbers).

131



114

5.1. Computing a Graph Colouring

[ruleapp]
{Pre(init, e)} init {e}

[cons]
{e} init {e}

[!]
{e} init! {e ∧ ¬App({init})}

[cons]
{c} init! {d}

[ruleapp]
{Pre(inc, d)} inc {d}

[cons]
{d} inc {d}

[!]
{d} inc! {d ∧ ¬App({inc})}

[comp]
"par {c} init!; inc! {d ∧ ¬App({inc})}

c = ∀( a
1
, ∃( a

1
| atom(a)))

d = ∀( a
1
, ∃( a

1
| a = b :c and atom(b) and c >= 0))

e = ∀( a
1
, ∃( a

1
| atom(a))

∨ ∃( a
1
| a = b :c and atom(b) and c >= 0))

¬App({init}) = ¬∃( x | atom(x))

¬App({inc}) = ¬∃( x :i y :i
k

| atom(x, y) and int(i))

Pre(init, e) ≡ ∀( x
1
a

2
| atom(x), ∃( x

1
a

2
| atom(a))

∨ ∃( x
1
a

2
| a = b :c and atom(b) and c >= 0))

Pre(inc, d) ≡ ∀( x :i y :i
1 2

k
| atom(x, y) and int(i),

∀( x :i y :i a
1 2 3

k
,

∃( x :i y :i a
1 2 3

k
| a = b :c and atom(b)

and c >= 0))

∧ ∃( x :i y :i
1 2

k
| i >= 0))

Figure 5.2: A partial correctness proof tree for the program colouring

Validity of e ⇒ Pre(init, e). If e is satisfied by a graph, then every
(unmarked) node is either labelled with an atom, or a list b : c with b an
atom and c a natural number. Such a graph will also satisfy Pre(init, e),
which expresses the same requirement of every node distinct from matches
of atom-labelled nodes. Hence the implication is valid.

Validity of d ⇒ Pre(inc, d). If d is satisfied by a graph, then every (un-
marked) node is labelled by a list b :c with b an atom and c a natural number.
Such a graph will also satisfy Pre(inc, d), which expresses that (1) the prop-
erty is true of every node outside matches of inc; and (2) that the colours
i in matches of inc are natural numbers (this must be the case since d ex-
presses that all nodes are coloured, and all colours are natural numbers).

131

5.1. Computing a Graph Colouring

[ruleapp]
{Pre(init, e)} init {e}

[cons]
{e} init {e}

[!]
{e} init! {e ∧ ¬App({init})}

[cons]
{c} init! {d}

[ruleapp]
{Pre(inc, d)} inc {d}

[cons]
{d} inc {d}

[!]
{d} inc! {d ∧ ¬App({inc})}

[comp]
"par {c} init!; inc! {d ∧ ¬App({inc})}

c = ∀( a
1
, ∃( a

1
| atom(a)))

d = ∀( a
1
, ∃( a

1
| a = b :c and atom(b) and c >= 0))

e = ∀( a
1
, ∃( a

1
| atom(a))

∨ ∃( a
1
| a = b :c and atom(b) and c >= 0))

¬App({init}) = ¬∃( x | atom(x))

¬App({inc}) = ¬∃( x :i y :i
k

| atom(x, y) and int(i))

Pre(init, e) ≡ ∀( x
1
a

2
| atom(x), ∃( x

1
a

2
| atom(a))

∨ ∃( x
1
a

2
| a = b :c and atom(b) and c >= 0))

Pre(inc, d) ≡ ∀( x :i y :i
1 2

k
| atom(x, y) and int(i),

∀( x :i y :i a
1 2 3

k
,

∃( x :i y :i a
1 2 3

k
| a = b :c and atom(b)

and c >= 0))

∧ ∃( x :i y :i
1 2

k
| i >= 0))

Figure 5.2: A partial correctness proof tree for the program colouring

Validity of e ⇒ Pre(init, e). If e is satisfied by a graph, then every
(unmarked) node is either labelled with an atom, or a list b : c with b an
atom and c a natural number. Such a graph will also satisfy Pre(init, e),
which expresses the same requirement of every node distinct from matches
of atom-labelled nodes. Hence the implication is valid.

Validity of d ⇒ Pre(inc, d). If d is satisfied by a graph, then every (un-
marked) node is labelled by a list b :c with b an atom and c a natural number.
Such a graph will also satisfy Pre(inc, d), which expresses that (1) the prop-
erty is true of every node outside matches of inc; and (2) that the colours
i in matches of inc are natural numbers (this must be the case since d ex-
presses that all nodes are coloured, and all colours are natural numbers).

131



Next on the agenda

(1) a programming language for graphs

(2) an assertion language for graphs

(3) Hoare-style reasoning about graph transformation

(4) program proofs
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The full picture

• many technical details hidden “under the carpet”

   - impossible to cover everything in the assigned time

• the full picture is quite interesting (I think!)

   - references will be added to the course webpage
   - but these are of course optional readings
   - the exercises on Wednesday will make clear the
       level of understanding I aimed for
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Summary

• motivated the study of graph-manipulating 
programs and discussed some applications

• introduced the notion of graph transformation: 
program states as graphs; steps as rules

• considered a programming language for modelling 
problems as graph transformations

• presented an overview of an assertion language 
and Hoare logic for proving properties about 
graph structure and relations between labels
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Ongoing work

• reasoning about arbitrary-length path properties

• graph-based semantics for concurrency models
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Thank you! Questions?

Next lecture:

• data flow analysis (with Sebastian Nanz)
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