
Chair of Software Engineering

Software Verification

Sebastian Nanz	

Lecture 8: Program Analysis

Chair of Software Engineering

Program	
 Analysis	

An	
 Informal	
 Overview	
 	

3

Applications of program analysis

Two important application fields of program analysis:

Ø  Program optimizations

Ø  Program analysis provides techniques for
transforming programs during compilation to avoid
redundant computations

Ø  Verification
Ø  Program analysis can provide warnings about possible

unintended program behavior (e.g. buffer overflows)
or prove programs free from such behavior

Program analysis is a static technique, i.e. analyses are
performed without running the program.

4

How can this work?

We are interested to have questions such as the following
answered by an analysis:

Ø  Will the value of variable x be read in the future?
Ø  Can buffer b overflow in line i of the program?
Ø  Can void dereferencing occur during execution? etc.

From computability theory (Rice’s theorem) we know
however: “All non-trivial questions about the behavior of
Turing-complete programs are undecidable.” So, how can
this work?

Key idea: We can settle for approximative answers, as
explained on the following slides.

5

The approach

Assume we depict the set of all possible concrete
executions of a program as trajectories through the state
space:

Time

States Program
executions

6

Safety properties

Many program analysis questions can be stated as safety
properties, which express that no possible execution can
enter an error state (e.g. a state where “buffer b
overflows”).

States
Error states

Error Error states

Time

7

Approximations

As mentioned, proving that a non-trivial safety property
holds is undecidable for the set of concrete executions.
Instead we compute an abstraction of the behavior which
over-approximates all concrete executions:

States
Error states

Error states

Time

8

Soundness of the analysis

We want our analysis to be sound so that all possible
program executions are captured.

Example of an unsound analysis:

States
Error states

Error states

Time

Unsound

9

Precision

We also want our analysis to be as precise as possible.
Otherwise, if there are too many false alarms, the analysis
will be unusable.
Errors reported by the analysis which cannot occur in a
concrete execution are called false positives.

States
Error states

Error states

Time

False
positive

10

Precision vs. efficiency

While we want our analysis to be precise, we often have to
trade off precision with efficiency:

Ø  While a very precise analysis might still be computable,
it might need to run for too long to be practical.
Ø  Imprecise analyses leave us with a large number of
warnings, and manual checking has to show whether a
particular warning is an error or a false positive.

Defining new program analyses is thus an art that tries to
balance precision and efficiency.

11

Types of program analyses

Several types of program analyses have been established:
Ø  Data flow analysis
Ø  Control flow analysis
Ø  Abstract interpretation
Ø  Type systems

In this lecture we will focus on data flow analysis, and in
the next on abstract interpretation.

12

Summary

Program analysis provides a set of static techniques for
computing sound abstractions of the run-time behavior of
a program.

Chair of Software Engineering

Data	
 Flow	
 Analysis	

Preliminaries	

14

Data flow analysis

Data flow analysis is a technique to derive information
about the possible program values produced at a specific
program point.

Data flow analyses take as an input the control flow graph
of a program, and proceed by examining how data values
are changed when being propagated along its edges (hence
the name “data flow”).

15

Obtaining control flow graphs

For imperative programs, a control flow graph can be
computed straightforwardly from the abstract syntax
tree of the program. (In more complicated cases, there
are advanced techniques for it: control flow analysis.)

Source Code

 Abstract Syntax Trees (AST)

 Control Flow Graphs (CFG)

16

Abstract syntax tree

Abstract syntax tree: tree representation of the syntactic
structure of the source code.

x := 1
y := x + 2
if (y > 3) then

 Result := y
else

 Result := x
end

;

:=

x 1
:=

y +

x 2

if…then…else…end

>

y 3
:=

Result y
:=

Result x

;

17

Control flow graph

Control flow graph: graph representation of all possible
execution paths of a program.

x := 1
y := x + 2
if (y > 3) then

 Result := y
else

 Result := x
end
y := x

x:=1

y:=x+2

y>3

Result:=y Result:=x

y:=x

18

Labels

In order to be able to refer to specific program points,
program analyses introduce labels into the program.
The labeled program fragments are called elementary
blocks.

[x := 1]1

[y := x + 2]2
if [y > 3]3 then

 [Result := y]4
else

 [Result := x]5
end
[y := x]6

[x:=1]1

[y:=x+2]2

[y>3]3

[Result:=y]4 [Result:=x]5

[y:=x]6

Elementary
block

Label

Initial
label

Final
label

Chair of Software Engineering

Data	
 Flow	
 Analysis	

Live	
 Variables	
 Analysis	

20

Live variables analysis

We present a first example of a data flow analysis: live
variables (LV) analysis.
Ø  A variable is live at the exit from a block if there is
some path from the block to a use of the variable that
does not redefine the variable.
Ø  The aim of the live variables analysis is to determine

Example:

 [x :=2]1; [y:=4]2; [x:=1]3;
 if [y>x]4 then [z:=y]5 else [z:=2*z]6 end; [x:=z]7

Is the variable x live at the exit from block 1?

“For each program point, which variables
may be live at the exit from the point.”

21

Live variables analysis

[y:=x]2

[y>x]4

[z:=y]5 [z:=2*z]6

{y,z}
{y}

{y,z}

{z}

{x,z}

Analysis idea:
Ø  Record sets of possibly live variables
Ø  Distinguish entry and exit of blocks
Ø  Work backwards

(LV1) Blocks:
 LVentry = (LVexit \ “assigned”)∪“used”

"assigned" – variable that gets assigned in the block
"used" – variables that are used in the block

(LV2) Edges:
 LVexit(4) = LVentry(5)∪LVentry(6)

22

Example: Live variables analysis

[x :=2]1

[y:=4]2

[x:=1]3

[y>x]4

[z:=y]5 [z:=2*z]6

[x:=z]7

{}

{z} {z}

{y,z}
{y}

{x,y,z}

{y,z}

{z}

{z}

{z}

{z}

{x,y,z}

{y,z}

{z}

23

Application: Dead code elimination

An assignment [x := a]l is dead if the value of x is not used
before it is redefined.

Goal: Eliminate dead assignments from programs.

Example:
We know that x ∉ LVexit(1) = {z}, i.e. variable x not used
before it is redefined. Therefore block 1 is dead and can
be eliminated:

 [x :=2]1; [y:=4]2; [x:=1]3;
 if [y>x]4 then [z:=y]5 else [z:=2*z]6 end; [x:=z]7

24

How to formalize the analysis idea?

Ø  (LV1) and (LV2) specify equations over a set of variables
LVentry(l) and LVexit(l) for any label l.
Ø  This equation system can be solved with standard
algorithms (discussed later).
Ø  The equation system itself can be specified more
formally, as done on the next slide.

This specification consists of two parts:
1.  The definition of the equation system.
2.  Auxiliary functions kill and gen, which specify the

analysis information removed (killed) and added
(generated) when passing through an elementary block.

25

Formalization: Data flow equations

1. The data flow equations:

LVexit(l) = ∪ LVentry(l')

 (and LVexit(l) = {} if l is the final label)
LVentry(l) = (LVexit(l) \ killLV(l)) ∪ genLV (l)

2. The auxiliary kill and gen functions:
killLV ([x:=a]l) = {x}
killLV ([b]l) = {}
genLV ([x:=a]l) = {y | y is a free variable in a}
genLV ([b]l) = {y | y is a free variable in b}

(l, l') ∈ CFG

26

Example: Equation system for LV analysis

LVentry(1) =
LVentry(2) =
LVentry(3) =
LVentry(4) =
LVentry(5) =
LVentry(6) =
LVentry(7) =

LVexit(1) =
LVexit(2) =
LVexit(3) =
LVexit(4) =
LVexit(5) =
LVexit(6) =
LVexit(7) =

[x :=2]1

[y:=4]2

[x:=1]3

[y>x]4

[z:=y]5 [z:=2*z]6

[x:=z]7

{}

LVentry(7)
LVentry(7)

LVentry(2)
LVentry(3)
LVentry(4)
LVentry(5) ∪ LVentry(6)

LVexit(1) \ {x}
LVexit(2) \ {y}
LVexit(3) \ {x}
LVexit(4) ∪ {x, y}
(LVexit(5) \ {z}) ∪ {y}
(LVexit(6) \ {z}) ∪ {z}
(LVexit(7) \ {x})∪ {z}

Chair of Software Engineering

Data	
 Flow	
 Analysis	

Equa=on	
 Solving	

28

Fixed point solutions

Ø  The equation system of the example defines the 14 sets
 LVentry(1), LVentry(2), ..., LVexit(7)

in terms of each other.
Ø  When writing LV for the vector of these 14 sets, the
equation system can be written as a function F where

 LV = F(LV)
Ø  Using a vector of variables X = (X1,..., X14), the function
can be defined as

 F(X) = (f1(X), ..., f14(X))
where for example
 f11(X1, ..., X14) = X5∪ X6
Ø  From the above equation it is clear that the solution LV
we are looking for is the (least) fixed point of the function
F.

29

Partially ordered sets

For any analysis, we are interested in expressing that one
analysis result is "better" (more precise) than another.
In other words, we want the analysis domain to be partially
ordered.

A partial ordering is a relation ⊑ that is
Ø  reflexive: ∀d : d ⊑ d
Ø  transitive: ∀d1, d2, d3 : d1 ⊑ d2 and d2 ⊑ d3 imply d1 ⊑ d3

Ø  anti-symmetric: ∀d1, d2 : d1 ⊑ d2 and d2 ⊑ d1 imply d1 = d2
A partially ordered set (D, ⊑) is a set D with a partial
ordering ⊑.
Least element: a ∈ D s.t. d ⊑ a and d ∈ D implies d = a.

Examples: Real numbers (R, ≤), power sets (℘(S), ⊆), ...

30

Equation solving

Ø  How can we obtain the least fixed point practically?
Ø  For the least element ⊥ ∈ D of a partially ordered set
D we have

 ⊥ ⊑ F(⊥)
Ø  Since F is monotone, we have by induction for all n ∈ N

 Fn(⊥) ⊑ Fn+1(⊥)
Ø  All elements of the sequence are in the domain D, and
therefore, if D is finite, there exists an n ∈ N such that

 Fn(⊥) = F(Fn(⊥))
Ø  But this means that Fn(⊥) is a fixed point! (And indeed
a least fixed point.)

31

Chaotic iteration

Ø  Implementing the iteration algorithm naively is
computationally too expensive.
Ø  More efficient algorithms exist, and are variants of the
simplest scheme which is called chaotic iteration:
-- Initialization
X1 := ⊥; ...; Xn := ⊥
-- Iteration
while Xj ≠ Fj(X1, ..., Xn) for some j do
 Xj := Fj(X1, ..., Xn)
end

Ø  A more advanced algorithm is the worklist algorithm,
which keeps a list of edges of the control flow graph to
indicate which items are in need of recomputation.

32

A worklist algorithm for solving the equations

Input:
A set of live variables analysis equations

Output:
The least solution to the equations: LVexit

Data structures:
Ø  The current analysis result for block exits: LVexit
Ø  The worklist W: A list of pairs (l, l') indicating that the
current analysis result has changed at the entry to the
block l' and hence the information must be recomputed for
block l.

33

A worklist algorithm for solving the equations

-- Initialization
W := nil
for all (l, l') ∈ CFG do W := cons((l, l'),W) end
for all labels l do LVexit (l) := {} end
-- Worklist loop
while W ≠ nil do
 (l, l') := head(W)
 W := tail(W)
 if (LVexit (l') \ kill(l')) ∪ gen(l') ⊈ LVexit (l) then
 LVexit (l) := LVexit (l) ∪ (LVexit (l') \ kill(l')) ∪ gen(l')
 end
 for all l'' with (l'', l) ∈ CFG do W := cons((l'', l),W) end
end

Note: (LVexit (l') \ kill(l')) ∪ gen(l') = LVentry(l')

34

Example: Working of the algorithm

[x :=2]1

[y:=4]2

[x:=1]3

[y>x]4

[z:=y]5 [z:=2*z]6

[x:=z]7

{}

{} {}

{}

{}

{}

{} W = (6,7),(5,7),...

(LVexit(7) \ {x}) ∪ {z} ⊈ LVexit (6)

{z}

W = (4,6),(5,7),...

{z}
(LVexit(6) \ {z}) ∪ {z} ⊈ LVexit (4)

{x,y,z}

LVexit(4) ∪ {x,y} ⊈ LVexit (3)

W = (3,4),(5,7),...

Chair of Software Engineering

Data	
 Flow	
 Analysis	

Reaching	
 Defini=ons	
 Analysis	

36

Reaching definitions analysis

Another example of a data flow analysis: reaching
definitions (RD) analysis.
Ø  The aim of the RD analysis is to determine

Note: The word "definition" is used for "assignment"

Example:
 [x:=5]1; [y:=1]2; while [x>1]3 do [y:=x*y]4; [x:=x-1]5 end
Which assignments may reach program point 5?

“For each program point, which assignments may have
been made and not overwritten, when program
execution reaches this point along some path.”

37

Reaching definitions analysis

Idea: analysis domain ℘(Var* x Lab*), work forward
Ø  We write (x, l) to describe a definition of x in block l
Ø  We write (x, ?) to describe that x is uninitialized

[x:=5]1

[y:=1]2

[x>1]3 {(x,1),(y,2),(y,4),(x,5)}

{(x,1),(y,2)}

{(x,1),(y,?)}

[y:=x*y]4

[x:=x-1]5 {(y,4),(x,5)}

{(x,1),(y,4),(x,5)}

{(x,?),(y,?)}

. . .

38

Formalization: Data flow equations

The reaching definitions analysis can be specified similarly
to the scheme for LV analysis.

RDentry(l') = ∪ RDexit(l)

 (and RDentry(l) = {(x,?) | x is a free variable in the program}
 if l is the initial label)

RDexit(l) = (RDentry(l) \ killRD(l)) ∪ genRD (l)

killRD ([x:=a]l) = {(x,?)} ∪ {(x,l') | block l' assigns to x}
killRD ([b]l) = {}
genRD ([x:=a]l) = {(x,l)}
genRD ([b]l) = {}

(l, l') ∈ CFG

39

Use-Definition and Definition-Use chains

Sometimes it is convenient to directly link statements that
produce values to statements that use them and vice versa
Ø  Use-Definition chains (UD chains): each use of a variable
is linked to all assignments that may reach it

[x:=0]1; [x:=3]2; (if [z=x]3 then [z:=0]4 else [z:=x]5 end); [y:=x]6; [x:=y+z]7

Ø  Definition-Use chains (DU chains): each assignment to a
variable is linked to all uses of it

[x:=0]1; [x:=3]2; (if [z=x]3 then [z:=0]4 else [z:=x]5 end); [y:=x]6; [x:=y+z]7

40

Definition of UD chains

Ø  UD(x, l') returns all the labels where an occurrence of x
at l' may have obtained its value.

UD(x, l') = {l | [x:=a]l and clear(x,l,l')} ∪ {? | clear(x, linit, l)}

where the predicate clear(x,l,l') describes a definition clear
path: none of the intermediate blocks on a path from l to l'
contains an assignment to x but block l assigns to x and block l'
uses x.

Ø  Can be computed with Reaching Definitions:
UD(x,l) = {l' | (x, l') ∈ RDentry(l)} if x is used in block l, else {}

[x:=...]l [...x...]l’ . . .

no x:=...

[]l1 []ln

41

Definition of DU chains

Ø  DU(x, l) returns all the labels where the value assigned
to x at l may be used.

Ø  Can be computed from UD chains:

 DU(x, l) = {l' | l ∈ UD(x, l')}

42

Reading

Textbook:
Flemming Nielson, Hanne Riis Nielson, Chris Hankin:
Principles of Program Analysis, Springer, 2005.

Chapter 1: Sections 1.1-1.3, 1.7
Chapter 2: Sections 2.1, 2.3, 2.4

