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Applications of program analysis 

Two important application fields of program analysis: 
 
Ø  Program optimizations 

Ø  Program analysis provides techniques for 
transforming programs during compilation to avoid 
redundant computations 

Ø  Verification 
Ø  Program analysis can provide warnings about possible 

unintended program behavior (e.g. buffer overflows) 
or prove programs free from such behavior 

 
Program analysis is a static technique, i.e. analyses are 
performed without running the program. 
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How can this work? 

We are interested to have questions such as the following 
answered by an analysis: 
 
Ø  Will the value of variable x be read in the future? 
Ø  Can buffer b overflow in line i of the program? 
Ø  Can void dereferencing occur during execution? etc. 

From computability theory (Rice’s theorem) we know 
however: “All non-trivial questions about the behavior of 
Turing-complete programs are undecidable.” So, how can 
this work? 
 
Key idea: We can settle for approximative answers, as 
explained on the following slides. 
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The approach 

Assume we depict the set of all possible concrete 
executions of a program as trajectories through the state 
space:  
 
 
 
 
 

Time 

States Program 
executions 
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Safety properties 

Many program analysis questions can be stated as safety 
properties, which express that no possible execution can 
enter an error state (e.g. a state where “buffer b 
overflows”). 

States 
Error states 

Error Error states 

Time 
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Approximations 

As mentioned, proving that a non-trivial safety property 
holds is undecidable for the set of concrete executions. 
Instead we compute an abstraction of the behavior which 
over-approximates all concrete executions: 

States 
Error states 

Error states 

Time 
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Soundness of the analysis 

We want our analysis to be sound so that all possible 
program executions are captured. 
 
Example of an unsound analysis: 

States 
Error states 

Error states 

Time 

Unsound 
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Precision 

We also want our analysis to be as precise as possible. 
Otherwise, if there are too many false alarms, the analysis 
will be unusable.  
Errors reported by the analysis which cannot occur in a 
concrete execution are called false positives. 

States 
Error states 

Error states 

Time 

False 
positive 
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Precision vs. efficiency 

While we want our analysis to be precise, we often have to 
trade off precision with efficiency: 
 
Ø  While a very precise analysis might still be computable, 
it might need to run for too long to be practical. 
Ø  Imprecise analyses leave us with a large number of 
warnings, and manual checking has to show whether a 
particular warning is an error or a false positive. 

Defining new program analyses is thus an art that tries to 
balance precision and efficiency. 
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Types of program analyses 

Several types of program analyses have been established: 
Ø  Data flow analysis 
Ø  Control flow analysis 
Ø  Abstract interpretation 
Ø  Type systems 

In this lecture we will focus on data flow analysis, and in 
the next on abstract interpretation. 
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Summary 

Program analysis provides a set of static techniques for 
computing sound abstractions of the run-time behavior of 
a program. 
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Data flow analysis 

Data flow analysis is a technique to derive information 
about the possible program values produced at a specific 
program point. 
 
Data flow analyses take as an input the control flow graph 
of a program, and proceed by examining how data values 
are changed when being propagated along its edges (hence 
the name “data flow”). 
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Obtaining control flow graphs 

For imperative programs, a control flow graph can be 
computed straightforwardly from the abstract syntax 
tree of the program. (In more complicated cases, there 
are advanced techniques for it: control flow analysis.) 

 
Source Code 

  
 

 Abstract Syntax Trees (AST) 
  

 
 Control Flow Graphs (CFG) 
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Abstract syntax tree 

Abstract syntax tree: tree representation of the syntactic 
structure of the source code. 
 
 
 
x := 1 
y := x + 2 
if (y > 3) then 

 Result := y 
else 

 Result := x 
end 

; 

:= 

x 1 
:= 

y + 

x 2 

if…then…else…end 

> 

y 3 
:= 

Result y 
:= 

Result x 

; 
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Control flow graph 

Control flow graph: graph representation of all possible 
execution paths of a program. 
 
 
x := 1 
y := x + 2 
if (y > 3) then 

 Result := y 
else 

 Result := x 
end 
y := x 
 

x:=1 

y:=x+2 

y>3 

Result:=y Result:=x 

y:=x 
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Labels 

In order to be able to refer to specific program points, 
program analyses introduce labels into the program. 
The labeled program fragments are called elementary 
blocks. 
 
[x := 1]1 

[y := x + 2]2 
if [y > 3]3 then 

 [Result := y]4 
else 

 [Result := x]5 
end 
[y := x]6 
 

[x:=1]1 

[y:=x+2]2 

[y>3]3 

[Result:=y]4 [Result:=x]5 

[y:=x]6 

Elementary 
block 

Label 

Initial 
label 

Final 
label 
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Live variables analysis 

We present a first example of a data flow analysis: live 
variables (LV) analysis. 
Ø  A variable is live at the exit from a block if there is 
some path from the block to a use of the variable that 
does not redefine the variable. 
Ø  The aim of the live variables analysis is to determine 

 
Example: 

 [x :=2]1; [y:=4]2; [x:=1]3;  
 if [y>x]4 then [z:=y]5 else [z:=2*z]6 end; [x:=z]7 

Is the variable x live at the exit from block 1? 

“For each program point, which variables 
may be live at the exit from the point.” 
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Live variables analysis 

[y:=x]2 

[y>x]4 

[z:=y]5 [z:=2*z]6  

{y,z} 
{y} 

{y,z} 

{z} 

{x,z} 

Analysis idea:  
Ø  Record sets of possibly live variables 
Ø  Distinguish entry and exit of blocks 
Ø  Work backwards 

(LV1) Blocks: 
    LVentry = (LVexit \ “assigned”)∪“used” 
 
"assigned" – variable that gets assigned in the block 
"used" – variables that are used in the block 
 
(LV2) Edges: 
    LVexit(4) = LVentry(5)∪LVentry(6) 
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Example: Live variables analysis 

[x :=2]1 

[y:=4]2 

[x:=1]3 

[y>x]4 

[z:=y]5 [z:=2*z]6  

[x:=z]7  

{} 

{z} {z} 

{y,z} 
{y} 

{x,y,z} 

{y,z} 

{z} 

{z} 

{z} 

{z} 

{x,y,z} 

{y,z} 

{z} 
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Application: Dead code elimination 

An assignment [x := a]l is dead if the value of x is not used 
before it is redefined. 
 
Goal: Eliminate dead assignments from programs. 
 
Example: 
We know that x ∉ LVexit(1) = {z}, i.e. variable x not used 
before it is redefined. Therefore block 1 is dead and can 
be eliminated: 
 

 [x :=2]1; [y:=4]2; [x:=1]3;  
 if [y>x]4 then [z:=y]5 else [z:=2*z]6 end; [x:=z]7 
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How to formalize the analysis idea? 

Ø  (LV1) and (LV2) specify equations over a set of variables 
LVentry(l) and LVexit(l) for any label l. 
Ø  This equation system can be solved with standard 
algorithms (discussed later). 
Ø  The equation system itself can be specified more 
formally, as done on the next slide. 
 
This specification consists of two parts: 
1.  The definition of the equation system. 
2.  Auxiliary functions kill and gen, which specify the 

analysis information removed (killed) and added 
(generated) when passing through an elementary block. 
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Formalization: Data flow equations 

1. The data flow equations: 
 
LVexit(l)  =       ∪     LVentry(l')    
 
                      (and LVexit(l) = {} if l is the final label) 
LVentry(l)  = (LVexit(l) \ killLV(l)) ∪ genLV (l) 
 
2. The auxiliary kill and gen functions: 
killLV ([x:=a]l)  = {x} 
killLV ([b]l)   = {} 
genLV ([x:=a]l)  = {y | y is a free variable in a} 
genLV ([b]l)   = {y | y is a free variable in b} 

(l, l') ∈ CFG 
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Example: Equation system for LV analysis 

LVentry(1) = 
LVentry(2) = 
LVentry(3) = 
LVentry(4) = 
LVentry(5) = 
LVentry(6) = 
LVentry(7) = 
 
LVexit(1) = 
LVexit(2) = 
LVexit(3) = 
LVexit(4) = 
LVexit(5) = 
LVexit(6) = 
LVexit(7) =  

[x :=2]1 

[y:=4]2 

[x:=1]3 

[y>x]4 

[z:=y]5 [z:=2*z]6  

[x:=z]7  

{} 

LVentry(7) 
LVentry(7) 

LVentry(2) 
LVentry(3) 
LVentry(4) 
LVentry(5) ∪ LVentry(6) 

LVexit(1) \ {x} 
LVexit(2) \ {y} 
LVexit(3) \ {x} 
LVexit(4) ∪ {x, y} 
(LVexit(5) \ {z}) ∪ {y} 
(LVexit(6) \ {z}) ∪ {z} 
(LVexit(7) \ {x})∪ {z} 
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Fixed point solutions 

Ø  The equation system of the example defines the 14 sets  
  LVentry(1), LVentry(2), ..., LVexit(7) 

in terms of each other. 
Ø  When writing LV for the vector of these 14 sets, the 
equation system can be written as a function F where 

   LV = F(LV) 
Ø  Using a vector of variables X = (X1,..., X14), the function 
can be defined as 

 F(X) = (f1(X), ..., f14(X)) 
where for example 
     f11(X1, ..., X14) = X5∪ X6 
Ø  From the above equation it is clear that the solution LV 
we are looking for is the (least) fixed point of the function 
F. 
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Partially ordered sets 

For any analysis, we are interested in expressing that one 
analysis result is "better" (more precise) than another.  
In other words, we want the analysis domain to be partially 
ordered.  
 
A partial ordering is a relation ⊑ that is 
Ø  reflexive: ∀d : d ⊑ d 
Ø  transitive: ∀d1, d2, d3 : d1 ⊑ d2 and d2 ⊑ d3 imply d1 ⊑ d3 

Ø  anti-symmetric: ∀d1, d2 : d1 ⊑ d2 and d2 ⊑ d1 imply d1 = d2 
A partially ordered set (D, ⊑) is a set D with a partial 
ordering ⊑.  
Least element: a ∈ D s.t. d ⊑ a and d ∈ D implies d = a. 

Examples: Real numbers (R, ≤), power sets (℘(S), ⊆), ... 



30 

Equation solving 

Ø  How can we obtain the least fixed point practically? 
Ø  For the least element ⊥ ∈ D of a partially ordered set 
D we have 

 ⊥ ⊑ F(⊥) 
Ø  Since F is monotone, we have by induction for all n ∈ N 

 Fn(⊥) ⊑ Fn+1(⊥) 
Ø  All elements of the sequence are in the domain D, and 
therefore, if D is finite, there exists an n ∈ N such that 

 Fn(⊥) = F(Fn(⊥)) 
Ø  But this means that  Fn(⊥) is a fixed point! (And indeed 
a least fixed point.)  
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Chaotic iteration 

Ø  Implementing the iteration algorithm naively is 
computationally too expensive. 
Ø  More efficient algorithms exist, and are variants of the 
simplest scheme which is called chaotic iteration: 
-- Initialization 
X1 := ⊥; ...; Xn := ⊥ 
-- Iteration 
while Xj ≠ Fj(X1, ..., Xn) for some j do 
    Xj := Fj(X1, ..., Xn) 
end 
  

Ø  A more advanced algorithm is the worklist algorithm, 
which keeps a list of edges of the control flow graph to 
indicate which items are in need of recomputation. 



32 

A worklist algorithm for solving the equations 

Input: 
A set of live variables analysis equations 
 
Output: 
The least solution to the equations: LVexit 

 
Data structures: 
Ø  The current analysis result for block exits: LVexit 
Ø  The worklist W: A list of pairs (l, l') indicating that the 
current analysis result has changed at the entry to the 
block l' and hence the information must be recomputed for 
block l. 
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A worklist algorithm for solving the equations 

-- Initialization 
W := nil 
for all (l, l') ∈ CFG do W := cons((l, l'),W) end 
for all labels l do LVexit (l) := {} end 
-- Worklist loop 
while W ≠ nil do 
  (l, l') := head(W) 
  W := tail(W) 
  if (LVexit (l') \ kill(l')) ∪ gen(l') ⊈ LVexit (l) then 
     LVexit (l) := LVexit (l) ∪ (LVexit (l') \ kill(l')) ∪ gen(l') 
  end 
  for all l'' with (l'', l)  ∈ CFG do W := cons((l'', l),W) end 
end 
 
Note: (LVexit (l') \ kill(l')) ∪ gen(l') = LVentry(l') 
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Example: Working of the algorithm 

[x :=2]1 

[y:=4]2 

[x:=1]3 

[y>x]4 

[z:=y]5 [z:=2*z]6  

[x:=z]7  

{} 

{} {} 

{} 

{} 

{} 

{} W = (6,7),(5,7),...  

(LVexit(7) \ {x}) ∪ {z} ⊈ LVexit (6)  

{z} 

W = (4,6),(5,7),...  

{z} 
(LVexit(6) \ {z}) ∪ {z} ⊈ LVexit (4)  

{x,y,z} 

LVexit(4) ∪ {x,y} ⊈ LVexit (3)  

W = (3,4),(5,7),...  
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Reaching definitions analysis 

Another example of a data flow analysis: reaching 
definitions (RD) analysis. 
Ø  The aim of the RD analysis is to determine 

 
 
Note: The word "definition" is used for "assignment" 
 
Example: 
   [x:=5]1; [y:=1]2; while [x>1]3 do [y:=x*y]4; [x:=x-1]5 end 
Which assignments may reach program point 5? 

“For each program point, which assignments may have 
been made and not overwritten, when program 
execution reaches this point along some path.” 



37 

Reaching definitions analysis 

Idea: analysis domain ℘(Var* x Lab*), work forward 
Ø  We write (x, l) to describe a definition of x in block l 
Ø  We write (x, ?) to describe that x is uninitialized 

[x:=5]1 

[y:=1]2 

[x>1]3 {(x,1),(y,2),(y,4),(x,5)} 

{(x,1),(y,2)} 

{(x,1),(y,?)} 

[y:=x*y]4 

[x:=x-1]5 {(y,4),(x,5)} 

{(x,1),(y,4),(x,5)} 

{(x,?),(y,?)} 

. . . 
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Formalization: Data flow equations 

The reaching definitions analysis can be specified similarly 
to the scheme for LV analysis. 
 
RDentry(l')  =         ∪    RDexit(l)   
  
 (and RDentry(l) = {(x,?) | x is a free variable in the program}  
 if l is the initial label) 

RDexit(l)  = (RDentry(l) \ killRD(l)) ∪ genRD (l) 
 
killRD ([x:=a]l)    = {(x,?)} ∪ {(x,l') | block l' assigns to x} 
killRD ([b]l)      = {} 
genRD ([x:=a]l)   = {(x,l)} 
genRD ([b]l)      = {} 

(l, l') ∈ CFG 
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Use-Definition and Definition-Use chains 

Sometimes it is convenient to directly link statements that 
produce values to statements that use them and vice versa 
Ø  Use-Definition chains (UD chains): each use of a variable 
is linked to all assignments that may reach it 

[x:=0]1; [x:=3]2; (if [z=x]3 then [z:=0]4 else [z:=x]5 end); [y:=x]6; [x:=y+z]7 
 
 
 

Ø  Definition-Use chains (DU chains): each assignment to a 
variable is linked to all uses of it 

[x:=0]1; [x:=3]2; (if [z=x]3 then [z:=0]4 else [z:=x]5 end); [y:=x]6; [x:=y+z]7 
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Definition of UD chains 

Ø  UD(x, l') returns all the labels where an occurrence of x 
at l' may have obtained its value. 
 
UD(x, l') = {l | [x:=a]l and clear(x,l,l')} ∪ {? | clear(x, linit, l)} 
 
where the predicate clear(x,l,l') describes a definition clear 
path: none of the intermediate blocks on a path from l to l' 
contains an assignment to x but block l assigns to x and block l' 
uses x. 
 
 
 
Ø  Can be computed with Reaching Definitions: 
UD(x,l) = {l' | (x, l') ∈ RDentry(l)}  if x is used in block l, else {} 

[x:=...]l [...x...]l’ . . . 

no x:=... 

[    ]l1 [    ]ln 
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Definition of DU chains 

Ø  DU(x, l) returns all the labels where the value assigned 
to x at l may be used. 
 
Ø  Can be computed from UD chains: 

 DU(x, l) = {l' | l ∈ UD(x, l')} 
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Reading 

Textbook: 
Flemming Nielson, Hanne Riis Nielson, Chris Hankin: 
Principles of Program Analysis, Springer, 2005. 
 
Chapter 1: Sections 1.1-1.3, 1.7 
Chapter 2: Sections 2.1, 2.3, 2.4 


